
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007 27

Software Engineering Ontology – the Instance Knowledge
(Part II)

Wongthongtham P†, Chang E†, Dillon T† and Sommerville I††,

Digital Ecosystems and Business Intelligence Institute, Curtin University, Australia

School of Computer Science, St Andrews University, UK
Summary
Software engineering ontology provides software engineering
concepts – what they are, how they are related, and can be
related to one another – for representing and communicating over
software engineering knowledge and project information through
the internet. The ontology enables effective ways of sharing and
reusing the knowledge and the project information for remote
software engineers and software developers. Reaching a
consensus of understanding is of benefit in a distributed multi-
site software development environment. Software engineering
knowledge is represented in the software engineering ontology
whose instantiations are undergoing evolution. Software
engineering ontology instantiations signify project information
which is shared and has evolved to reflect project development,
changes in software requirements or in the design process, to
incorporate additional functionality to systems or to allow
incremental improvement, etc. This evolution of instances
provides many new challenges to an ability to design and deliver
project information. In this paper, we present platforms
development to facilitate software engineering ontology
instantiations management.
Key words:
Ontology, Software Engineering, Multi-site Software
Development, Knowledge Engineering.

1. Introduction

The software engineering ontology defines common
sharable software engineering knowledge including
particular project information [1]. The world’s first
Software Engineering Ontology is available online at
www.seontology.org. Software engineering ontology
typically provides software engineering concepts – what
they are, how they are related, and can be related to one
another – for representing and communicating over
software engineering knowledge and project information
through the internet [2]. These concepts facilitate common
understanding of software engineering project information
to all the distributed members of a development team in a
multi-site development environment. This should not be
confused with the distributed systems, such as CORBA
where the development is centralised but deployment is
distributed. The ontology enables effective ways of
sharing and reusing the knowledge and the project

information for remote software engineers and software
developers. Reaching a consensus of understanding is of
benefit in a distributed multi-site software development
environment. Software engineering knowledge is
represented in the software engineering ontology whose
instantiations are undergoing evolution. Software
engineering ontology instantiations signify project
information which is shared and has evolved to reflect
project development, changes in software requirements or
in the design process, to incorporate additional
functionality to systems or to allow incremental
improvement, etc. This evolution of instances provides
many new challenges to an ability to design and deliver
project information.

In this paper, we present platforms development to
facilitate software engineering ontology instantiations
management. The software engineering ontology is made
available to any application to deploy. The ability to make
use of the software engineering knowledge, described in
the software engineering ontology, enables applications in
the systems to have capabilities in managing instance
knowledge in multi-site distributed software development.

2. Platforms Framework

We illustrate how software engineering ontology
facilitates the communication framework and allows
knowledge sharing through platforms. This is how the
man-machine system interfaces particularly works. The
man-machine interactions were designed and developed
into four platforms: Knowledge Navigation Platform,
Question and Issue Platform, Suggestion and Proposal
Platform and Solution Decision Platform.

The Knowledge Navigation Platform, or Navigation
Platform for short, is basically for all team members to
navigate or query shared domain knowledge and instance
knowledge. Anyone can view domain knowledge for
classification of certain concepts and can view instance
knowledge for clarification of project agreements or
understandings. However, permission is needed in the

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

28

Navigation Platform if team members want to make
changes to instance knowledge. Authorised members can
make changes from the Navigation Platform.
Unauthorised members can propose changes as an issue.
The issue will then be processed through the Question
Platform, Suggestion Platform, and Solution Platform
depending on how substantial the changes are (minor or
major changes).

The Question and Issue Platform, or Question Platform for
short, is for raising difficulties encountered in the software
development or issues which occurred within the team. A
member at any one site logs a project matter through the
Question Platform. Basically issues raised would be like
comments or debates over project data and project
agreement. After all, a question made needs to be
elucidated by clarifying the specific project data he/she
wants to discuss. Technically, the project data here in the
thesis are known as instance knowledge. As a member
progresses towards clarifying the issue, the retrieval of
relevant instance knowledge by the platform assists other
members to have a clear understanding of the issue as well
as assisting them to recognise the instance knowledge they
have been discussing. This is particularly useful when
team members work on many projects simultaneously.

