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Summary 
Our main aim in the present paper is the extension of the 
Encryption/Decryption processes using products of primes. We 
now show in this paper how to generate a group from any 
general natural number or a product of such natural numbers. We 
then show how this group can be used for generation of a simple 
(yet as secure, as the one that is generated with the help of larger 
primes) encryption /decryption process. This work is 
continuation of the work that the first author had undertaken with 
Dr. H. Chandrashekhar in the 90’s using Farey Fractions 
summary. 
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1. Introduction 

Our aim in the following discussion is the study of the 
Cryptology with the help of application of number groups 
in the generation of secure codes in general. These codes 
are meant to conceal sensitive data from the prying eyes of 
hackers whose main objective is three - fold.  
(1) Steal the data and put it to destructive uses.  
(2) Alter the code in such a way that the objective of 
original code is completely destroyed.  
(3) Use the data for clandestine purposes. The objectives 
of Cryptology are thus meant to enforce security of the 
organizations by securing the data and operations on them. 
 
Primes are the bread and butter of the cryptologist. A 
traditional encryption process requires longer prime 
numbers (1064 bits). However this long encryption code 
may lead to easier hacking compared to a large number of 
primes used for different pieces of code. In this paper we 
first show how to generate groups of integers with the help 
of product of primes and then use such group of integers 
to develop encryption process. 

2. Groups 

Groups, rings and fields are the fundamental elements of 
abstract algebra or modern algebra.  In the abstract algebra 
we are concerned with the sets on whose we can operate 
algebraically; that is we combine two elements of the set,  
 
 
perhaps in several ways, to obtain the third element of the 
set. These operations are subject to specific rules, which 
define the nature of the set. By convention, the notation 
for the two principal classes of operations on set elements 
is usually the same as the notation for the addition and 
multiplication on ordinary numbers. However, it is 
important to note that, in abstract algebra, we are not 
limited to ordinary arithmetical operations. The symbol N 
stands for the set of all natural numbers, also called the 
“Counting Numbers”, and is given by: N = {0, 1, 2, 3, 
…,.n-1, n, n+1, …. }. 

3. Theorem 

 
We first prove a simple theorem, which establishes the 
group structure for the product of two, and hence also for 
the product of more than two primes. 
 
3.1 THEOREM 1:  
Let p1, p2, ⋅⋅⋅⋅⋅ pk be any k distinct primes >1. Then the set 
of all integers n relatively prime to each of the primes pk 
constitute a multiplicative group Modulo P, where P= p1• 
p2• p3 ⋅⋅⋅⋅⋅• pk  
Proof: 
The proof of this Theorem is quite straight forward. Note 
that the closures, Associativity, the identity given by 1 are 
easily verified. If x is an element of this set, it is relatively 
prime to P and hence is an element of the group. Use of 
the Euclidean Algorithm proves the existence of the 
inverse x-1 modulo P. In essence, the set of all those 
positive integers which are less than P and relatively prime 
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to P are used for encrypting the given message, since these 
integers possess their inverses modulo P. 
 
The one problem that we face with this approach is 
basically due to our choice of the k primes p1, p2, ⋅⋅⋅⋅ pk. 
The problem arises when the number k of primes is large. 

Then necessarily the number of integers we have at 
disposal for encryption becomes less. 

 

 

Figure 1: Modulo 17 Multiplication table 
× 
17 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
2 2 4 6 8 10 12 14 16 1 3 5 7 9 11 13 15 
3 3 6 9 12 15 1 4 7 10 13 16 2 5 8 11 14 
4 4 8 12 16 3 7 11 15 2 6 10 14 1 5 9 13 
5 5 10 15 3 8 13 1 6 11 16 4 9 14 2 7 12 
6 6 12 1 7 13 2 8 14 3 9 15 4 10 16 5 11 
7 7 14 4 11 1 8 15 5 12 2 9 16 6 13 3 10 
8 8 16 7 15 6 14 5 13 4 12 3 11 2 10 1 9 
9 9 1 10 2 11 3 12 4 13 5 14 6 15 7 16 8 
10 10 3 13 6 16 9 2 12 5 15 8 1 11 4 14 7 
11 11 5 16 10 4 15 9 3 14 8 2 12 7 1 12 6 
12 12 7 2 14 9 4 16 11 6 1 13 8 3 15 10 5 
13 13 9 5 1 14 10 6 2 15 11 7 3 16 12 8 4 
14 14 11 8 5 2 16 13 10 7 4 1 15 12 9 6 3 
15 15 13 11 9 7 5 3 1 16 14 12 10 8 6 4 2 
16 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

