
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007 
 

 

1

Manuscript received February 5, 2007.  
Manuscript revised  February 25, 2007. 

 
An Improved Chaotic Maximum Neural Network for 

Maximum Clique Problem 
 

Gang Yang†, Zheng Tang†, and Junyan Yi† 
  

† Faculty of Engineering, Toyama University, Toyama, 930-8555 Japan 
 
Summary 
We propose an improved chaotic maximum neural 
network to solve maximum clique problem. Through 
analyzing the character of maximum neural network with 
an added vertex in maximum clique problem, we find that 
the quality and size of clique solution can be modified by 
tuning a parameter about vertex weight. Based on the 
analysis, a random nonlinear self-feedback and flexible 
annealing strategy are embedded in maximum neural 
network, which makes the network more powerful to 
escape local minima and be independent of the initial 
values. The simulation in k random graph and some graphs 
of the DIMACS clique instances in the second DIMACS 
challenge shows that our improved network is superior to 
other algorithms in light of the solution quality and CPU 
time. 
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1. Introduction 

Maximum clique problem is one of the most important 
combinatorial optimization graph problem, which can be 
utilized in many important applications in project 
scheduling, cluster analysis, facility location problems, and 
other problems from operations research. The problem is 
computationally intractable, even to be approximated with 
certain absolute performance bounds [5]. It is generally 
believed that the computational power needed to solve it 
grows exponentially with the number of vertices and edges 
density[7],[8].To seek an optimal solution, a lot of exact 
methods have been so far proposed to deal with the 
combinatorial optimization problem, such as cutting plane 
methods, branch-and-bound methods, and so on. 
Unfortunately, no exact polynomial algorithm, however, 
has been found for any NP-hard problem up to now. So 
many researchers have been paying attention, instead, on 
approximate or heuristic algorithms such as neural 
network algorithms which seek near-optimal solutions at a 
reasonable computational cost without ensuring optimality 
or feasibility.[4]  

Neural networks have been shown to be a powerful 

tool for combinatorial optimization problems, especially 
for NP-hard problems [1],[2],[3]. A lot of algorithms based 
on neural network method are presented to solve the 
maximum clique problem, including many Hopfield-type 
network algorithms and maximum neural network 
algorithms. Lai et al. [9] use a Hopfield network to solve 
the problem, but their energy function representations are 
different from those used by Ramanujam and Sadayappan 
[10] and are based on logical functions. Jagota[12],[13] 
has considered the maximum clique problem alone and 
presents several energy minimizing dynamics of a 
Hopfield network, both discrete and continuous. 
Funabiki[11] compares some energy-descent optimization 
algorithms for maximum clique problem and proposes an 
efficient binary neural network which suits for solving k 
random graphs. The first parallel algorithm using a 
maximum neural network proposed by Lee et al.[14],[15] 
The maximum neural network always guarantees a valid 
solution and reduces the search space without a burden on 
the parameter-tuning. Unfortunately, the maximum neural 
network easily converges to the oscillation state of local 
minimum because it is based on the steepest descent 
method and has not powerful ability to escape the trap of 
local minima.[17] So some researchers embed chaotic 
dynamics into neural network to avoid the minimum 
problem. Just like transient chaotic neural network, Wang 
et al.[16] propose a chaotic maximum neural network 
which has self-feedback character. But it has not enough 
chaotic dynamics at the beginning, and the annealing 
strategy is unfit for controlling chaotic dynamics. So in 
this paper, we propose an improved maximum neural 
network to increase the network ability of solving the 
maximum clique problem. 

In this paper, based on maximum neural network, we 
propose an improved parallel algorithm that can help the 
maximum neural network escape from local minima and 
has powerful ability of searching the globally optimal or 
near-optimal solution for the maximum clique problem. A 
random nonlinear self-feedback is embedded in the 
maximum neural network, which creates more efficient 
chaotic dynamics to the network. We analyze the influence 
on weight setting among the added vertex and other 
vertices, and introduce a new parameter to control the 
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weight initial setting. In order to make the maximum 
neural network have enough chaos at the beginning, a 
flexible annealing strategy is introduced to the improved 
network to control the chaotic dynamics. With the strategy, 
the improved network can balance the chaotic dynamics 
and neurodynamics flexibly, which makes the improved 
network escape local minimum efficiently and converge 
quickly. The simulation in k random graph and the 
DIMACS clique instances in the second DIMACS 
challenge verifies our proposed algorithm. 

