
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

78

Policy-Based Ambiguity Reduction in Pervasive Context-Aware Systems

Sherif G. Aly

 The American University in Cairo, Cairo, Egypt

Summary
There has been an ever-increasing interest in context-
aware computing expressed by the pervasive computing
community. As researchers attempt to create pervasive
systems that are unobtrusively embedded in the
environment, completely connected, intuitive, effortlessly
portable, and constantly available, often do they run into
the problem of ambiguity in the determination of the
surrounding context. With the presence of context
ambiguity, pervasive systems become more incapable of
adapting themselves with the surrounding environment.
This article describes a policy-based framework for
reducing ambiguity in context aware systems.
Experimental results show the performance of the system
as the number and size of disambiguating policy rules
increase.

Key words:
Pervasive Systems, Context Awareness, Ambiguity Reduction,
Policies.

Introduction

Context awareness in pervasive computing has been
gaining ever increasing research attention. Pervasive
systems are required to realize knowledge of their
surroundings so as to become better integratable and
adaptable to the heterogeneity of their surrounding
environment. Much research has been proposed to allow
pervasive systems to become context aware. Some
researchers propose the integration of context within
existing pervasive systems, while others use context
acquisition [1], or a combination of both.
As such, a key characteristic for context aware systems is
that they must maintain the capability of acquiring and
using context related information through interaction with
an environment that is sensor-rich, and that is also capable
of providing accurate information about itself.
Sensing devices can provide pervasive systems with
information such as the location of people and devices [2],
however; only an intelligent system would be able to
utilize the aggregated data into a meaningful, more useful
form, a form that will allow a pervasive system to more
naturally interact with users, hence going beyond the

legacy of isolated interaction [2].
In most cases, context awareness will involve capturing
and making sense of imprecise and sometimes conflicting
data and uncertain physical worlds. Various components
of a pervasive system must then be able to reason about
uncertainty and reduce ambiguity associated with gathered
contextual information [3].
Many challenges affect context awareness in general. Such
challenges include the representation of context data, the
integration of such data with existing systems and
applications, the storage and distribution of context data,
and the frequency of context retrieval. Furthermore, one of
the striking challenges affecting context awareness is the
reduction of ambiguity associated with context data.
This article describes a policy-based framework for
ambiguity reduction in pervasive systems. The framework
can be utilized with other existing ambiguity reduction
mechanisms to further reduce contextual ambiguity within
a pervasive system.
Users roaming within this system are continuously sensed
by a plethora of distributed sensors. Sensors can gather
primitive, or raw, data about various users within the
system, but however cannot provide high level
information such as whether the given user is in a meeting
or not, or whether the user is currently evacuating the
building. Since users continuously provide raw state
information to the system, we label them as providers.
An aggregator periodically, and on-demand uses raw state
information of various providers, along with user defined
policies stored in a policy repository to generate high-level
macro-contextual information using the services of a
context engine. The context engine makes use of the user-
defined policies, along with raw state information stored
in the aggregator, to infer and generate macro-contextual
information for various providers of the system.
Furthermore, every macro-context is coupled with a
calculated level of confidence describing how sure the
context engine is of the evaluated macro-context of a
given provider. Periodically, the aggregator archives
historical macro-contextual information in a context
repository. Historical information proves to be very
valuable in the futuristic determination of context.
Aggregators within the system can be queried for macro-
contextual information. By changing various policies, the

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

79

aggregator’s interpretation of various collections of raw
data, and eventually its inference of ambiguous context,
along with the corresponding contextual confidence
probability can be altered.
The article shall describe related work, the overall
architecture of the system, the various subsystem
interactions, along with a detailed description of the
aggregator, the context engine, the definition of various
policies within the policy repository, and the context
repository itself.

2. Related Work

Many contributions have been made towards ambiguity
reduction in pervasive systems. Ranaganathan proposes in
[3] an uncertainty model based on a predicate
representation of contexts and associated confidence
values. The model uses various mechanisms such as
probabilistic logic, fuzzy logic, and Bayesian networks.
In [7], Dey presented a definition of context, and
introduced a conceptual framework to assist in the design
of context aware applications. He also attempted to
explore some of the challenges associated with implicit
context in an attempt to alleviate some context related
ambiguity, especially as relates to the inability of sensors
to provide accurate sensing data. The author proposed the
reduction of ambiguity through one of three approaches,
namely (1) to allow applications to know of the inability
of sensors to provide accurate information, and hence take
appropriate action or (2) to support sensor redundancy for
accuracy purposes, or (3) to allow the user to manually
remove ambiguity through interaction with a user interface.
The third choice was the explored approach by the author,
of which the major drawback includes manual user
intervention for ambiguity reduction. In [8], he also
developed an architecture to support the mediation of
ambiguity in recognition-based GUI interfaces. The
architecture supported timely delivery and update of
ambiguous context, yet still lacking solutions to ambiguity
reduction.
In [17], a framework for the analysis, requirements, and
design phases of developing context aware systems was
developed. In [18], The Context Broker Architecture
Ontology was created, which is a very interesting
development in context awareness. A broker monitors and
controls information used by context aware systems,
however, not much contribution was made to reduce
ambiguity also that may almost be imminently present in
such systems.
In [19], another ontology was developed to allow for
better context modeling in pervasive computing