 
The ideal thing is to take 2 primes and their product, or 
even better, one takes the square of a single prime. Note 
that taking cubes and higher powers will not be as 
efficient as the square. For example, choose the prime 3 
and its cube as the modulus. The cube defines 27 elements 
including 1,  and 27 which plays the role of 0: The 27 
elements of the set are {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26}. 
Out of the 27 elements, there are 9 elements which are 
already divisors of zero. 
 
Example 1: Consider the prime 17. The numbers of 
positive integers less than 17 are 1, 2, 3,⋅⋅⋅⋅⋅⋅⋅ 15, and 16. 
Note that none of these 16 elements is omitted from 
consideration; under multiplication modulo 17, all these 
16 elements constitute a multiplicative group modulo 17. 
The Table in figure 1 establishes this fact.  
 
Example 2: Next consider the square 172 = 289. There are 
exactly 16 elements, namely 17, 34, 51, 68, 85, 102, 119, 
136, 153, 170, 187, 204, 221, 238, 255, 272 which are 
divisors of 0 modulo 289 and hence do not possess their 
inverses mod 289 = 172. All other (289 – 16 =) 273 
numbers satisfy the following conditions:  
 
a. They are relatively prime to 17 and hence to 289.  

b. They posses their multiplicative inverses modulo 
172 = 289.  
 
Since these 273 numbers are relatively prime to 289, they 
possess their multiplicative inverses modulo 172. This fact 
follows from the Euclidean Algorithm. For example,  
 
consider 25 which is relatively prime to 17 and hence to 
289.  Note that 185 × 25 = 4625 = 16×289 + 1 ≡ 1 mod 
289. Hence the two integers 185 and 25 are inverses of 
each other under modulo 289 by the Euclidean Algorithm.  
In fact, we can show that all positive integers less than 289 
and not equal to the following 16 numbers: {17r⏐1≤ r ≤ 
16} = [17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 
204, 221, 238, 255, 272} are relatively prime to 289.  Note 
that the positive numbers which are different from these 
16 numbers and less than 289 possess their inverses 
modulo 289.  
 
Let n be any integer less than 289 is also relatively prime 
to 289. We show that its inverse modulo 289 exists. First, 
we list all those elements which are relatively prime to 
289: {1, 2, 3,…, 16; 18, 19,….., 33; 35, 36, ….., 50; 52, 
53, …., 67; 69, 70, 71, …., 84; 86, 87, …., 101; 103, 
104,….,118; 120, 121, …., 135;  137, 138, …., 152; 154, 
155, …., 169; 171, 172, 173, …., 186; 188, 189, …., 203; 
205, 206, …., 220; 222, 223, …., 237; 239, 240, ….,254; 
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356, 257,….,271; 273, …., 288}. The elements that are 
left out are the 17 multiples of 17 which are divisors of 
zero mod 289. 
 
3.2 Euclidean Algorithm:  
 

Consider the element 100. We find its multiplicative 
inverse mod 289 using the Euclidean Algorithm: 289 = 
2×100 + 89 →100 = 1 × 89 + 11 → 89 = 8×11 + 1 ⇔ 1 = 
89 - 8×11 = 89 - 8×(100 – 89) = 9×89 - 8×100 = 9×[289 - 
2×100] - 8×100 ≡ 26×100= (289 – 26)×100 ≡ 263×100 ⇔ 
the inverse of 100 is 263. 