The Suggestion and Proposal Platform, or Suggestion
Platform for short, is as its name suggests, for all team
members to propose the potential solutions of the
discussion or issue proposed in the Question Platform.
Thus, this platform mainly involves potential modification
of instance knowledge. If any potential modification has to
be made, members need to follow the software
engineering knowledge defined in the software
engineering ontology in order to have a consistent view
and same understanding. In the Suggestion Platform, all
proposed solutions are initially pending.

After a certain time of gathering some feedback from team
members, the decision maker system in the Solution
Decision Platform, or Solution Platform for short, later
determines what action is needed or which solution will be
updated. The actual updating process is also carried out
through the Solution Decision platform. A final solution
of the discussion is revealed by the Solution Platform. The
software engineering ontology gets updated in the
ontology repository at the stage.

The issue raised plays an important role in the multi-site
distributed software development. Issues are distinguished
as either minor or major problems. Access control in the
Navigation Platform determines whether an issue is major
or minor. Being a major issue, it needs brainstorming
through the Suggestion Platform. A minor issue may mean
(daily) basic update of instance knowledge by the member

in team who has got permission to do so. Figure 1 shows a
flow chart of the processes when an issue arises.

Fig. 1 A flow of the processes when issue arises

Basically, there are two cases. The first case is when an
issue is raised by a member who has no access. This is a
case of the member not being part of the working team
where the issue has arisen. The issue from the member is
then considered as a major issue. For example, members in
the design team may raise an issue relating to the
requirements part which is the responsibility of the
analysis team. The issue raised is categorised as a major
issue that needs authorisation. An issue raised by a
member who has access is another case. This is a case of
the member being in the working team where the issue has
arisen. In this case, the issue can be considered as either
minor or major and this is determined by the member
alone. In deciding that the issue is a minor one, it could
simply be a matter of updating project data that occurs
within the team. The issue, however, can be considered as
a major issue if the member decides that the issue is
significant enough to need brainstorming from other
members or even from other teams.

In particular, platforms improve the process of sharing
knowledge so that it is understood in a consistent manner.
Also, they facilitate effective and efficient remote
communication in the multi-site setting. Details of each
platform are given in the next sections.

3. Navigation Platform

Software engineering knowledge, formed into software
engineering ontology, helps communications among team
members and provides consistent understanding of the
domain knowledge. Software engineering ontology,
together with its instance knowledge, is used as a
communication framework within a project, thereby

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

29

providing rational and shared understanding of project
matters. In the Navigation Platform, software engineering
instance knowledge, in accordance with domain
knowledge that is described in software engineering
ontology, is extracted. By consulting the software
engineering ontology, the platform enables references of
software engineering domain knowledge and enables
extraction of instance knowledge. For example, class
diagrams referred to in the software engineering ontology
assert how a set of classes is formed in the diagram.

The specification imposing a structure on the domain of
class diagrams i.e. elicitation of each class consists of class
name, class attributes, class operations and relationships
hold with other classes. Using software engineering
domain knowledge, together with instance knowledge, the
Navigation Platform dynamically and automatically acts
for a certain class instance that the member navigates to
retrieve accordingly attribute instances, operation
instances, and relationship instances together with the
related class instance details.

For example, Class instance CR_Customer is navigated to
consequently retrieve ClassAttribute instances and
ClassOperation instances. ClassRelationship instances can
also be navigated to consequently retrieve Class instances
that hold in the relationship and applicable properties of
the relationship. In accessing ClassAssociation instance,
Class instances held in the relationship and properties like
role name and cardinalities are automatically retrieved.
Similarly, if those Class instances are accessed, then a list
of ClassAttribute instances and a list of ClassOperation
instances are retrieved to show its attributes and its
operations respectively. In accessing each ClassAttribute
instance, details of attribute’s name, attribute’s data type,
and attribute’s visibility are shown as referred to
ClassAttribute ontology in the software engineering
ontology. Navigating ClassAttribute instance
CR_CustomerID, its name of ‘Customer ID’, its data type
of ‘integer’, and its visibility of ‘public’ can be revealed.
The same as ClassOperation ontology referred in the
software engineering ontology, in accessing each
ClassOperation instance, details of operation’s name,
operation’s visibility, and operation’s parameters and
parameters’ data type can be retrieved.

