
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

378

Manuscript received January 5, 2007.
Manuscript revised January 25, 2007.

Movie-based Templates for Linear Algebra Problems

Dmitry Vazhenin†, Nikolay Mirenkov†† and Alexander Vazhenin†††

Graduate School Department of Information Systems, University of Aizu, Aizu-Wakamatsu, 965-8580 Japan

Summary
The paper discusses program design approaches supporting
effective and convenient programming. The first approach is
based on movie-based representation of algorithms and programs.
The user has a deal with special multimedia objects, each of
which can generate an executable code as well as produce
animation frames. These objects build an algorithmic skeleton
representing the steps of computation. The other direction is the
template metaprogramming technique in which templates are
used by a compiler to generate temporary source code. The
presented work is in combining both approaches in the software
design. The key point is in using an application-oriented movie-
based templates library. The important feature of this library is
that it is open for addition new templates, and all components
can be prepared by means of the movie-based environment. The
other peculiarities are the presence of two types of components:
functional modules and multimedia macros that can be easily
embedded into the user’s algorithmic skeleton. In this paper, we
show the main features of movie-based programming as well as
describe the movie-based template library for linear algebra
problems. Examples of the library usage are also presented.
Key words:
Visual Programming, Movie-based Programming, Template
Metaprogramming, Linear Algebra Problems.

1. Introduction

The most of modern applications include a big variety of
attractive multimedia functions with icons, pictures,
animations, sound and other multimedia components
providing to the user reliable understanding as well as
effective manipulating with the complex objects. This
allows programming with visual expressions, direct
manipulating visual information as well as supporting
visual interaction. The market has already discovered the
fascination of visual programming, and various new
programming environments have been declared to be
"visual''. Visual programming languages and tools may be
classified according to the type and extent of visual
expression used, into icon-based languages, form-based
languages and diagram languages. Visual programming
environments provide graphical or iconic elements which
can be manipulated by the user in an interactive way
according to some specific spatial grammar for program
[1-5].

Multimedia approach for interactive specifications of
applied algorithms and data representations is based upon
a collection of computational schemes represented in the
"film" format proposed in [6]. In [7], we presented an
extension of this approach called the Movie-Based
Programming. The programming process is in
manipulating with special movie-program objects (MP-
objects) generating automatically a part of an executable
code as well as producing frames, which are adequate to
the code generated. Both movie and program can
synchronously be generated and debugged.

The important direction to increase the programmer’s
productivity is so-called template metaprogramming
especially for C++ users [8]. It is a programming
technique in which templates are used by a compiler to
generate temporary source code, which is merged by the
compiler with the rest of the source code and then
compiled. The use of templates can be thought of as
compile-time execution. This allows using the user-
oriented programming language reflecting all specifics of
concrete applications. There are some drawbacks to the
use of text-based templates. First, many compilers
historically have very poor support for templates, so the
use of templates can make code somewhat less portable.
Second, almost all compilers produce confusing, unhelpful
error messages when errors are detected in template code.
This can make templates difficult to develop. Third, each
use of a template may cause the compiler to generate extra
code (an instantiation of the template), so the
indiscriminate use of templates can lead to code bloat,
resulting in excessively large executables. The extra
instantiations generated by templates can also cause
debuggers to have difficulty working gracefully with
templates. For example, setting a debug breakpoint within
a template from a source file may either miss setting the
breakpoint in the actual instantiation desired or may set a
breakpoint in every place the template is instantiated.

The presented work is in combining both approaches in
the software design. The key point is in using an
application-oriented movie-based templates library. The
important feature of this library is that it is open for
addition new templates, and all components can be
prepared by means of the movie-based environment. The

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

379

other peculiarities are the presence of two types of
components: functional modules and multimedia macros
that can be easily embedded into the user’s algorithmic
skeleton.

The methods and tools of linear algebra are often used in
many scientific and practical computations. The kernel of
these algorithms is matrix data and operations.
Traditionally, the linear algebra software consists of well-
maintained libraries available commercially or
electronically in the public-domain like LINPACK and
BLAS packages [9], other libraries distributed with texts
or other books, individual subroutines tested, as well as
individual or electronic sources which may be hard to use
or come without support. As shown in [10], there is a need
for tools to help users in picking the best algorithm and
implementation for their numerical problems, as well as in
getting expert advises on how to tune them. Authors
suggested for using special text-based forms called
templates. This approach can be considered as a good idea
to help in choosing the suitable algorithm. Nevertheless,
essential problems with understanding computational
schemes presented still exist. This research is devoted to
design the new the movie-based linear algebra templates
including objects having mentioned-above features.