Figure 2: Modulo 17 Multiplication table 
× 
60 

01 07 11 13 17 19 23 29 31 37 41 43 47 49 53 59 

01 01 07 11 13 17 19 23 29 31 37 41 43 47 49 53 59 
07 07 49 17 31 59 13 41 23 47 29 37 01 29 43 11 53 
11 11 17 01 23 07 29 13 19 41 47 31 53 37 59 43 49 
13 13 31 23 49 41 07 59 17 43 01 53 19 11 37 29 47 
17 17 59 07 41 49 23 31 13 47 29 37 11 19 53 01 43 
19 19 13 29 07 23 01 17 11 49 43 59 37 53 31 47 41 
23 23 41 13 59 31 17 49 07 53 11 43 29 01 47 19 37 
29 29 23 19 17 13 11 07 01 59 53 49 47 43 41 37 31 
31 31 37 41 43 47 49 53 59 01 07 11 13 17 19 23 29 
37 37 19 47 01 29 43 11 53 07 49 17 31 59 13 41 23 
41 41 47 31 53 37 59 43 49 11 17 01 23 07 29 13 19 
43 43 01 53 19 11 37 29 47 13 31 23 49 41 07 59 17 
47 47 29 37 11 19 53 01 43 17 59 07 41 49 23 31 13 
49 49 43 59 37 53 31 47 41 19 13 29 07 23 01 17 11 
53 53 11 43 29 53 47 19 37 23 41 13 59 31 17 49 07 
59 59 53 49 47 43 41 37 31 29 23 19 17 13 11 07 01 

 
Further, since all these (289 – 16 = 273) numbers are 
relatively prime to 289; their products are also relatively 
prime to 289. Their inverses modulo 289 exist and the 
closure law under multiplication modulo 289 holds. The 
unit 1 plays the role of the identity and the associative law 
modulo 289 is inherited from the associative law of 
ordinary multiplication of integers.  
The integer 1 modulo 289 plays the role of the identity for 
multiplication modulo 289. Therefore we conclude that the 
set of all integers less than 289 = 172 and relatively prime 
to 17 constitute a commutative group under multiplication 
operation modulo 172 = 289. The order of this group is 
273. 

3.3 Propositions: 

Proposition 1:   
Let Gn {x ∈N | x ≠ 0, (x, n) = 1}, we have the set of all 
integers in Gn relatively prime to n ∈N, n ≠ 0 constitutes 
a multiplicative group under mod n. 
 
Example 3: Let n = 22×3×5 = 60. Then G60 = {1, 7, 11, 13, 
17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59} 
 

The set G60 has 16 elements, all of which are invertible 
modulo 60. Further note that 49 is a composite integer. 
But yet it possesses its multiplicative inverse modulo 60 
with which it is relatively prime. In the same way, it is 
interesting to construct the group structure for the set of all 
the 25 elements which are relatively prime to 70. 
 
Note that this relative primality of integers is a useful tool 
in the construction of group structures for all the relatively 
prime integers. Integers 3, 9, 27 are relatively prime to 70, 
and yet they possess their multiplicative inverses modulo 
70.   We obtained the group table for the group {G70, ×70} 
in the same manner, without much difficulty. Note that the 
integer 70 is a composite integer. Integers less than 70 and 
relatively prime to it could also be composite without 
losing their ability to possess multiplicative inverses 
modulo 70. 
 
Proposition 2: 
Every positive integer n is a unique product of powers of 
primes, n = p1

α1 • p2
α2 • p3

α3 ……… pn
αn   Where α1, α2, 

α3…….. αn are positive integers ≥ 0. We define the set Gn 
such that Gn = {m ∈N+ | (m, n) = 1}. Then (Gn, Xn) is a 
commutative group. 
Proof:  
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Closure: For every a and b in Gn, (a × b) mod n is               
also in Gn 
Associativity: For every a, b, c in Gn, we have (a ×  b) × c 
= a × (b × c) 
Existence of Identity: There is a unique element 1 in Gn, 
called the identity, such that for any a in Gn, we have 1 × a 
= a × 1 = a 
Existence of inverses: For every a in Gn there is a unique 
element b in Gn such that a × b = b × a = 1 mod n. This b is 
denoted by a-1 and is called the inverse of a. 
Commutative: For every a, b in Gn, a × b = b × a. 