This paper is organized as follows: in the next 
section, the maximum clique problem is described. The 
improved maximum neural network is presented in 
section 3. In section 4, the simulation on maximum clique 
problem in k random graph and benchmark graphs is 
shown. Finally we give the solution about our paper. 

2. Maximum Clique Problem 

In a graph with undirected edges, a clique is a set of 
vertices such that every pair of connected by an edges. A 
clique is maximal if no strict superset of it is also a clique. 
A k clique is a clique of size k. A clique is maximum if it 
is the largest clique. Let G=(V,E) be an arbitrary undirected 
graph, where { }nvvV L1=  is the vertex set of G, and 

VVE ×⊆  is the edge set of G. ( ) nndA ji ×=  is the 
adjacency matrix of G, where ijd =1 if (i,j)∈ E, and 

ijd =0 if ( ) Eji ∉, . Given a subset VS ⊆ , we call 
( ) ( )SSESSG ×∩= ;  the subgraph induced by S. A graph 
( )EVG ,=  is complete if all its vertices are pairwise 

adjacent. The MCP requires a clique that has the 
maximum cardinality. 

As above definition, the binary variables dij are 
defined as follows.  

 

{ Ejiif
otherwiseijd ∈= ),(1

0    (1) 

 
The state of neuron vi is determined by  
 

{ cliquetheinvertexitheif
otherwiseiv  #1

0=  (2) 

 
The maximum clique problem is one of the first problems 
which has been proved to be NP-complete [5].Moreover, 
even its approximations within a constant factor are 
NP-hard [6]. However this problem is quite important 
because it appears in a lot of real world problems. Many 
important intractable problems turn out to be easily 
reducible to MCP, for example, the Boolean satisfiability 
problem, the independent set problem, the subgraph 
isomorphism problem, and the vertex covering problem. 

Moreover, the maximum clique problem has many 
important practical applications, especially in information 
retrieval, economics, VLSI design and computer vision.  

3. The Improved Maximum Neural Network 
for MCP 

A very powerful neural network approach called 
maximum neural network (MNN) for combinatorial 
optimization problems has been presented by Takefuji et al. 
It has been proved that the algorithm performs better than 
the best-known algorithm in solving some other 
optimization problems.[14][15] Because of the neural 
network only using one term of the energy function and 
steepest descent method, it need not suffer the 
parameter-tuning to get good solutions. 
 

 
    (a)     (b) 

Fig.1  The graph G and GM with added vertex #0. The clique of vertices 
1, 2, 4 and 5 is the maximum clique. (a).A graph G with 6 vertices and 10 

edges (b).The graph GM of G with the added vertex #0. 

In Ref.[19], Barahona et al. show how an 
unconstrained quadratic 0-1 programming problem is 
equivalent to minimize the weight summation over the 
same partition in a newly constructed graph GM with 
vertex set { }nVM ,,2,1,0 K= . As shown in Fig.1, a new 
graph GM is constructed by adding a vertex #0 that 
connects with all the other vertices in the complemental 
graph of G. G is the graph that wants to be calculated 
maximum clique. The n-vertex MCP can be mapped onto 
the MNN with n×2  neurons, where it consists of n 
clusters of two neurons each. The ith neuron in xth cluster 
has input uxi and output vxi(x=0,…n, i=1,2). Lee and 
Takefuji [14][15] formulated the MCP problem as the 
global minimization of the function:  

 

∑∑∑
= = =
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n

x
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The weight matrix is defined by:  
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where }{ ija  is the adjacency matrix of the complement 
of G. In practice, the motion equation of the ith neuron in 
the xth cluster without the decay term to minimize the 
summation of the weights is given by  

 

∑
=

−=Δ
n

y
yixyxi vdu

0
   (6) 

 
So the updating function is )()()1( tututu xixixi Δ+=+ . 
The input/output function of the ith neuron in the xth 
cluster is given by 
 

otherwiseuuuifv xxxixi 0};,{max1 21==  (7) 
 