Moreover, indicating how concepts are inter-related
constrains the possible interpretations of terms. For
example, with terms class, object and component,
sometimes software engineers from different sites, by
obtaining the knowledge differently, may easily interpret
these terms differently and have difficulty distinguishing
between them. The structure of class, object and
component respectively imposes differences in the
software engineering domain. Therefore, through class

diagrams, classes, class attributes, class operations, and/or
relationships amidst classes are expected, whereas by
declaring object diagrams, objects, object attributes,
belonging classes, and/or relationships between objects are
expected. By indicating component diagrams, which are
apparently different from class diagrams and object
diagrams, components, interfaces and/or relationships
among components are expected.

Different constituents in the domain of class diagram
object diagram, and component diagram in the navigation
of class, object, and component respectively reveals
divergence in their usage. This is some kind of consensus
among the software engineering community or project
teams. This then eliminates ambiguous concepts or terms.
With team members having the same understanding of
concepts, remote communications proceed smoothly and
effectively.

4. Question Platform

Both the Question Platform and the Suggestion Platform
involve proposals for dealing with multi-site project issues.
However, each is devised for different purposes. In the
Question Platform, team members propose an issue,
whereas, in the Suggestion Platform, they propose the
possible solutions for the issue. A member interacts with
the platform in order to raise an issue. To do so, the
member firstly needs to clarify the problem specifying
particular instance knowledge involved which can be
fetched from the Navigation Platform. Such issues raised
are distinguished as either minor or major issues. A minor
issue is simply one in which the change needed does not
have to be authorised. This is in the case of instances
update within a team such as daily update by authorised
members. An authorised approval is needed for a major
issue. This is in the case of an instance change by a
member in another team. For example, a member in an
implementation team has raised the issue of change
request on the design part which is the responsibility of
the design team. The instance minor changes get updated
in the ontology repository directly through the Navigation
Platform and are recorded and acknowledged through the
Solution Platform. The major instance issues are pending
through the Question Platform and make issues
outstanding until feedback and suggestions from members
are made through the Suggestion Platform.

The three cases of raising major and minor issues are
given as follows. The first case is that the member does
not have authorisation to make any changes. The member
can only view the information and can also raise issues
over the information. The second case is one where the

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

30

member does have authorisation to make the changes. This
case is considered as a major issue due to the member’s
intention of making the issue outstanding through the
Question Platform and getting suggestions from other
members through the Suggestion Platform. The third case
is where the member does have authorisation to make the
changes. The changes made simply involve updating,
hence there is no need to go through the Question
Platform, instead, the member only needs to go through
the solution to record changes and be acknowledged by
other members.

In general, all the issues were resolved by members
utilising the discipline of the software engineering
represented and expressed in the software engineering
ontology to gain a common understanding among the
teams. This is carried out by the platforms referring to the
software engineering ontology. The software engineering
knowledge formed in the software engineering ontology is
captured widely and thoroughly. For example, in the
statechart diagrams ontology, state details, i.e. do, entry,
and exit action of UML class and UML class operation or
even free text, are captured for anyone who uses one or
two of them or all of them.

5. Suggestion Platform

The Suggestion Platform interactions involve modifying
instance knowledge. The modifications include add, add
new, delete, and edit instance knowledge. However,
modifications made in the Suggestion Platform are not
instantly updated to the knowledge base in the repository.
Rather, the modifications made are pending and will be
updated in the Solution Platform if they are applicable.

Mainly, the Suggestion Platform is concerned with a
number of proposed possible solutions regarding the
problem raised from the Question Platform. This allows all
team members the freedom to advocate. In order not to be
too much restrict, the software engineering ontology is
made open for the worth wide ideas. However, any
changes that have been proposed need to be accepted by
software engineering domain knowledge asserted in
software engineering ontology. For example, in the
activity diagrams ontology, the constraint in the fork
transition states that exactly one flow of control splits into
at least two flows of control. If it is not in line with this
notion, it is then not a fork transition. Similarly, join
transition restricts joining of at least two incoming
transitions and exactly one outgoing transition.

Similarly, in the defect identification ontology, it asserts
that there can be non failure or one failure or many
failures found however if there is failure(s), there must

exist defect(s) or fault(s). This restricts our use of these
concepts.

After a certain time of accumulating various ideas from
team members, determination of the final solution will be
processed. The final solution will then be passed on to the
Solution Platform for updating the ontology repository as
well as informing participating members.