This paper has the following structure. In the section 2,
features are shown of movie-based programming
technology. In this section, we discuss also main stages of
the movie/program design and debugging. Section 3
contains description of movie-based matrix library. Some
remarks and examples of the movie-based library usage
are shown Section 4. Conclusion and future work are
discussed in Section 5.

2. Movie-based Programming Process

2.1 Basic Concepts

The movie-based representation of algorithms and
programs is in showing their features as a sequence of
animation frames. Accordingly, any animation frame
should visualize/animate a corresponding stage of a
program/algorithm execution (Fig. 1). We define such a
frame as the Movie-Program Frame or MP-frame. Each
MP-frame highlights and flashes some elements of a
parameterized matrix structures defining operations or
formulas. Different operations can be coded by different
colours. Special Control Lines (I1, I2, J1, J2) are used to
reference these areas of activities. They can change their
placement inside matrix during frame transitions.

Fig. 1 Algorithmic Movie Example

The Movie-based Programming is in manipulating with
special objects generating a part of an executable code as
well as producing MP-frames, which are adequate to the
code generated.

2.2 MP-skeleton Components

MP-skeleton is a container of MP-components (Fig. 2). In
other words, it is a collection of multimedia templates
defining how to generate a movie or program. It consists
of MP-films. Each MP-film is a set of MP-stills or scenes
that are responsible for generating MP-frames as well as
corresponding executable code. There exists a simple MP-
still generating one MP-frame. An EPISODE-still
produces a series of frames. The main feature of MP-
episode is that the same operations should be implemented
on all its internal frames.

The HEAD-still should be the first still in any film. It
contains description of data structures and variables used
in a current film. The END-still is to finalize a film. IF-
still is to skip or process selected groups of stills. The user
should specify a logical conditional expression as well as
mark stills that will be processed for true and false cases
correspondingly. The WHILE-still is to repeat the
processing of stills marked while a condition is true. The
CALL-still is to pass processing to other MP-films. In this
case, the END-still will return control to the parent film.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

380

Fig. 2 MP-skeleton components

In most cases, MP-film consists of several stills. Each still
contains a set of traversal schemes specifying coloured
domains in corresponding structure. Each schema has its
own colour and formula sequence attached to this colour.
The same nesting scheme is always reflected in the
corresponding program source code. Each still produces
one or several static frames representing skeleton steps of
computation and hiding formulas.

Actually, any algorithm represents data structures as well
as an order of operations or formulas implementing on
structure elements or nodes. Therefore, MP-structures are
other important components of each MP-film. Each MP-
structure includes the following attributes:
• The unique structure name is to identify a structure

from other structures.

• Parameters or variables are for defining structure size,
for example, number of rows and number of columns
for matrix structures. Importantly, these parameters
have two values. The first value is used for an
animation movie, and the second is used for
generating program.

• Structure control components are used to reference
activities areas inside a structure (Fig.2). This means
that control objects divide a structure into zones each
of which can have individual color. Different colors
mean that different operations can be implemented on
the corresponding nodes. For matrices, we have a deal
with vertical (J-lines), horizontal (I-lines) and
diagonal lines (D-lines). They can change their
placement inside matrix during frame transitions.

• Structure variables can be simple doubles, integers,
etc. as well as a composite type like strings, complex

numbers, etc. Each structure can have several
variables.

The main order of operations is defined by MP-stills
generating computational steps (MP-frames). The Control
Flow Formulas or CF-formulas are introduced to
coordinate operations between frames as well as program
the control lines behavior. Involving showed below, the
user can specify control lines behavior as well as define a
corresponding number of MP-frames or program iterations
will be generated.

1. CF_ID – Control Line Name

2. Initialization Rule (Start position):

CF_ID = <expression>;

3. Transition Rule (Next position):

if (<condition>)

then CF_ID = <expression 1>;

else CF_ID = <expression 2>;

4. Episode Rule (How to finish episode):

If (<condition>)

then {Generate Next Frame};

else {Finish Episode};

Actually, CF-formulas are to create a shape of computing
and define a distribution of computations over MP-nodes.
In other words, an algorithmic movie shows data
structures and some activities on these structures. To
precisely specify their activities, it is necessary to attach
arithmetical and/or logical formulas to corresponding
nodes. These formulas are called Computational formulas
or C-formulas. We define a C-formula as a subprogram
containing a sequence of arithmetical and logical
expressions. Each C-formula includes the following
components: MP-expressions, Control structures,
Regular text. MP-expressions are to specify data access
and operations on MP-nodes. The C-formula notation is to
the conventional mathematical expressions. Example of
C-formula is shown below:

 .