The function max{} returns the first argument with the 
maximum value. Due to vertex #0 always belonged to the 
clique, the value of vx1 is set 1 at all times. Because MNN 
is based on the steepest descent method, it has a tendency 
to easily converge to a local minimum. So we propose a 
chaotic maximum neural network through adding a 
random chaotic nonlinear self-feedback to the MNN, and 
combine it with a flexible annealing strategy we propose. 
The updating function is redefined as follows: 

 
)1~0(random=δ    (8) 

 
))()(()()()1( δψ −−Δ+=+ tvtTtututu xixixixi  (9) 

 

[ ] ,,2,1),1()tanh(1)( L=−+
+

= ttTtT tαγβ
γβ

 (10) 

 
 )1( θββ −=     (11) 
 
Where δ  is a random variable producing rich chaotic 
dynamics by acting with the vxi(t). By embedding the 
random parameter δ , the chaotic MNN has more 
efficient chaotic dynamics to skip local minima than 
MNN and other improved MNN methods.[14][16] The 
solution quality is no longer determined by the initial 
state selection of neuron inputs obviously, because 
chaotic dynamics make the network get random and 
adaptive values of uxi at the beginning. The variable T(t) 
can be interpreted as the strength of negative 

self-feedback connection of each neuron. 
Based on experiment and method calculation, we 

find the Eq.(4) should be modified as follows: 
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Because parameter p determines the weights of the 

added vertex #0 connected with other vertices. The 
network can escape the local minima easily by tuning the 
parameter p. With the increase of p value, the added 
vertex #0 will have a powerful influence to the other 
vertices and make solution clique include more possible 
vertices. So the quality and size of solution clique can be 
modified by tuning parameter p according different 
instances of graphs. The energy convergence statuses 
with different value of p are shown in Fig.2 at the 
instance of  Johnson16-2-4 graph. 
 

 

(a)Parameter p=1 

 

(b)Parameter p=4 

Fig.2. The energy evolvement of our proposed neural network with 
different parameter p  

In Fig.2(a), we can see that the network will contain 
many iterations with same energy value to reach the 
convergence status at the end phase of network 
convergence with parameter p set as 1. But it is still 
efficient to get the near-optimal solution. The added vertex 
has not enough power to make overwhelming competition 
among vertices. So until the competing internal values uxi 
(i =1, 2) are equal to each other, the network converges the 
saturate point. The process will cost much time, which 
should be improved. When parameter p is set as 4 in 
Fig.2(b), the intense competition phase at the end of 
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convergence vanishes and the network can converge and 
get the optimal result directly. It is proved that the 
maximum neural network has feasible ability to converge 
and find the optimal or near-optimal result, and the tuning 
parameter p makes the solution quality controllable.  

We propose a flexible annealing strategy in 
Eqs(10)(11) to control the chaotic dynamics wholly, which 
makes the chaotic MNN obtain the entire advantages of 
the annealing strategy. The flexible annealing strategy 
creates a stable and slowly decreasing temperature at the 
beginning that means the network with this strategy 
getting rich chaotic dynamics in the beginning stage. Then 
the temperature quickly decreases to weaken the chaotic 
dynamics and makes the network convergent. In Fig.3 the 
character of our annealing strategy displays:  
 

 

Fig.3. The temperature evolvement of our annealing strategy 

In Eq.(9),the parameter ψ  represents also the influence 
of the energy function on the neurodynamics, or balance 
between the self-feedback term inducing the mechanism of 
escaping from local minima and the gradient term )(tuxiΔ  
inducing the convergent dynamics.  

The improved random chaotic neural network with 
flexible annealing strategy has rich dynamics with various 
coexisting attractors not only of fixed points but also 
periodic and even chaotic attractors. The new updating 
function with chaotic dynamic can help the maximum 
neural network escape from local minima and converge to 
the global-minimum or near-global minimum. Given 
randomly generated numbers for the initial state of uxi(0) 
and a befitting large initial self-feedback T(0), the 
competition and state transient of neurons are drastic when 
iteration runs as Eqs(8-11), which breaks the monotonic 
gradient descent dynamic and can help the network to 
escape from the local minima. When there are no neurons 
changing the output, the algorithm will be terminated and 
the total number of vertices in the maximum clique is 
given by .2,1,1 nxvx L=∑ .  

