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Summary 
There has been an ever-increasing interest in context-
aware computing expressed by the pervasive computing 
community. As researchers attempt to create pervasive 
systems that are unobtrusively embedded in the 
environment, completely connected, intuitive, effortlessly 
portable, and constantly available, often do they run into 
the problem of ambiguity in the determination of the 
surrounding context. With the presence of context 
ambiguity, pervasive systems become more incapable of 
adapting themselves with the surrounding environment. 
This article describes a policy-based framework for 
reducing ambiguity in context aware systems. 
Experimental results show the performance of the system 
as the number and size of disambiguating policy rules 
increase. 
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Introduction 

Context awareness in pervasive computing has been 
gaining ever increasing research attention. Pervasive 
systems are required to realize knowledge of their 
surroundings so as to become better integratable and 
adaptable to the heterogeneity of their surrounding 
environment. Much research has been proposed to allow 
pervasive systems to become context aware. Some 
researchers propose the integration of context within 
existing pervasive systems, while others use context 
acquisition [1], or a combination of both. 
As such, a key characteristic for context aware systems is 
that they must maintain the capability of acquiring and 
using context related information through interaction with 
an environment that is sensor-rich, and that is also capable 
of providing accurate information about itself.  
Sensing devices can provide pervasive systems with 
information such as the location of people and devices [2], 
however; only an intelligent system would be able to 
utilize the aggregated data into a meaningful, more useful 
form, a form that will allow a pervasive system to more 
naturally interact with users, hence going beyond the 

legacy of isolated interaction [2].  
In most cases, context awareness will involve capturing 
and making sense of imprecise and sometimes conflicting 
data and uncertain physical worlds. Various components 
of a pervasive system must then be able to reason about 
uncertainty and reduce ambiguity associated with gathered 
contextual information [3].  
Many challenges affect context awareness in general. Such 
challenges include the representation of context data, the 
integration of such data with existing systems and 
applications, the storage and distribution of context data, 
and the frequency of context retrieval. Furthermore, one of 
the striking challenges affecting context awareness is the 
reduction of ambiguity associated with context data.  
This article describes a policy-based framework for 
ambiguity reduction in pervasive systems. The framework 
can be utilized with other existing ambiguity reduction 
mechanisms to further reduce contextual ambiguity within 
a pervasive system. 
Users roaming within this system are continuously sensed 
by a plethora of distributed sensors. Sensors can gather 
primitive, or raw, data about various users within the 
system, but however cannot provide high level 
information such as whether the given user is in a meeting 
or not, or whether the user is currently evacuating the 
building. Since users continuously provide raw state 
information to the system, we label them as providers. 
An aggregator periodically, and on-demand uses raw state 
information of various providers, along with user defined 
policies stored in a policy repository to generate high-level 
macro-contextual information using the services of a 
context engine. The context engine makes use of the user-
defined policies, along with raw state information stored 
in the aggregator, to infer and generate macro-contextual 
information for various providers of the system. 
Furthermore, every macro-context is coupled with a 
calculated level of confidence describing how sure the 
context engine is of the evaluated macro-context of a 
given provider. Periodically, the aggregator archives 
historical macro-contextual information in a context 
repository. Historical information proves to be very 
valuable in the futuristic determination of context.  
Aggregators within the system can be queried for macro-
contextual information. By changing various policies, the 
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aggregator’s interpretation of various collections of raw 
data, and eventually its inference of ambiguous context, 
along with the corresponding contextual confidence 
probability can be altered. 
The article shall describe related work, the overall 
architecture of the system, the various subsystem 
interactions, along with a detailed description of the 
aggregator, the context engine, the definition of various 
policies within the policy repository, and the context 
repository itself. 