We are enhancing C-formulas by using special multimedia
attributes like images, symbols and tables in order to
improve the formula perception. Control structures are

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

381

used to point branch conditions. Regular text can be
comments and/or a custom code, which extends formula
capabilities.

2.3 Design Stages

The general scheme of a program movie-based design
process includes the following four stages:
• Creating the algorithmic MP-skeleton,

• Attaching Formulas,

• Generating, Executing and Debugging Movie-based
Program,

• Exporting algorithmic movie and program to the
target machine.

The algorithmic MP-skeleton design process includes
specifications of MP-objects like MP-stills, control lines,
structures (scalars, vectors and matrices) as well as CF-
formulas for each control line. Figure 3 depicts the user’s
activities in the MP-still creation.

Fig. 3 MP-still creation/editing

The user should also attach the C-formulas for colored
MP-nodes using special visual expressions on the
Formulas Attachment interface (Fig. 4). After finishing
these processes, the user can finally execute movie-based
programs and generate executable codes in C++.

Fig. 4 C-formula attaching

Information stored in MP-templates is used to generate
MP-frames as well as an executable code. During code
generation, some template components (scanning loops,
variables, etc.) will be simply transferred in the final code
defined by a target system. C-formulas will be converted
to the final code after additional verification. To generate
MP-frames, the MP-templates are also used to form
images and other graphical information. Calculations
using C-formulas attached can also be implemented, and a
movie will be generated representing only one possible
case of a MP-program execution obtained according to the
real data. It is also possible to generate a movie from a
MP-skeleton with non-complete formulas and conditions.
In this case, MP-frames with images can only be generated.
The user may randomize or specify directly branches
needed for IF- and WHILE-stills. As was mentioned, the
movie and program have different size parameters of MP-
structures. This leads that a movie and program will
have/reflect different numbers of MP-frames.

The executable code should be generated using this linear
textual representation with the substitution rules from
semantic tables applied. Thus, the visual terms are
represented by their corresponding textual terms. As
shown in [7], during formula attachment, a debugging
scheme allows visualizing and controlling all references to
the structure elements. This allows debugging film
structure and formulas activity during design-time. The
formula tracing technique is used visualizing nodes
referred by a formula on a particular frame (Fig. 5).

MMPP--ssttiillll CCrreeaattiioonn

SSppeecciiffyy aarreeaass ooff
nnooddee aaccttiivviittiieess

IInnttrroodduuccee
CCLL--lliinneess

SSppeecciiffyy CCLL--bbeehhaavviioorr
uussiinngg CCFF--ffoorrmmuullaass

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

382

Fig. 5 C-formulas tracing

The Movie-based Program is adequate to the
corresponding movie behavior. The Run-Time Debugging
makes possible verifying a movie-based program data-
flow using special breakpoints. When such a breakpoint
achieved, the program stops, and the executor invokes the
data visualization tool. Information provided to the user
includes a global frame and still numbers and a frame
number inside episode. He/she can choose to either
continue/terminate execution, or return to design stages

3. Movie-based Template Library

3.1 Library Organization

The efficiency and convenience of the most of
programming systems depends on variety of embedded
packages and libraries. Those tools can significantly
reduce the software design expenses as well as help in
understanding of computational methods. That is why
we’ve designed the linear algebra library as a collection of
movie-based matrix routines and procedures.

 As was pointed above, each MP-still includes a set of
templates used for generating corresponding animation
frames and parts of executable code. Moreover, each
library component can be used as a movie-based template
(MP-template) during MP-skeleton preparation. There are
two types of templates: functional modules and
multimedia macros that can be easily embedded into the
user’s algorithmic skeleton. Templates of the first type are
MP-films. The user can insert them into MP-skeleton and
connect to other film using CALL-still. Templates of the
second type are MP-stills that can be imported into the
user’s MP-film. Importantly, MP-template can by fully or
partially prepared according to the presence or absence of
CF-formulas. The movie-based library is open for
extension. This means that the can add new templates or
edit existing components. Moreover, all components can
be prepared by means of the movie-based environment.