An adequately strong chaotic dynamics in the 
beginning stage is important to get good solutions. The 
proposed chaotic MNN has flexible rich dynamics by 
tuning the parameters of the annealing strategy, which 
makes the network’s solution be independent on the initial 

neurons’ values. The flexible annealing strategy gives the 
network enough chaos to prevent it to get stuck at local 
minima, and then chaotic dynamics decreases quickly. 
When the chaotic dynamics vanishes, the proposed 
algorithm is then fundamentally reined by the gradient 
descent dynamics and usually converges to a stable 
equilibrium point like the MNN which doesn’t have the 
burden on the parameter-tuning. So the proposed 
algorithm has the advantages of both MNN and chaotic 
networks.  
 

 

(a).MNN proposed by Takefuji et al.  

 

(b).CMNN proposed by Wang et al. 

 

(c).Our proposed improved MNN with γ =1 and θ =0.01 

 

(d).Our proposed improved MNN with γ =1 and θ =0.05 

Fig.4. The comparison of energy oscillation of different algorithms for 
Johnson16-2-4 graph. 
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The evolution of energy function is drastic because of 

its rich chaotic dynamics, which sufficiently proves that 
the chaotic MNN is powerful to escape the local minima 
and search the near-optimal and optimal solutions. The 
energy evolutions of three different algorithms in solving 
Hamming6-2 graph are shown in Fig.4. The original MNN 
algorithm suffers the choice of right initial values and the 
local minima, which displays the lightly oscillation of 
energy in Fig.4.(a). Fig.4.(b) shows the energy evolution 
of the improved algorithm proposed by Wang. et al. 
Although some chaotic dynamics is added in their 
updating function, it is not enough to make the network 
independent on the initial values and escape the local 
minima efficiently. Moreover, the annealing strategy used 
in Ref.[16] is proposed by Kirkpatrick et al.[20] The 
annealing strategy is not good to balance chaos because 
the annealing temperature does not permeate the whole 
domain of the annealing process.[21] Our new chaotic 
maximum neural network has random negative 
self-feedback to increase the chaotic dynamics, and has the 
flexible annealing strategy to control and balance the 
neurodynamics and chaotic dynamics. As Fig.4(c)(d) 
shown, the energy of our algorithm has smarter oscillation 
and succeeds in skipping the local minima and shaking off 
the burden of initial neurons values obviously. Moreover 
the convergence rate is very faster than Wang. et al 
algorithms . The effect of our flexible annealing strategy is 
clear in the chaotic MNN. 

4. Simulations and results 

The algorithm discussed earlier is implemented on solving 
the maximum clique problem to test its efficiency and 
feasibility in P4 3.0G 1G RAM. In accordance with 
Jagota[12],[13], our algorithm compared with several 
other algorithms is test in a difficult type of random 
graphs: k random graphs. A k random graph is a graph 
which is a union of randomly generated k cliques of 
various sizes. It is usually difficult to obtain the maximum 
clique for k random clique graphs. And the k random graph 
is more suitable than p random graph to evaluate 
algorithms’ efficiency. Thus, through solving k random 
clique graphs, it is possible to separate poor algorithms 
from good ones for MCP.[11]  

In order to evaluate algorithms’ character, we 
simulate and compare several algorithms in some k 
random graphs. We execute every algorithm 30 times on 
different graphs, and the average results are summarized in 
Table1. RaCLIQUE[18], Binary neural network(BNN)[11], 
the improved maximum neural network by Wang et. al[16], 
and our proposed maximum neural network are compared 
in result sizes and executive time to evaluate their 
efficiency. In Table.1, the column "Avg" denotes the 