environments. The main goal of the work was to classify
context types, and give different weight to different types
of relevantly important contexts within applications.
Context was divided into three types, namely for users,
computer entities, and physical entities (such as light, and
noise). Policies used predicates to describe context. For
example, <Tom status WatchingTV> indicated the
obvious state of Tom, namely watching TV. In [20], a
Java Context Awareness Framework was developed and
included a set of APIs to describe context.
In [9], Chalmers presents how relationships between real
world actors and contextual information can be formulated
in the presence of uncertainty.
In [10], Thomson identifies some drawbacks associated
with situation determination offered by some state of the
art context aware infrastructures. Some drawbacks include
the use of large logic programs or Bayesian networks, the
inability to perform correlations with scaling systems, and
the lack of support for ad hoc situation determination.
Thomson presents an approach to situation determination
that attempts to address such drawbacks, and adds the
capability of recognizing ad hoc situations.
In [11], Johnson describes how an architecture for an
intelligent environment context supports the changes of
representation of knowledge across a range of different
programming styles.
In [12], Loke explores argumentation as a reasoning
mechanism in context-aware systems, and more expressive
rules for user programming of context aware systems.
Grimm presents in [4] and [5] a highly detailed system
architecture for pervasive computing that accommodates
embracement of contextual change, however, does not
fully accommodate context ambiguity. The system
however provides an integrated framework for building
adaptable applications that allow for user collaboration
and devices and applications that easily assimilate together.
The idea of policy utilization in pervasive systems on the
other hand has also been an issue of research as presented
in [14-16].
Although the contributions mentioned above propose
tentative solutions for the difficult and challenging context
ambiguity problem, our framework is not particular for
specific pervasive application like many other solutions
are, and avoids the need for complicated fuzzy logic or
Bayesian networks. Furthermore, the framework relies on
user defined policies that allow the system to reduce
ambiguity associated with context related information to
achieve more abstract and high-level context. The
framework can be utilized with existing context ambiguity
approaches to further contribute in ambiguity reduction.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

80

3. System Architecture

At a high level, our system is composed of the ability to
gather context information from those entities that
generate it, store context, interpret basic context into more
intelligent context, and archive context. In order to achieve
such functionalities, we created seven components in our
policy-based ambiguity reduction system, as shown in
Figure 1. The system is composed of:

• The Providers: The users who feed their
information to the system through the sensors.

• The Sensors: To collect information about
providers such as location sensors, voice sensors,
movements sensors, etc.

• The Aggregators: To collect and retain up-to-
date information about the providers from the
sensors, to induce the context engine for
generating higher level context information, and
to answer queries about context information.

• The Elicitors: Those users that query for context
related information about certain other users.

• The Context Repository: To archive historical
context information.

• The Policy Repository: To store policies
directing the inference of raw and low-level
context information into higher level context-
information.

• The Context Engine: Uses up-to-date user
information in the aggregators, along with
policies stored in the policy repository to
generate higher level contextual information.

Retrieval

Archive

Sensing
 Info

Query

Raw State

Context

Raw Macro Context
Repository

Policies

…

Aggregator(s)