6. Solution Platform

The Solution Platform is where any decision made is
updated. Also the platform informs participated members
of decision made. For this study, the basic techniques of
voting together with individual reputation value play the
roles of determined final solution. However, it can be open
to company or organisation policy to draw and develop the
making decision system for this platform.

The strategy for updating instance knowledge is given
here. For example, Figure 2 (a) shows a use case diagram;
Figure 2 (b) shows a revised use case diagram needing to
be updated. The use case diagrams used as an example
here are derived from the book of Enterprise Java with
UML [3].

A list of updating actions is as following.

• Adding new instances ChangePassword and
Login for concept UseCase.

• Adding new instance for concept
IncludeRelationship relating relations
Related_Use_Case with concept UseCase
instance ChangePassword and
Relating_Use_Case with concept UseCase
instance Login.

• Adding new instance for concept
AssociationRelationship relating relations
Related_Use_Case with concept UseCase
instance ChangePassword and
Relating_Use_Case with concept Actor instance
AdministrativeUser.

• Adding new instance for concept
AssociationRelationship relating relations
Related_Use_Case with concept UseCase
instance Login and Relating_Use_Case with
concept Actor instance AdministrativeUser.

• Adding new instance for concept
AssociationRelationship relating relations
Related_Use_Case with concept UseCase
instance ChangePassword and

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

31

Relating_Use_Case with concept Actor instance
Employee.

• Adding new instance for concept
AssociationRelationship relating relations
Related_Use_Case with concept UseCase
instance Login and Relating_Use_Case with
concept Actor instance Employee.

• Adding new instance for concept
AssociationRelationship relating relations
Related_Use_Case with concept Actor instance
Employee and Relating_Use_Case with concept
UseCase instance CreateEmployee

Fig. 2 An example of revising use case diagrams ontology instances

Updating instance knowledge can be as simple as just
adding new information on it, or it can be complicated
with a mix of deleting and then adding information.

7. Practical Uses of Platforms

Practical uses of the four platforms are given in this
section through examples. We start with examples of
analysis of problems encountered in the multi-site
environment. Then, the use of platforms in resolving these
particular problems is explained.

7.1 Problems Analysis

The text transcription is difficult because work is carried
out in an environment where development teams are
geographically distributed and team members are involved
in many projects simultaneously. It is a typical means of
global communication which is, however, neither efficient
nor sufficient for a multi-site environment. Figure 3 shows
such an example of the text transcription that, in a multi-
site environment, makes less of an impression.

I am struggling to understand why we need it. I think the system will be
simpler for people to understand if we deleted the insurance registered
driver.
My reasons for this are that the insurance registered driver is a sub type
of the customer. This means that for every insurance registered driver
object there must be a corresponding customer object. However, in the
customer object we store values like customer type, insurance history
value and rental history value. It does not make sense to have these
values for the insurance registered driver. I also think people will be
confused because we have the rental registered driver as an association
with the rental customer (which is a sub type of the customer) but the
insurance registered driver is a sub type of the customer.
Fig. 3 An example of text transcription which is not efficient or sufficient

for multi-site communication

With ontology-based software engineering, the software
engineering terms can be parsed with software engineering
ontology concepts and can recall the necessary details and
relevant information. We see from figure 13 that it
involves the terms of class (class insurance registered
driver, class customer, and class rental customer), subclass
(sub type), property (property customer type, property
insurance history value, and property rental history value),
and object (object insurance registered driver and object
customer). Terms class, subclass, property, and object
apply respectively to the concepts of class, generalisation
relationship, class property, and class object in the
software engineering ontology. By specifying ontology
class instances, relevant information of those instances can
be discovered dynamically and automatically.

This is carried out by referring to software engineering
ontology which asserts that concept class has its semantic
of containing attributes, operations, and relationships
holding among other classes. Automatically drawing out
details facilitates others’ greater understanding of the
content, thereby reducing misunderstanding, and
eliminating ambiguity.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

32

In the case of team members working at the same time on
several projects, the contents of that work are similar. For
example, one project is about car rental systems and the
other project is about car dealership systems both of which
have details of car and customer. This easily causes
confusion with the term ‘car’ and distinguishing between
car rental systems and car dealership systems. With
ontology-based software engineering, the instance
knowledge, being an instance of ontology classes, does
use unique name assumption. The unique name
assumption, which is like a primary key (one name for
each instance), helps prevent ambiguity.