average sizes of results found by the relative algorithm. 
The column "Time" expresses the average cost time of 
every algorithm in the test. The columns "Nodes", "K", 
"Edges" and "Density" represent the number of its vertices, 
the random graph number, total edges of the graph, and its 
edge density. In every time the random initial values are 
set to the network. The testing parameters are set as 
follows:  
β  =500, γ =1, α =0.9998, ψ =0.01, T(0)=0.15, k=0.9, 
ε =0.004, θ =0.01,  
In the k random graphs test, our improved MNN can find 
more feasible solutions with less time than MNN proposed 
by Wang et al. and RaCLIQUE. In Ref.[11], BNN was 
presented as the best synchronous algorithm to solve k 
random graph. But in our simulation, we find although 
BNN sometimes costs less time to converge to a stable 
status than our improved network, it’s solution quality is 
not as good as our algorithm further. Our proposed MNN 
can find more valuable results by introducing random 
self-feedback and the flexible annealing strategy. It means 
that the improved MNN is efficient and feasible in terms 
of the solution quality and cost time. Moreover, the exact 
parameter p is easy to find, which can increase the solution 
quality and adaptability. If we increase the convergent rate 
of Wang’s algorithm [16], the solution quality is affect 
obviously because the chaotic dynamics disappear too 
quickly to escape the local minima in time. Our improved 
algorithm is clearly nicer in this aspect.  

In order to evaluate not just the relative, but also the 
absolute performance quality, we tested and compared 
these algorithms on the second DIMACS benchmark 
graphs. From the Table2, we can see that it is efficient to 
get the optimum solutions by our improved MNN. It cost a 
few steps to get more feasible result. Here one step means 
one cyclic updating of all neurons. In the test, the 
parameters are tuned to make our algorithm search larger 
domain in order to find the optimal solution. So the results 
of numerical experiments suggest that the improved MNN 
is superior to RaCLIQUE, BNN, TCNN and the MNN 
improved by Wang et al. in light of the solution size and 
CPU time. 

5. Conclusion 

The paper presented an improved chaotic maximum neural 
network for approximating the maximum clique problem. 
A random dynamic mechanism is embedded in the 
network, which makes the maximum neural network 
escape the local minima efficiently and get the 
near-optimal or optimal results. The proposed network has 
a more flexible annealing strategy to control the chaotic 
dynamics. By using the strategy, the network convergent 
quickly and retain the dynamics character. The simulations 
with comparing different algorithms on maximum clique 
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problem in k random graphs and hard DIMACS instances 
show that our proposed chaotic maximum neural networks 

can get efficient results with good quality in less time and 
iteration steps. 

Table 1. Simulation results on the k random graphs 
RaCLIQUE BNN MNN wang et al. Our proposed MNN

Nodes K Edges Density 
Avg Time(s) Avg Time(s) Avg Time(s) Avg Time(s)

100 10 1570 0.317 32 5.297 32 0.016 32 2.14 32 0.427 
100 10 2605 0.526 36 5.024 35.4 0.016 36 2.69 36 0.432 
100 20 3728 0.753 39 3.172 39 1.376 45 2.19 46 0.403 
100 20 3803 0.768 40 2.962 39.2 2.590 44 2.04 45 0.419 
100 50 4564 0.922 55 3.094 55 1.211 62 3.24 62 0.483 
100 50 4535 0.916 58 2.995 58 2.909 61 3.56 61 0.482 
200 10 7881 0.396 70 46.01 70 0.016 70 3.67 70 0.775 
200 10 8916 0.448 77 48.88 77 0.016 77 2.42 77 0.848 
200 20 15283 0.768 80 46.718 73.2 1.695 76 3.33 76 0.784 
200 20 14667 0.737 79 50.52 69 3.739 72 3.89 72 0.890 
200 50 18833 0.946 109 51.30 109 4.503 119 6.87 119 1.218 
200 50 19301 0.970 122 48.44 122 4.157 134 7.79 144 1.321 
300 10 19039 0.425 105 249.4 105 0.047 105 5.89 105 1.818 
300 10 17594 0.392 122 258.8 122 0.044 122 5.72 122 2.724 
300 20 32938 0.734 116 247.9 105 0.658 102 6.78 102 2.890 
300 20 34054 0.759 112 255.5 108 0.784 107 8.62 107 2.750 
300 50 43165 0.962 172 228.9 171 6.369 187 7.84 187 2.290 
300 50 43647 0.973 183 239.1 179 8.421 208 8.86 208 2.800 

Table 2. Simulation results on the second DIMACS benchmark graphs 
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