Provider 1

Sensor 1 Sensor 2 Sensor 3 Sensor k

Provider 2 Provider n

Context Engine

Policy
Repository

Elicitors Elicitors Elicitors Context
Elicitors

Figure 1 System Architecture

The architecture of the system primarily relies on the
presence of one or more aggregators that constitute the
focal point of distribution of macro (high level) contextual
information of various providers in the system. A typical
scenario for information flow starts with providers,
namely users, that feed low-level information into the
system via sensors. Depending on the type of the sensor
itself, the proper low level information (raw information)
will be gathered. For example, motion sensors detect
motion information; sound sensors detect the presence of
sound, proximity sensors, detect proximity, and so on.
Various such sensors will obtain very specific raw context
information about providers, and then relay them to an
existing aggregator.
It is up to the aggregator to rely on a predicate-based
context engine to convert the very specific context
information obtained from various sensors, such as
provider locations, sound and motion detection, and
proximity detection into a more abstracted and high level
provider-related context such as the provider’s existence
in a meeting, or its evacuation of a building during a fire
drill, or its delivery of a presentation to executives of the
organization. We call such high level context a macro
context.
The context engine uses the raw provider states stored in
the aggregator, along with user defined policies stored in a
policy repository to infer macro contexts. The inferred
macro contexts are then stored back again in the
aggregator to add to a process of continued learning.
Eventually, both the raw context information, and the
inferred macro-context information become both
significant in quantity and obsolete. Periodically, the
aggregator archives contexts into the context repository.
Such archived contexts can be used by the context engine
to obtain a historical insight into previously computed
provider contexts. The context engine can use such
historical context information, with reliance on basic
temporal and spatial locality principles to support its
context derivation. For example, the provider’s attendance
of a meeting regularly for the past month during a specific
time is a very good indicator that the provider will
continue to attend such meetings, probably at the same
time in the near future.
Eventually, the gathering of low-level context information,
and the inference of macro-contextual information is only
useful if it can be used. Context elicitors are entities
interested in obtaining context-related information about
various providers. An elicitor may be a provider itself, or
any other entity. Not only can elicitors obtain macro
contextual information, but they can also receive lower
level context information about providers, such as a sensor

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

81

detecting the proximity of a user.

4. The Providers

Every context-aware system is composed of various
sensors of different types. In [13], sensors are divided into
physical, virtual, and logical sensors based on the
functionality of each. However, the most obvious
examples of sensors are those physical sensors that are
capable of providing information about various physical
entities within the system.
Examples of physical sensors include location sensors,
proximity sensors, biometric sensors, and magnetic card
readers. The author in [13] also continues to describe
virtual sensors as those sensing information from virtual
worlds such as networks, or operating systems, and logical
sensors that infer information from both physical and
logical sensors.
In this system, we introduce the notion of a provider. A
provider is any entity providing sensors with information.
The provider itself could be either physical or logical.
Examples of physical providers include humans walking
down a corridor and being sensed by proximity sensors, or
the same humans swiping their badge into a magnetic card
reader, or even performing a retinal scan to access a
secured environment. On the other hand, logical providers
can include operating systems sending a system overload
alert, or a network providing its traffic status. In either
case, providers, whether physical or logical, provide
various sensors with information about their status.
As such, any sensor, irrespective of the type of the sensor,
detecting information associated with a given provider
will then generate a raw state for the provider. The raw
state, as shown in Figure 2, will minimally consist of a
timestamp, an identification of the sensed provider, and a
predicate describing both who was detected and the type
of detection itself. The predicate itself is described later.
The raw state information about the provider is then
immediately registered at the aggregator.

Time Stamp Sensor ID Context Predicate

Figure 2 Generated Raw State

Given many such providers in a system detected by
different kinds of sensors, the aggregator will always
contain up to date low level information about the existing
providers. Figure 3 illustrates the data flow of how state
information of some provider is generated and relayed to

an aggregator. The provider walking down a hallway for
example is detected by a proximity sensor. As a result of
such detection, the proximity sensor will generate raw
state information associated with the detected employee,
and will relay such raw information to the aggregator. The
aggregator will then use, at a later stage, such information
to generate macro contextual information.

 Detection

Raw State

Proximity
Sensor

John Doe

Aggregator

Figure 3 Raw State Aggregation

5. The Predicates

The usage of predicates in this system is of great
significance. As previously stated, a raw state propagated
from an existing sensor and registered at an aggregator
contains as a minimum, a timestamp, an identification of
the sensed provider, along with a predicate describing the
state. The usage of predicates provides a simple and
uniform representation for different kinds of raw contexts
that can then be easily used by the context engine to
generate macro contextual information.

A predicate is of the form:

(<Subject>, <Verb>, <Object>)

The subject above is the identifier of the provider, and the
object is the identifier of the sensor detecting an action
related to the subject in one way or another. If the provider
cannot be identified, the subject is simply “null”. The type
of action detection is dependent on the type of the sensor.
Motion sensors detect motion actions; sound sensors
detect sound related actions, and so on. The verb on the
other hand describes the sensing activity itself. Currently,
five common types of actions to be monitored are
identified, namely related to:

 Motion detection.
 Sound detection.
 Proximity detection.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

82

 Location detection.
 Pressure application detection.
 Pressure release detection.

Table 1 illustrates the various actions, and their
corresponding verbs to be used in the predicates.