7.2 Platforms Uses

Examples of the practical uses of platforms are given
throughout this section. We start with the case of an issue
being raised by a member who has no access. For example,
an issue may relate to a project design raised by a
programmer in the implementation team. This is
considered as a major issue. The Navigation Platform is
where the software engineer first identifies the involved
data. The user raises the issue by fetching relevant
instance knowledge from the Navigation Platform to the
Question Platform. Figure 4 shows the class diagram that
the member raised the issue on.

Fig. 4 Issue on an UML class diagram

The Question Platform is where members raise problems
they consider to be issues. Everyone can see the issue
being raised. This allows brainstorming over the issue and
possible solution proposals can then be made in the
Suggestion Platform.

From here, there are two possible solutions proposed in
the Suggestion Platform. Figure 5 shows the first solution
proposal and figure 6 shows the second solution proposal.
As stated earlier, either of these two potential solutions is
not yet a solution. Throughout the platform, worthwhile
suggestions can be carried out by: deleting, adding,
editing, or by a mix of, for example, deleting and then
adding the instances.

As from figure 5, the suggestion is to delete concept Class
instance InsuranceRegisteredDriver. Another suggestion

from Figure 6 is to first delete concept ClassAttribute
instances RentalHistoryValue and InsuranceHistoryValue
relating relation has_Attribute with concept Class instance
Customer. Secondly, new instance RentalHistoryValue is
added for concept ClassAttribute relating relation
has_Attribute with concept Class instance RentalCustomer.
Thirdly, a new instance InsuranceCustomer is added for
concept Class. Fourthly, new instances
InsuranceCustomerID and InsuranceHistoryValue are
added for concept ClassAttribute relating relation
has_Attribute with concept Class instance
InsuranceCustomer. Fifthly, a new instance is added for
concept ClassGeneralisation relating relation
Related_Object_Class_Component with concept Class
instance InsuranceCustomer and relating relation
Relating_Object_Class_Component with concept Class
instance Customer. Lastly, a new instance is added for
concept ClassAssociaton relating relation
Related_Object_Class_Component with concept Class
instance InsuranceRegisteredDriver and relating relation
Relating_Object_Class_Component with concept Class
instance InsuranceCustomer.

Fig. 5 The first solution proposal

Fig. 6 The second solution proposal

The proposed changes become solution changes in the
Solution Platform. Until such decision maker systems in
the Solution Platform determine the final solution,
instance knowledge gets updated along the lines of the
chosen solution.

The following examples show the case of an issue raised
by a member who has access. In this case, it is the member
alone who determines whether the issue is major or minor.
In the case of a minor issue identified by the member, it is
simply a matter of updating project data through the

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

33

Navigation Platform, and the Solution Platform retains and
displays the record. This is no need to go through question
and Suggestion Platforms because its purpose is to update
in order to share instance knowledge.

Figure 7 (a) shows an original activity diagram, while
Figure 7 (b) shows an updated activity diagram. The
activity diagram used as example here is derived from the
book of Enterprise Java with UML [3].

Fig. 7 Minor issue of the activity diagram revision

As can be noted when comparing figure 7 (a) and figure 7
(b), the software engineer has revised the transition of
activity ‘Update View’. Originally, activity ‘Update View’
transited to activity ‘Ask for New Employee Data’.
Revision has been made by activity ‘Update View’
transited to activity ‘Notify Employee by Email’ and
activity ‘Notify Employee by Email’ transited to activity
‘Ask for New Employee Data’. Functioning is as
following:

• Delete concept NormalTransition instance that
has relation Related_Activity with concept

Activity instance named ‘Ask for New Employee
Data’ and has relation Relating_Activity with
concept Activity instance named ‘Update View’.

• Add new concept Activity instance named
‘Notify Employee by Email’.

• Add concept NormalTransition instance that links
relation Related_Activity with concept Activity
instance named ‘Notify Employee by Email’ and
links relation Relating_Activity with concept
Activity instance named ‘Update View’.