3.2 MP-library Sections

All library components are divided into sections according
to their functional specialization. This allows covering
practically all stages of information processing including
inputting/generating initial data, processing as well as
visualization of result. In this section, we show some
examples of library components related to the linear
algebra problems.

Matrix Generators and Service Functions are a special
set of standardized MP-stills including movie-based
algorithms for obtaining matrices with given types and
features. These matrices are necessary in developing and
evaluating many matrix algorithms. Table 1 contains
examples of MP-templates that can be used as generator of
input data. Some other templates are to print or visualize
results during implementing of MP-program.

Table 1: Matrix Generators and Service Functions

Band Matrix defined by five
Control Diagonal Lines

Five Diagonal Band Matrix
defined by band templates

 Matrix operators include a set of standard matrix
operation like scalar and vector products, matrix-vector
and matrix-matrix multiplications, transposition, etc. Table
2 shows examples of different schemes of matrix
multiplication.

Table 2: Matrix operations

Row-column Matrix
Multiplication

Row-row Matrix
Multiplication

Matrix
Transposition

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

383

Usually, direct methods of solving systems of linear
algebraic equations (SLAE) are based on transformation
of the initial matrix to a standard matrix with a standard
shape. This section includes a set of Direct SLAE solvers
with standard matrix shapes (Table 3).

Table 3: SLAE solvers with standard matrices

Triangular
matrix

Diagonal
matrix

Bi-diagonal
matrix

Bi-
triangular

matrix

Direct SLAE solvers are classified according to the type
elimination procedure like triangulation, diagonal matrix,
bi-diagonal, etc. The other classification is according to
the way of elimination of unknown including by-element,
by-row, by-column eliminations, etc. (Table 4). In other
word, it reflects a way how zones of computation can be
reduced. The computation reduction is because of number
of zeroes element is increased during eliminating
unknowns. Operations on these elements can be avoided
by changing MP-nodes during frames transitions. Methods
are also distinguished according to the CF-formulas, for
example, Gauss-Jordan of division-free elimination.

Table 4: Direct SLAE solvers
Gaussian

Elimination
Gauss-Jordan
Elimination

Division-free
Elimination

There are a great variety of iterative methods for 2-D
problems. However, as a rule, they are also reduced to a
rather limited number of implementation schemes. These
schemes are directly related to how scanning operations on
corresponding matrix elements are performed. Library
contains a set of MP-stills realizing Standard Iterative
Schemes like Jacoby and Gauss-Seidel iterations.

4. Export/Import of Library Components

Any movie-based library component can easily be
imported or inserted into the user’s application skeleton.
Importantly, the library is open for changing. This means
that the user add/remove components in library.

4.1 Operations on MP-film library

The first library part is a collection of MP-films each of
which represents a complete method and consists of a MP-
still series. Figure 6 shows how the user can work with the
MP-films database. As shown in Figure, there are four
steps to import MP-film in his/her MP-skeleton:

1. Select a suitable MP-film from the corresponding
library section and insert it in the user’s MP-
skeleton,

2. Create the Call MP-still in the corresponding
parent MP-film,

3. In the Call MP-still, specify MP-components like
Control Lines, structures and variables used in
both parent and child films.

4. Tune the child MP-film defining values of MP-
components used locally.

Fig. 6 Import a library MP-film

MMPP--ffiillmmss
LLiibbrraarryy
SSeeccttiioonn

11

22

TThhee UUsseerr’’ss
MMPP--sskkeelleettoonn

CCaalllliinngg UUsseerr’’ss MMPP--ffiillmm

CCaallll MMPP--ssttiillll PPaarreenntt MMPP--ffiillmm CChhiilldd--FFiillmm

C-lines, structures and
variables used in the child

CC--lliinneess,, ssttrruuccttuurreess
aanndd vvaarriiaabblleess
ddeeffiinneedd bbyy ppaarreenntt

22

33

Local
components
defined here

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

384

Importantly, it is possible to have different variant of
calling the MP-films allowing the flexible use of the
library components.

4.2 Operations with MP-still template database

Import operations on stills and episodes have some
specifics because of necessity in redefining variables and
structures names, sizes, etc (Figure 7). The user should
specify a mapping of imported entities and real variables
and structures defined in the user’s MP-film. All formulas
will be transformed according to the user’s film notations.
If an inserted MP-still or episode has an extended set of
variables and structures, all unspecified components will
be added to the user’s film component set.