As an example, a provider identified as John and detected
by a proximity sensor located in the Room1 will have the
following predicate generated by the proximity sensor:

(John, CloseTo, Room1)

The subject is the provider identification, the verb is
highly dependent on the sensor type, which happens to be
a proximity detector in this case, and the object signifies
the sensor name, and with proper naming, one can signify
what the proximity detector references. As another
example, a location detector, which is different than a
proximity detector, detecting the exact presence of John in
Room1 will have a predicate generated as follows:

(John, In, Room1)

Of course, detecting a location of a user in itself may be
performed by a logical sensor, since location detection
may require the presence of multiple sensors in itself. The
same applies to other types of sensors also.
The usage of a general and simple form for a predicate as
indicated above provides an easier processing of the
predicates themselves, along with providing a uniform
representation of predicates, independent of the various
sensors.

6. The Aggregator

As indicated earlier, the aggregator(s) constitute the focal
point of distribution of macro-contextual information of
various providers in the system. Various sensors in the
network continuously forward raw state information about

providers to the aggregator. The aggregator will then add
the raw states to its collection.
A context engine assists the aggregator in generating
macro-contextual information about various providers
from the set of raw states available at the aggregator itself.
The context engine uses user-defined policies that indicate
how the transformation should happen from a set of raw
states to a higher level representation of provider context
with a given confidence level. The context engine will be
explained later in this article.
At any point in time, a context elicitor can query the
aggregator to obtain either raw context information or
macro contextual information about a given provider or
providers. Macro-contextual information about providers
contain a given confidence level that indicates to the
elicitor to what extent the aggregator believes that this is
the proper context of the provider.
As an example, raw states of a given provider may
indicate that the provider has entered a meeting room, that
the provider is present along with two other people in the
same room, that a sound is detected from the meeting
room, and that a projector is activated. According to a
general form of a policy set by the user, the aggregator can
conclude with the help of the context engine that the given
provider is in a meeting, and with a given confidence level.
As raw states and calculated macro-contextual information
is stored in the aggregator, and as this information
becomes irrelevant to the immediate time, the aggregator
will need to archive such information. Periodically, the
aggregator will archive raw states, as well as generated
macro-context states in the context repository.

7. Policies and the Policy Repository

Policies reside in the policy repository. Such repository is
continuously queried by the context engine to allow the
engine to determine how to compute macro-contexts.
Context related information is then sent back to the
aggregator, thus signifying the latest up to date macro-
context of a given provider.

7.1 The Need for Policies – an Example

As an example, a user, which we call a provider here,
roams around a building and is continuously detected by
various types of sensors distributed around the building.
Raw information about the user is therefore collected by
various sensors within the building. The objective is to
create a policy capable of identifying a macro-context
associated with the provider. In other words, high level
questions of the following type need to be answered: Is the

Table 1: Supported Actions and Corresponding Verbs

Action Type Predicate Verb

Motion Detection MoveBy

Sound Detection HeardBy

Proximity Detection CloseTo

Location Detection In

Pressure Application Detection Pressured

Pressure Release Detection Released

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

83

provider currently in a meeting? Is the user evacuating the
building during a fire drill? Is the user on lunch break?
Not only should the system provide answers to such
questions with an affirmation or negation, but should
rather indicate a confidence level associated with its
answer. In other words, the provider is in a meeting with a
confidence level of 0.9, where the maximum confidence
level is a 1.
The definition of various policies directs the context
engine as to how to generate answers for such questions
such as the ones indicated above. As an example, a
meeting policy is created that states the following:

• If three or more proximity sensors around a specific

meeting room detect the presence of the provider.
• If one or more different other providers are

detected also in the same meeting room.
• If one or more audio sensors surrounding the

meeting room detect noise, or more intelligently at
a later stage, a human conversation.

• Then according to such policy, it can be concluded
that the provider is in a meeting at a specific
location identified by the various sensor locations.

However, determining the presence in a meeting is not
sufficient; the question to be asked further is, with what
level of confidence is the user in a meeting? Various
confidence levels are thus associated with each component
of the policy. All confidence levels must sum up to a
system defined maximum of 1. Table 2 below shows the
association of various confidence contributions to the
example indicated above. The detection of proximity
surrounding the meeting room itself contributes with a
confidence level of 0.5. The detection of other providers in
the same room contributes to a confidence level of 0.3,
and the detection of noise contributes to a confidence level
of 0.2. All of the contributions should add up to a system
defined maximum of 1.

If no confidence levels are specified, the various
components will assume equal contributions to the overall
evaluation of confidence. If only part of the confidence
contributions are specified, and the rest are not, the

unspecified contributions will assume equal values of
whatever remains to achieve a maximum contribution of 1
by all policy components.