4. Encryption and Decryption (ED) Process  

We work out a relatively new concept of the construction 
and usage of the encryption process. Note also the fact that 
we can construct, quite easily with the help of a suitable 
program, a simple function of selected set of primes of the 
type that suits the ED processes. The ED process that we 
describe is a variable process and it does not necessarily 
require us to construct the type of large primes that are in 
use with the current methods. Instead of working with ED 
processes with primes containing around 350 decimal 
digits, we shall work with a large number of primes of 
moderate size. But the technique used in the ED 
procedures change, depending on the following factors: i) 
Level of security, ii) size of the file, iii) availability of the 
computing facility.  
 
In this procedure we use product (and hence powers of 
primes) for encryption process. The main reason for this 
approach is three-fold. 
 
There are a large number of primes. 
 
Since the integers are used in this new encryption 
procedure, hacking a given message becomes all the more 
time consuming as it is difficult to compute the integer 
which is the product of primes. The hacker will have to fix 
the set of primes and their products which is being used in 
representing alphabets.  
 
The present usage of a very long (1064 bits) encryption 
code that is being used may lead to easier hacking 
compared to integer which is product of number of primes 
used for encryption with this procedure in mind. We 
describe the one such ED process with an example below. 

4.1 Example: 

Let us look at simple situation, the word JERRY is being 
encrypted by choosing 3 small primes p1=7, p2=7 and 
p3=11. The important fact we keep in mind is that it is not 
necessary to restrict our self to just the two prime numbers, 

viz 7 and 11, we could indeed choose , for example, a 
much larger primes and their powers to deal with its 
subsets for the ED processes. 
 
Step 1: Compute n and N: 
We compute n = 7 × 7 × 11 = 539, note that n is composite 
(not a prime) number.  
Now we have commutative group N which is a set of all 
integers from 1 to 539 excluding the integers 7, 11 and 
their multiples. 
N={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21
,22,23,24,25,......538, 539}  
By above proposition any a in N, has its inverse element a' 
in N, such that a × a' = 1 mod n. There are totally 119 
integers that do not belong to N. Hence N has totally 539-
(49+77-7) = 420 integers which have their inverse 
elements in N under modulo n. (use Venn diagram to 
calculate |N|) 
 
Step 2: Dividing N into blocks of integers 
We now divide the set of all integers N to number of 
blocks. For simplicity we make the following assumptions. 
Leaving 1 and 538 from the group N, as their inverses are 
themselves, we are left with 418 integers. 
Blocks are of size 26 integers (to increase the complexity 
we can choose the blocks of different sizes). 
One-to-one onto mapping of integers in each block with 
each English alphabet. (Association of alphabet with 
integers can be made randomly for further increase in the 
complexity)  
 
Then we have total of 17 blocks, 16 of them are of size 26 
integers each, and last block is of size 2 integers, 
constituting total of 418 integers. Figure 2 shows the first 
block, in which.  
 
Column 1: Set of Integers from N assigned to Block-B1. 
Column 2: One-to-one onto association of Alphabet with 
the integers. 
Column 3: The corresponding inverse integers from N 
under modulo n 
Column 4: The corresponding inverse alphabet. 
Column 5: The Block numbers to which the inverse 
integers and inverse alphabets belong. 
 
Step 3: Association of alphabets with blocks 
Associate each alphabet of the plain text JERRY with 
different blocks in random way J→B1, E→B3, R→B7, 
R→B9 and Y→B16. Note: only one letter is chosen from 
every block.  
 
Step 4: Encryption 
The table below gives the complete picture about the 
encryption process of the plain text in to cipher text. We 
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do select the blocks and associate the integers with 
alphabets randomly so that the hacker will have the 
tougher task to find the exact association. 
 