2. Related Work 

Many contributions have been made towards ambiguity 
reduction in pervasive systems. Ranaganathan proposes in 
[3] an uncertainty model based on a predicate 
representation of contexts and associated confidence 
values. The model uses various mechanisms such as 
probabilistic logic, fuzzy logic, and Bayesian networks.   
In [7], Dey presented a definition of context, and 
introduced a conceptual framework to assist in the design 
of context aware applications. He also attempted to 
explore some of the challenges associated with implicit 
context in an attempt to alleviate some context related 
ambiguity, especially as relates to the inability of sensors 
to provide accurate sensing data. The author proposed the 
reduction of ambiguity through one of three approaches, 
namely (1) to allow applications to know of the inability 
of sensors to provide accurate information, and hence take 
appropriate action or (2) to support sensor redundancy for 
accuracy purposes, or (3) to allow the user to manually 
remove ambiguity through interaction with a user interface. 
The third choice was the explored approach by the author, 
of which the major drawback includes manual user 
intervention for ambiguity reduction. In [8], he also 
developed an architecture to support the mediation of 
ambiguity in recognition-based GUI interfaces. The 
architecture supported timely delivery and update of 
ambiguous context, yet still lacking solutions to ambiguity 
reduction.  
In [17], a framework for the analysis, requirements, and 
design phases of developing context aware systems was 
developed. In [18], The Context Broker Architecture 
Ontology was created, which is a very interesting 
development in context awareness. A broker monitors and 
controls information used by context aware systems, 
however, not much contribution was made to reduce 
ambiguity also that may almost be imminently present in 
such systems.   
In [19], another ontology was developed to allow for 
better context modeling in pervasive computing 

environments. The main goal of the work was to classify 
context types, and give different weight to different types 
of relevantly important contexts within applications. 
Context was divided into three types, namely for users, 
computer entities, and physical entities (such as light, and 
noise). Policies used predicates to describe context. For 
example, <Tom status WatchingTV> indicated the 
obvious state of Tom, namely watching TV. In [20], a 
Java Context Awareness Framework was developed and 
included a set of APIs to describe context.  
In [9], Chalmers presents how relationships between real 
world actors and contextual information can be formulated 
in the presence of uncertainty.  
In [10], Thomson identifies some drawbacks associated 
with situation determination offered by some state of the 
art context aware infrastructures. Some drawbacks include 
the use of large logic programs or Bayesian networks, the 
inability to perform correlations with scaling systems, and 
the lack of support for ad hoc situation determination. 
Thomson presents an approach to situation determination 
that attempts to address such drawbacks, and adds the 
capability of recognizing ad hoc situations.  
In [11], Johnson describes how an architecture for an 
intelligent environment context supports the changes of 
representation of knowledge across a range of different 
programming styles.  
In [12], Loke explores argumentation as a reasoning 
mechanism in context-aware systems, and more expressive 
rules for user programming of context aware systems.  
Grimm presents in [4] and [5] a highly detailed system 
architecture for pervasive computing that accommodates 
embracement of contextual change, however, does not 
fully accommodate context ambiguity. The system 
however provides an integrated framework for building 
adaptable applications that allow for user collaboration 
and devices and applications that easily assimilate together. 
The idea of policy utilization in pervasive systems on the 
other hand has also been an issue of research as presented 
in [14-16]. 
Although the contributions mentioned above propose 
tentative solutions for the difficult and challenging context 
ambiguity problem, our framework is not particular for 
specific pervasive application like many other solutions 
are, and avoids the need for complicated fuzzy logic or 
Bayesian networks. Furthermore, the framework relies on 
user defined policies that allow the system to reduce 
ambiguity associated with context related information to 
achieve more abstract and high-level context. The 
framework can be utilized with existing context ambiguity 
approaches to further contribute in ambiguity reduction.  
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3. System Architecture 

At a high level, our system is composed of the ability to 
gather context information from those entities that 
generate it, store context, interpret basic context into more 
intelligent context, and archive context. In order to achieve 
such functionalities, we created seven components in our 
policy-based ambiguity reduction system, as shown in 
Figure 1. The system is composed of: 

• The Providers: The users who feed their 
information to the system through the sensors. 