7.2 Policy Representation

As shown in Figure 4, policies stored in the policy
repository are represented using exactly one context node
and one ore more policy nodes. A context node identifies
the type of macro-context to be computed such as a
meeting, while the policy nodes determine the various
components contributing to the evaluation of the macro
context itself. Each policy node in itself may be either
simple or compound. A compound policy node may
require the evaluation of another macro-context, and thus
as shown in the figure below, the policy node may be
linked to another context node with its associated policy
nodes. A context node and its policy nodes are represented
using linked lists.

 …

 … Context
Node

Policy
Node

Policy
Node

Policy
Node

Context
Node

Policy
Node

Policy
Node

Figure 4 Policy Representation

The policy repository itself may be composed of
multitudes of user defined policies as such. Each policy
will have its usual context node and policy node(s)
representation to store information associated with the
policy as shown in Figure 5.

 …

 … Context
Node

Policy
Node

Policy
Node

Policy
Node

Context
Node

Policy
Node

Policy
Node

 …

 … Context
Node

Policy
Node

Policy
Node

Policy
Node

Context
Node

Policy
Node

Policy
Node

 …

Figure 5 Policy Repository

Figure 6 shows the internal structure of a context node,

Table 2: Policy Confidence Level Contributions

Policy Component Confidence Contribution

>=3 Proximity Sensor Detections 0.5

>=1 Association 0.3

>=1 Audio Detection 0.2

∑ 1

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

84

and the corresponding policy node. A context node is
composed of a name identifying the macro-context, while
each policy node is composed of an action type, an
occurrence, a relation, and a weight. Each context node is
associated with multiple policy nodes.

Context Node

Name

Policy Node

Action Type

Occurrence

Relation

Weight

Figure 6 Context and Policy Nodes

The action type field: such as a “proximity detection”, or
“audio detection”, signifies the type of sensor detection
required for this policy component to be valid. For
example, a proximity detection action type indicates that
proximity detection is required for this macro-contextual
evaluation.

The occurrence field: is a numeric value indicating the
quantity of action types required for the evaluation to be
valid. An occurrence value of three for example, and an
action type of “proximity detection” does not necessarily
mean that exactly three proximity detections are required,
but rather, it is up to the relation field to determine
whether we need exactly three, more than three, more than
or equal to three, less than three, or less than or equal to
three.

The relation field: contains one of five relational
operators: <, <=, >, >=, or == to determine along with the
occurrence field how many occurrences are needed for this
policy rule to be satisfied.

The weight field: indicates the contribution of this policy
node to the overall evaluation of the macro context. For
example, proximity detection as indicated in this policy
node may contribute 0.5 to the overall evaluation of this
context.

7.3 Policy Example

As an example shown in Figure 7, the determination
whether a provider is in a meeting or not, and as indicated
earlier, may, according to this example be determined
according to the following weights (that sum up to one):

• If three or more proximity sensors around a specific

meeting room detect the presence of the provider,
with a weight of 0.5.

• If one or more different other providers are
detected also in the same meeting room, with a
weight of 0.3.

• If one or more audio sensors surrounding the
meeting room detect noise, with a weight of 0.2.

Context Node

InMeeting
(x,room)

Policy Node

CloseTo (x,room)

3

>=

0.5

Policy Node

In (*,room)

1

>=

0.3

Policy Node

HeardBy (*,room)

1

>=

0.2

Figure 7 Context and Policy Node Example

As shown in Figure 7 above, the context and policy node
construction is composed of a single context node with a
name “InMeeting”, which operates on some provider “x”,
and location “room”. The purpose of this context node is
to show the policies determining whether provider “x” is
in a meeting in a location “room”.
According to the example in Figure 7, there are three
policy nodes created. Each policy node contains an
“Action Type”, an “Occurrence”, a “Relation”, and a
“Weight”. The first policy node identifies the first rule of
the example, namely whether three or more proximity
sensors around a specific meeting room detect the
presence of the provider, with a weight of 0.5. The
“Action Type” for this policy node is populated with
“CloseTo(x,room)”, the “Occurrence” is populated with
“3”, the “Relation” is populated with “>=”, and the weight
is populated with “0.5”, thus indicating that more than
three proximity detection should be found for x, and that
this policy in itself contributes 0.5 of the overall weight.
 Similarly, the two other policy nodes are created with
“Action Types” “In” and “HeardBy” to represent the
remaining other two rules. The “*” in those policy nodes
indicates the detection of “any provider”. For example,
“In(*,room)” indicates the detection of “any provider” in

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

85

the given “room” with an occurrence of >=1, and a
contribution of 0.3.

7.4 Compound Policy Nodes

Compound policy nodes are those nodes whose evaluation
depends on the evaluation of other policy nodes, either
compound or simple. The support for compound nodes
within this system facilitates the definition of policies and
allows for a higher level of abstraction when defining such
policies.