In some cases it may happen that, due to random 
association, all the cipher text alphabets may end up with a 
single alphabet in place of all the places. In this situation 
even though the encryption algorithm is know by the 
hacker it is much difficult to identify integer n (product of 
primes) and decrypt the cipher text. 

 
 

Figure 3: First block of integers with their inverse integers & inverse 
alphabets  

N Alpha
bet 

Inverse  
Integer     

(mod 539) 

Inverse 
Alphabe

t 

Block 
 Number 

2 A 270 B B9 
3 B 180 J B6 
4 C 135 Z B4 
5 D 108 F B4 
6 E 90 R B3 
8 F 337 B B11 
9 G 60 T B2 

10 H 54 P B2 
12 I 45 H B2 
13 J 83 M B3 
15 K 36 A B2 
16 L 438 C B14 
17 M 222 P B7 
18 N 30 W B1 
19 O 227 T B7 
20 P 27 U B1 
23 Q 375 E B12 
24 R 292 S B9 
25 S 345 H B11 
26 T 311 H B10 
27 U 20 P B1 
29 V 316 L B10 
30 W 18 N B1 
31 X 313 J B10 
32 Y 219 N B7 
34 Z 111 H B4 

 
Step 5: Decryption 
Decryption process is simply the reverse process of 
encryption. Known the cipher text alphabet and the 
associated integers, we have to compute their inverses by 
identifying the blocks associated with the integers of 
cipher text 

 
Observe that if we encrypt word ZIST using only block-
B1, the cipher text will be HHHH. Known the algorithm 
the hacker will have tougher task to break such cipher text.  

4.1 Why hacking is difficult task? 

To break the cipher text hacker has to compute the 
following 
i) Identify accurately, the prime numbers used to obtain 

n. 
ii) Identify the powers of the primes, i. e compute α1, α2, 

α3, α4……. αn, that are chosen randomly. 

Figure 4: Plain text Encryption 
Plain Text 
Alphabets 

J E R R Y 

Block Number 
(Random 
association) 

B1 B3 B7 B9 B16

Associated 
Integer 

13 74 225 257 534

Inverse Integer 
(mod 539) 

83 51 218 388 431

Block number of 
Inverse Integer  

B3 B2 B7 B12 B13

Inverse Alphabet 
(cipher text) 

M M M W W 

 

  Figure 5: Decryption of Cipher Text  
Cipher Text M M M W W 
Block number of 
Cipher Text 
Integer  

B3 B2 B7 B12 B13

Integer 
Associated 
Cipher Text 

83 51 218 388 431

Inverse Integer 13 74 225 257 534
Block Number of 
Inverse Integer 

B1 B3 B7 B9 B16

Plain Text 
Alphabets 

J E R R Y 

 
iii)   Identifying the Number of blocks which are of 

arbitrarily different in sizes. It will be a very 
cumbersome task to find these blocks, if some of the 
blocks are of size less than 26 integers. 

iv)   Associate alphabets with the integers in each block. 
This is purely a random process. Blocks with integers 
fewer that 26 will not have all alphabets from English 
language associated. However this can be an 
advantage as it confuses the hacker in association of 
fewer alphabets with the integers. 
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Note that these limits of the blocks are artificially chosen 
for a better understanding and of increasing the 
complexity of decryption for a hacker. The crucial thing 
for encryption is the omission 1 and 538 from the set of 
blocks. The omissions are the simplest of give-always 
while the hacker tries in decrypting the message: the 1 hint 
the hacker get straight away is: whatever the prime is used 
for encryption as soon as hacker sees 1, he/she fixes its 
inverse as 1, which is its own inverse. The same motive 
makes us to remove the number 538 from all 
considerations 
 

5. Conclusion  

We have 181 prime numbers of size less than 4 digits 
between 1 and 1000. We can obtain the larger primes and 
use to build more and better security environments for 
information systems. But at this stage, it becomes less 
important that to design methods of using these already 
accessible primes to construct security systems. The 
principle is to design newer methods based on the already 
known primes. 
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