• The Sensors: To collect information about 
providers such as location sensors, voice sensors, 
movements sensors, etc.  

• The Aggregators: To collect and retain up-to-
date information about the providers from the 
sensors, to induce the context engine for 
generating higher level context information, and 
to answer queries about context information.  

• The Elicitors: Those users that query for context 
related information about certain other users. 

• The Context Repository: To archive historical 
context information. 

• The Policy Repository: To store policies 
directing the inference of raw and low-level 
context information into higher level context-
information. 

• The Context Engine: Uses up-to-date user 
information in the aggregators, along with 
policies stored in the policy repository to 
generate higher level contextual information. 

Retrieval 

Archive 

Sensing 
 Info 

Query 

Raw State 

Context 

Raw Macro Context 
Repository 

Policies 

… 

Aggregator(s) 

Provider 1 

Sensor 1 Sensor 2 Sensor 3 Sensor  k 
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Figure 1 System Architecture 

 
The architecture of the system primarily relies on the 
presence of one or more aggregators that constitute the 
focal point of distribution of macro (high level) contextual 
information of various providers in the system. A typical 
scenario for information flow starts with providers, 
namely users, that feed low-level information into the 
system via sensors. Depending on the type of the sensor 
itself, the proper low level information (raw information) 
will be gathered. For example, motion sensors detect 
motion information; sound sensors detect the presence of 
sound, proximity sensors, detect proximity, and so on. 
Various such sensors will obtain very specific raw context 
information about providers, and then relay them to an 
existing aggregator.  
It is up to the aggregator to rely on a predicate-based 
context engine to convert the very specific context 
information obtained from various sensors, such as 
provider locations, sound and motion detection, and 
proximity detection into a more abstracted and high level 
provider-related context such as the provider’s existence 
in a meeting, or its evacuation of a building during a fire 
drill, or its delivery of a presentation to executives of the 
organization. We call such high level context a macro 
context. 
The context engine uses the raw provider states stored in 
the aggregator, along with user defined policies stored in a 
policy repository to infer macro contexts. The inferred 
macro contexts are then stored back again in the 
aggregator to add to a process of continued learning.  
Eventually, both the raw context information, and the 
inferred macro-context information become both 
significant in quantity and obsolete. Periodically, the 
aggregator archives contexts into the context repository. 
Such archived contexts can be used by the context engine 
to obtain a historical insight into previously computed 
provider contexts. The context engine can use such 
historical context information, with reliance on basic 
temporal and spatial locality principles to support its 
context derivation. For example, the provider’s attendance 
of a meeting regularly for the past month during a specific 
time is a very good indicator that the provider will 
continue to attend such meetings, probably at the same 
time in the near future.  
Eventually, the gathering of low-level context information, 
and the inference of macro-contextual information is only 
useful if it can be used. Context elicitors are entities 
interested in obtaining context-related information about 
various providers. An elicitor may be a provider itself, or 
any other entity. Not only can elicitors obtain macro 
contextual information, but they can also receive lower 
level context information about providers, such as a sensor 
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detecting the proximity of a user.  

4. The Providers 

Every context-aware system is composed of various 
sensors of different types. In [13], sensors are divided into 
physical, virtual, and logical sensors based on the 
functionality of each. However, the most obvious 
examples of sensors are those physical sensors that are 
capable of providing information about various physical 
entities within the system.  
Examples of physical sensors include location sensors, 
proximity sensors, biometric sensors, and magnetic card 
readers. The author in [13] also continues to describe 
virtual sensors as those sensing information from virtual 
worlds such as networks, or operating systems, and logical 
sensors that infer information from both physical and 
logical sensors.  
In this system, we introduce the notion of a provider. A 
provider is any entity providing sensors with information. 
The provider itself could be either physical or logical. 
Examples of physical providers include humans walking 
down a corridor and being sensed by proximity sensors, or 
the same humans swiping their badge into a magnetic card 
reader, or even performing a retinal scan to access a 
secured environment. On the other hand, logical providers 
can include operating systems sending a system overload 
alert, or a network providing its traffic status. In either 
case, providers, whether physical or logical, provide 
various sensors with information about their status. 
As such, any sensor, irrespective of the type of the sensor, 
detecting information associated with a given provider 
will then generate a raw state for the provider. The raw 
state, as shown in Figure 2, will minimally consist of a 
timestamp, an identification of the sensed provider, and a 
predicate describing both who was detected and the type 
of detection itself. The predicate itself is described later. 
The raw state information about the provider is then 
immediately registered at the aggregator.  