8. The Context Engine

The context engine within our system is the sole entity
containing the logic capable of converting raw context
information about a given provider into macro-contextual
information. The context engine’s services are only
available to the aggregator coupled with such context
engine. When a context elicitor first issues a query to the
aggregator asking a macro question about a given provider
such as: Is the given provider in a meeting? Is the provider
currently having lunch? Or a general question such as:
What is the given provider currently doing? The query
request is forwarded by the aggregator to the context
engine coupled with such aggregator. The aggregator then
utilizes the services of the context engine to answer such
question.
As a prerequisite, the context engine requires the presence
of policy rules, along with the raw state information in
order to come up with conclusive decisions regarding the
answer to the submitted query. We can subdivide queries
into two major types namely specific queries, and general
queries as indicated above.

8.1 Specific Queries

Specific queries are usually simpler to answer. A specific
query as indicated earlier could be of the form: Is a given
provider currently in a meeting? When the context engine
receives a query as such, the policy rule evaluation domain
is significantly reduced. Query examples are indicated
below:

• The format of a query issued to check whether a

provider identified as John is in a meeting in any
room is of the following form:

InMeeting(John,*).

• If the query is intended to check if John is in a

meeting in room1, the query if of the following

form:

InMeeting(John, Room1)

In such case, it is obvious that the context node related to
meetings should be traversed, its policy rules evaluated for
the given provider, and the question about whether the
given provider is in a meeting or not answered along with
a calculated level of confidence.
As shown in the flowchart in Figure 8, the context engine
initially starts by locating the context node of the relevant
policy rule related to the query being submitted. In this
example, the query is related to presence in a meeting. If
the relevant context node of the policy rule is found, the
context engine is immediately capable of answering the
question with a given level of confidence, given that
corresponding raw state information for such provider
exists. If the rule is not present however, the context
engine is simply incapacitated from answering such query.
The presence of policy rules within the policy repository is
therefore crucial and a prerequisite for being able to
answer such queries.
After locating the context node for a meeting within the
policy repository, the context engine then starts evaluating
every single policy node associated with the context node.
The action type of the policy node indicates to the context
engine what kind of raw states to look for at the
aggregator. If the action type is proximity detection, the
context engine will attempt to locate proximity detections
for the given provider being queried. The occurrence field
along with the relation field indicates to the context engine
how many such proximity detections for the given
provider to look for. If the relation and occurrence in our
example are “>” and “3”, this means that the context
engine is looking for more than three occurrences of
proximity detections. Once more than three are found, the
context engine can safely stop evaluating this specific
policy node. Furthermore, if the condition is also met, then
the weight contribution of this policy node to the overall
context evaluation is taken into consideration. If the
condition is not met, the weight contribution of the policy
node currently being evaluated is not taken into the overall
evaluation of the context. The summation of weight
contributions of all satisfied policy nodes is the overall
confidence level. The weight contribution of each policy
node thus signifies to a great extent how important that
policy node is to the overall evaluation of the queried for
context.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

86

N o

Y es

N o

N o

Y es

Y es

Y es

S ta rt

L o c a te
C o n tex t

N o d e

C o n tex t
N o d e

F o u n d ?

E v a lu a te P o lic y N o d e
 u sin g R a w S ta te In fo rm a tio n

P o lic y
N o d e

S a tis fied ?

A c c u m u la te
P o lic y

C o n trib u tio n

M o re
P o lic y

N o d es?

S to p

R e tu rn M a c ro C o n tex t
w ith C on fid en c e L ev e l

Figure 8 Evaluating a Specific Query

8.2 General Queries

General queries on the other hand are relatively more
demanding to evaluate. To answer a general question
about the current context of a given provider requires an
exhaustive evaluation of all relevant context nodes. Each
context node is traversed, and its corresponding policy
nodes evaluated. Eventually, each context node will have a
corresponding level of confidence associated with it
depending on the outcome of the evaluation of policy
nodes within the context node itself. The contexts, along
with their levels of confidence are then returned back as
part of the query response itself.
For example, given three policy rules are populated in a
policy repository, namely for meetings, lunch, and
evacuation. Given also that raw state information is
gathered at the aggregator, a general query asking about
the current context of a provider John Smith will return

back with an output that looks similar to the following
show in Figure 9:

 John Smith is Currently

In Meeting Confidence 95%
Evacuating Confidence 60%
At Lunch Confidence 30%

Figure 9 Sample Output of a General Query

The services of the context engine are only available to an
aggregator. Figure 10 below shows how a context elicitor
first requests a macro-context from an aggregator, and
how the aggregator invokes the context engine. The
context engine on the other hand uses the data stored in
both the aggregator (in the form of raw states), and that
stored in the policy repository (in the form of policies) to
evaluate the query.