• Add concept NormalTransition instance that links
relation Related_Activity with concept Activity
instance named ‘Ask for New Employee Data’
and links relation Relating_Activity with concept
Activity instance named ‘Notify Employee by
Email’.

Fig. 8 An activity diagram

In the Navigation Platform, an authorised member can
directly update project data using add, delete, update, add
new functions or else despatch this as a major issue using
the fetch function to post to the Question Platform. In the
case where a member considers an issue to be a major
issue, the process involves going through navigation,

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

34

question, suggestion, and Solution Platforms. For example,
figure 8 shows an activity diagram which is the point at
issue and figure 9 shows an activity diagram that is
ultimately suggested to resolve the issue. The activity
diagram used as example here is derived from the book of
Enterprise Java with UML [3].

Fig. 9 Major revised activity diagram

A member starts progressing towards a resolution of the
issue by fetching involved instances from Navigation
Platform to Question Platform. Consequently, in
Suggestion Platform a dummy solution is suggested. After
brainstorming, the solution is given in the Solution
Platform and the ontology gets updated. Along the line of
Solution Platform in this example, a list of functions is as
follows:

• Update BranchTransition instance linked to
Related_Branch_Activity_1 instance named
‘Display Error’ which the Guard_Expression_1
instance is changed to ‘error found’.

• Add new Activity instance named ‘Ask if Ready
to Submit Timecard’.

• Update BranchTransition instance linked to
Related_Branch_Activity_2 instance which is
Stop instance. Delete the Stop instance and add
the Activity instance named ‘Ask if Ready to
Submit Timecard’.

• Add new Activity instance named ‘Build a New
Current Timecard’.

• Add new BranchTransition instance which links
Relating_Branch_Activity_1 instance to Activity
instance named ‘Ask if Ready to Submit
Timecard’, links Related_Branch_Activity_1
instance to Activity instance named ‘Build a New
Current Timecard’, and links
Related_Branch_Activity_2 instance to Stop
instance. Its Guard_Expression_1 is a string of
‘yes’ and its Guard_Expression_2 is a string of
‘no’.

• Add Stop instance that links
Relating_Special_Activity named ‘Build a New
Current Timecard’.

• Add another Stop instance that links
Relating_Special_Activity named ‘Display Error’.

8. Discussion

Based on the functioning of the four platforms,
observations are summarised in this section. We compare
the four platforms functioning with multi-site issues of
communications, coordination, cooperation, awareness,
interoperability, track and trace, and just-in-time. This is
to illustrate that these issues can be overcome. We divided
our discussion into three main sections. They are:

• Multi-site Communications

• Remote Management

• Multi-site Project Tools

8.1 Multi-site Communications

The platforms pose as a communication framework for
multi-site distributed software development. This
overcomes multi-site issue of communications.

Communications

The disadvantages associated with multi-site
communications rather than face-to-face communications
in a software development, whose tasks are distributed
across remote sites, is a key issue. Platforms are a means

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

35

of exchanging information with explicit details for the
collaboration between multi-site teams. Basically, the
platforms being a communication framework are the place
to find answers in a multi-site distributed environment.
The Navigation Platform is available at any time for
remote team members to seek further more information, to
clarify a mutual agreement, and to share information. The
Question Platform is where discussions are conducted on
multi-site project issues. The Suggestion Platform is used
for brainstorming purposes and to discuss issues that have
been raised. The Solution Platform assists the project to
keep moving forward and here also the project data gets
up-to-dated.

The underlying architecture of the communication
framework is the software engineering ontology which
identifies the domain knowledge of software development
along with instance knowledge of project data. Knowledge
sharing through the software engineering ontology
eliminates misunderstandings, miscommunications, and
misinterpretations. Software engineering ontology
presents explicit assumptions concerning the objects
referring to the domain knowledge of software
development. A set of objects and interrelations and their
constraints renders their agreed meanings and properties.
For example, the confusing terms of ‘classes, ‘objects’,
and ‘components’ in object-oriented software
development can be simplified, and when perceiving them,
software engineers agree to recognise their constitutes,
their interrelations, and their constraints.

8.2 Remote Management

Platforms make things easy to manage, even remotely.
Multi-site issues of coordination, co-operation, awareness,
and interoperability have been overcome.