According to this technique, MP-skeleton generating the
Gaussian Elimination Movie or program can have two
episodes and two MP-stills. The first episode is the
Gaussian Elimination Procedure implementing matrix
triangulation. Back Substitution Episode represents
obtaining the final solutions.. The first MP-still is the
matrix generator. The final MP-still can be used, for
example, for printing results

Fig. 7 Export/Import a library MP-still

5. Conclusion

The proposed movie-based library can help in designing
and debugging matrix algorithms because of combining an
executable code generation with the visual representation
of algorithms and programs. The library is open and
allows adding/designing new matrix algorithms. The
programmer can easier understand relations between a real
application and algorithm used for it. During design of a
formula sequence, the user should operate only with visual
objects specifying variable names and index expressions
as multimedia symbols. The results of testing confirm that
the presented system can be used not only as an algorithm
demonstration tool but also as a programming tool. The
system presented is realized on Java platform. It generates
C/C++ programs and can export movies in the
Macromedia Flash Animation format. Our further
investigations are related in extending the set of
components as well as designing

References
[1] J. Stasko, J. Dominique, M. Brown, and B. Price, Software

Visualization: Programming As a Multimedia Experience,
The MIT Press, 1998.

[2] Limnor Tutorial. ©2003 Longflow Enterprises Ltd.
http://www.limnor.com/

[3] S. Tanimoto, “Programming in a Data Factory,” Proc. of
Human Centric Computing Languages and Environments,
Auckland, pp. 100-107, 2003.

[4] R. Oechsle, and T. Schmitt, “JAVAVIS: Automatic
Program Visualization with Object and Sequence Diagrams
Using the Java Debug Interface (JDI),” LNCS, Springer-
Verlag, Vol. 2269, pp. 1-15, 2002.

[5] M. Boshernitsan, M. Downes Visual Programming
Languages: A Survey, Report No. UCB/CSD-04-1368,
University of California, 2004.

[6] N. Mirenkov, A. Vazhenin, R. Yoshioka, Ts. Ebihara, at al.,
“Self-Explanatory Components: A New Programming
Paradigm,” Int. Jour. of Soft. Eng. and Knowledge Eng., vol.
11, no. 1, pp. 5-36, 2001.

[7] D. Vazhenin, A. Vazhenin, and N. Mirenkov, “Movie-based
Multimedia Environment for Programming and Algorithms
Design,” LNCS, Springer-Verlag, Vol. 3333, Part III, pp.
533-541.

[8] D. Abrahams, A. Gurtovoy, “C++ Template
Metaprogramming”, Addison-Wesley, 2004.

[9] http://www.netlib.org
[10] Z. Bai, D. Day, J. Demmel, J. Dongarra, M. Gu, A. Ruhe,

and H. Vorst, “Templates for Linear Algebra Problems,”
LNCS, Springer-Verlag, Vol. 1000, Springer-Verlag, 1996.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

385

Dmitri Vazhenin received his B.S
and M.S. degrees in Applied
Mathematics and Informatics from
Novosibirsk State technical University
(Russia) in 2001 and 2003,
respectively. He published about 20
referred papers. His
research/educational interests include
parallel algorithms, visual
programming tools, multimedia and

Internet technologies. He now is a PhD student at the University
of Aizu, Japan.

Nikolay Mirenkov received his M.S
degree in 1967, PhD in 1971, and
D.Sc in 1983 in Computer Science
from Institute of Mathematics
(Russia). He authored and edited 12
books and published more then 150
refereed papers. His
research/educational interests
include parallel programming
systems, self-explanatory software
components, human-computer

interface and new formats for data/knowledge representation. He
has been organizer and program committee member of many
international conferences. He is currently professor and head of
Distributed Processing Lab at the University of Aizu.

Alexander Vazhenin received his M.S
in Computer Engineering from the
Novosibirsk State Technical University
(Russia) in 1978. He received his PhD
in Computer Science from the Institute
of Informatics Systems of the Siberian
Division of the Russian Academy of
Sciences in 1993. He published more
then 70 refereed papers. His research
and educational interests include
parallel architectures, algorithms and

programming tools, self-explanatory software high-accuracy
computations, visual, and multimedia and Internet technology.
He has been program and organizing committee member of
many international conferences. He is currently associate
professor at the University of Aizu, Japan.