Raw Data Request
and

Query Result

Engine
Invocation

and
Raw States

Policies

Policy Data
Request

Query
Request

Context
Elicitor

Aggregator

Context
Engine

Policy
Repository

Figure 10 Interactions for Query Answering

9. Experimental Results

We conducted implementation and experiments to
determine the performance behavior of the system as
policy rules became more complicated. As indicated
earlier, a specific query submitted to the system will entail
the evaluation of a single policy rule. Such policy rule is
composed of a single context node describing the rule

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

87

itself, and a number of policy nodes.
We measured the amount of time taken to fully evaluate a
policy rule as we increased the number of policy nodes
within the rule itself. Compound policy nodes are
composed of a number of policy nodes also themselves.
We started off with a single policy rule composed of one
single policy node. We varied the number of policy nodes
from one to thirty, each time adding a policy node to the
already existing policy nodes. With each run, we measured
the total time taken to evaluate the entire rule itself given
the number of policy nodes composing that rule. We were
not only interested in the amount of time taken to evaluate
the rule itself, but rather the behavior of the evaluation
time as the number of policy nodes increased.
The results obtained in Figure 11 illustrate the total time
taken by the system to evaluate the rule as the number of
policy nodes ranges from one to thirty. The graph below
illustrates that as the number of policy nodes increases, the
rule evaluation time increases gracefully in a semi-linear
fashion, that, which makes the system gracefully scalable
in terms of rule size. Of course, the exact evaluation time
highly depends on the type of policy nodes within the rule
itself, but the semi-linear behavior of the system is
illustrated below.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Number of Policy Nodes

R
ul

e
Ev

al
ua

tio
n

Ti
m

e
(m

s)

Figure 11 Behavior of Rule Evaluation Time

Given the behavior of the system in evaluating specific
queries as indicated in the figure above, more general
queries will entail the evaluation of multiple policy rules.
Figure 12 below shows the behavior of the system as
multiple rules are evaluated to answer a given query. The
same experiment as above was conducted, yet with
increasing the total number of rules to be evaluated. The
same semi-linear behavior of the system is exhibited, yet
with an increased rule evaluation time proportional to the
number of rules being evaluated.

0

5000

10000

15000

20000

25000

30000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Number of Policy Nodes

P
ol

ic
y

R
ul

e
E

va
lu

at
io

n
Ti

m
e

(m
s)

Two Rules
Three Rules
Four Rules
Five Rules

Figure 12 Behavior of Multiple Rule Evaluation Time

10. Conclusion

Capturing context-related information poses itself as one
of the fundamental aspects of building useful pervasive
systems. In many scenarios, context-related information is
either ambiguous or conflicting. In this article, we
presented a policy-based framework to reduce ambiguity
in context aware systems. Multitudes of sensors
continuously capture the state of various providers
roaming around a given environment, and generated raw
states are forwarded to an aggregator. Well-defined policy
rules, in the form of predicates, defining the interpretation
of raw states are stored in a policy repository. Context
elicitors can query about the status of various providers
within the system, after which the aggregator invokes the
services of a context engine to answer questions regarding
the providers in question. The context engine utilizes the
raw states at the aggregator, along with the various
defined policy rules to infer a macro-context of the
providers in question. Such macro-context is coupled with
a confidence level indicating how certain the aggregator is
in its context inference. Eventually, both raw-contexts and
macro-contexts are invalidated and archived into the
policy repository. Conducted experiments demonstrated
the performance of the system as the number of policy
nodes increased, and as the number of evaluated rules also
increased. Our future work involves the utilization of
historical context related information for increased
ambiguity reduction.

References
[1] G. K. Mostefaoui, J. Pasquier-Rocha, and P. Brezillon ,

“Context Aware Computing: A Guide for the Pervasive
Computing Community”, The IEEE/ACS International
Conference on Pervasive Services (ICPS’04), Lebanon,
2004.

[2] D. Saha and A. Mukherjee, “Pervasive Computing: A
Paradigm for the 21st Century” IEEE Computer. Pp. 25-31,
March 2003.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

88

[3] A. Ranganathan, J. Al-Muhtadi, and R. Campbell,
“Reasoning about Uncertain Contexts in Pervasive
Computing Environments” IEEE Pervasive Computing, Pp.
62-70, April-June 2004.

[4] R. Grimm, “One.World: Experiences with a Pervasive
Computing Architecture”, IEEE Pervasive Computing, Pp.
22- 30, July-September 2004.