Coordination

Remote team members’ coordination is important,
especially in multi-site software development. The
Navigation Platform assists team members to be aware of
tasks to be, or being, carried out. Sharing their project
information through the Navigation Platform makes
project tasks explicit; hence, this makes it easy for others
to coordinate the work and be aware of it. For example, if
there is an ignorance of tasks, then there can be no sharing
of information. Wrong tasks that have been carried out are
identified. In this case, the Suggestion Platform is where
members can coordinate meetings to discuss task
misinterpretation. Therefore, the potential problems, such
as two groups overlapping in some work, or other work
not being performed due to misinterpretation of the task,
are no longer the case.

Cooperation

Instance knowledge is drawn based on a consensus of
domain knowledge of software engineering formed in the
software engineering ontology underlying the platforms.
Hence, commonalities relating to the knowledge are
assumed. This specially overcomes different knowledge of
team members as coming from diverse backgrounds.
Additionally, failing to describe their local context when
team members raise project issues or share information
and knowledge will not be the case no more. This is
because team members are referring the consensus
software engineering domain knowledge formed in the
software engineering ontology.

Awareness

The process of going through navigation, question,
suggestion, and Solution Platforms is undertaken when
there are issues that need authorising and brainstorming
from team members in multi-site projects. This produces
awareness of issues that have been currently raised (from
the Question Platform), the issues that have been clarified
(from the Solution Platforms), any task that has been
misunderstood (from the Solution Platforms), and an
understanding of the reason(s) for a team member not
following the project plan (from the Suggestion Platform).
Throughout, instance knowledge explicitly displayed on
the platforms specifies the current status of the project
particularly from the Navigation Platform. Team members
are made aware of work that has been done, work being
done as planned, work being done to incorporate other
tasks, and the team members who are performing the tasks.

Interoperability

Software engineering domain knowledge is captured in the
form of software engineering ontology. Software
engineering standards, rules, and formalisms facilitate the
production of high-quality task performance. Hence, the
development of components from different sources and
their ability to integrate these components to build a
system can be relied on. If component integration has not
been successful at some point during integration, the issue
is raised through the Question Platform in the line before
the project fails. Additionally, mutual adjustment,
feedback and discussion during integration, in order to
align team members’ actions, can be carried out through
the platforms.

12.3 Multi-site Project Tools

Platforms define how tools are utilised. This enables one
to overcome the issues of track and trace and just-in-time
in the multi-site situation.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

36

Track and trace

The platforms are where members keep track of project
data being exchanged, discussed, or shared and also
member relationships. Local context and constraints and
issues do not remain local, but rather are shared to enable
brainstorming across multi- sites. In particular, the
Solution Platform is where members are advised of any
updated project data trace. The platforms are available
online for remote teams to send and respond to the
information at any point in time.

Just-in-time

The software engineering ontology underlying the
platforms provides a source of precise and explicit
software development terms or concepts which can be
communicated across remote team members, multi-site
projects, and applications including intelligent agents. This
man-machine system, through the platforms, makes it
possible for members to perceive their counterparts as they
are sharing the same knowledge formed in the software
engineering ontology. Additionally, automatically and
immediately, members send and receive responses to
sharing project data formed as instance knowledge.

9. Conclusion

Detailed specific management systems of safeguard,
ontology, and decision maker have been given. We have
presented the four platforms i.e. Navigation Platform,
Question Platform, Suggestion Platform, and Solution
Platform for multi-site distributed software development
and knowledge sharing. Through examples, we have also
presented the practical uses of platforms. We have
discussed the platforms’ benefits.

References

[1] Wongthongtham, P., et al., Ontology-based multi-site

software development methodology and tools. Journal of
Systems Architecture, 2006. 52(11): p. 640 - 53.

[2] Wongthongtham, P., A methodology for multi-site
distributed software development, in School of Information
Systems. 2006, Curtin University of Technology: Perth.

[3] Arrington, C., Enterprise Java with UML. 2001, New York,
USA: John Wiley & Sons, Inc.

Dr. Pornpit Wongthongtham
received the M.Sc. in Computer
Science from Chulalongkorn
University, Thailand, and PhD
degrees in Information Systems from
Curtin University of Technology,
Australia, in 1999 and 2006,
respectively. Currently, she is
working as a research fellow at the
Digital Ecosystems and Business

Intelligence Institute (DEBII), Curtin University of
Technology