[5] R. Grimm, “System Support for Pervasive Applications”,
ACM Transactions on Computer Systems, Pp. 421-486,
November 2004.

[6] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R.
Campbell, and K. Nahrstedt, “A Middleware Infrastructure
for Active Spaces,” IEEE Pervaisve Computing, Pp. 74-83,
2002.

[7] A. K. Dey, D. Salber, and G. D. Abowd, “A conceptual
framework and a toolkit for supporting the rapid
prototyping of context-aware applications”, Human-
Computer Interaction Journal, Pp. 97-166, 2001.

[8] A. Dey, J. Mankoff, G. Abowd, and S. Carter, “Distributed
Mediation of Ambiguous Context in Aware Environments”,
The Eighteenth Annual ACM Symposium on User Interface
Software and Technology, Paris, France, 2002.

[9] D. Chalmers, N. Dulay, and M. Sloman, “Towards
Reasoning about Context in the Presence of Uncertainty”,
The Workshop on Advanced Context Modeling, Reasoning,
and Management, United Kingdom, 2004.

[10] G. Thomson, P. Nixon, and S. Terzis, “Towards Ad-hoc
Situation Determination”, The Workshop on Advanced
Context Modeling, Reasoning and Management, United
Kingdom, 2004.

[11] C.W. Johnson, K. Carmichael, and H. Kummerfeld,
“Context Evidence and Location Authority: the Disciplined
Management of Sensor Data into Context Models”,
UbiComp 2004, Nottingham, England, 2004.

[12] S. Loke, “Facing Uncertainty and Consequence in Context-
Aware Systems: towards an Argumentation Approach”,
CW2004, Tokyo, Japan, 2004.

[13] J. Indulska and P. Sutton, “Location Management in
Pervasive Systems”, The Workshop on Wearable, Invisible,
Context-Aware, Ambient, Pervasive, and Ubiquitous
Computing, Australia, 2003.

[14] A. Patwardhan, V. Korolev, L. Kagal, and A. Joshi,
“Enforcing Policies in Pervasive Environments”, The IEEE
International Conference on Mobile and Ubiquitous
Systems Mobiquitous, Boston, Massachusetts, 2004.

[15] L. Kagal et. Al, “A Policy Language for a Pervasive
Computing Environment”, The IEEE International
Workshop on Policies for Distributed Systems and
Networks, Italy, 2003.

[16] G. Tonti, J. Bradshaw, R. Jeffers, R. Montanari, N. Suri,
and A. Uszok, “Semantic Web Languages for Policy
Representation and Reasoning: A Comparison of KAoS, Rei,
and Ponder”, The International Semantic Web Conference,
Florida, 2003.

[17] S. Loke, and E. Syukur, “The MHS Methodology: Analysis
and Design for Context-Aware Systems”, The Fourth IEEE
Workshop on Software Technologies for Future Embedded
and Ubiquitous Systems, Korea, 2006.

[18] H. Chen, “An Intelligent Broker Architecture for Context-
Aware Systems”. Ph.D. Dissertation, University of
Maryland Baltimore County, 2004.

[19] X. Lin, S. Li, Z. Yang, and W. Shi, “Application-Oriented
Context Modeling and Reasoning in Pervasive Computing”.
The Fifth IEEE International Conference on Computer and
Information Technology, New York, 2005.

[20] J. Bardram, “The Java Context Awareness Framework
(JCAF) – A Service Infrastructure and Programming
Framework for Context-Aware Applications”, The Third
International Conference on Pervasive Computing,
Germany, 2005.

Sherif G. Aly received his B.S.
degree in Computer Science from
the American University in Cairo,
Egypt, in 1996. He then received
his M.S. and Doctor of Science
degrees in Computer Science from
the George Washington University
in 1998 and 2000 respectively. He
worked for IBM during 1996, and
later taught at the George
Washington University from 1997

to 2000 where he was nominated for the Trachtenberg prize-
teaching award for his current scholarship and scholarly debate.
He spent two years as a guest researcher for the National
Institute of Standards and Technology at Gaithersburg, Maryland
from 1998 to 2000. Dr. Aly also worked as a research scientist at
Telcordia Technologies in Morristown, New Jersey, in the field
of Internet Service Management Research, and as a Senior
Member of Technical Staff at General Dynamics Network
Systems. He also consulted for Mentor Graphics and taught at
the German University in Cairo. He is currently a faculty
member at the Department of Computer Science at the American
University in Cairo. Dr. Aly published numerous papers in the
area of distributed systems, multimedia, digital design, and
programming languages. His current research interests include
pervasive systems, programming languages, multimedia,
directory enabled networks, and image processing. Dr. Aly is a
member of IEEE.