 

Time Stamp Sensor ID Context Predicate 

Figure 2 Generated Raw State 

 
Given many such providers in a system detected by 
different kinds of sensors, the aggregator will always 
contain up to date low level information about the existing 
providers. Figure 3 illustrates the data flow of how state 
information of some provider is generated and relayed to 

an aggregator. The provider walking down a hallway for 
example is detected by a proximity sensor. As a result of 
such detection, the proximity sensor will generate raw 
state information associated with the detected employee, 
and will relay such raw information to the aggregator. The 
aggregator will then use, at a later stage, such information 
to generate macro contextual information. 
 
 

 Detection 

Raw State 

Proximity 
Sensor 

John Doe 

Aggregator 
 

Figure 3 Raw State Aggregation  

5. The Predicates 

The usage of predicates in this system is of great 
significance. As previously stated, a raw state propagated 
from an existing sensor and registered at an aggregator 
contains as a minimum, a timestamp, an identification of 
the sensed provider, along with a predicate describing the 
state. The usage of predicates provides a simple and 
uniform representation for different kinds of raw contexts 
that can then be easily used by the context engine to 
generate macro contextual information. 
 
A predicate is of the form: 

 
(<Subject>, <Verb>, <Object>) 

 
The subject above is the identifier of the provider, and the 
object is the identifier of the sensor detecting an action 
related to the subject in one way or another. If the provider 
cannot be identified, the subject is simply “null”. The type 
of action detection is dependent on the type of the sensor. 
Motion sensors detect motion actions; sound sensors 
detect sound related actions, and so on. The verb on the 
other hand describes the sensing activity itself. Currently, 
five common types of actions to be monitored are 
identified, namely related to: 
 

 Motion detection. 
 Sound detection. 
 Proximity detection. 
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 Location detection. 
 Pressure application detection. 
 Pressure release detection. 

 
Table 1 illustrates the various actions, and their 
corresponding verbs to be used in the predicates. 

 
 
As an example, a provider identified as John and detected 
by a proximity sensor located in the Room1 will have the 
following predicate generated by the proximity sensor:  

 
(John, CloseTo, Room1) 

 
The subject is the provider identification, the verb is 
highly dependent on the sensor type, which happens to be 
a proximity detector in this case, and the object signifies 
the sensor name, and with proper naming, one can signify 
what the proximity detector references. As another 
example, a location detector, which is different than a 
proximity detector, detecting the exact presence of John in 
Room1 will have a predicate generated as follows: 

 
(John, In, Room1) 

 
Of course, detecting a location of a user in itself may be 
performed by a logical sensor, since location detection 
may require the presence of multiple sensors in itself. The 
same applies to other types of sensors also. 
The usage of a general and simple form for a predicate as 
indicated above provides an easier processing of the 
predicates themselves, along with providing a uniform 
representation of predicates, independent of the various 
sensors.  

6. The Aggregator 

As indicated earlier, the aggregator(s) constitute the focal 
point of distribution of macro-contextual information of 
various providers in the system. Various sensors in the 
network continuously forward raw state information about 

providers to the aggregator. The aggregator will then add 
the raw states to its collection. 
A context engine assists the aggregator in generating 
macro-contextual information about various providers 
from the set of raw states available at the aggregator itself. 
The context engine uses user-defined policies that indicate 
how the transformation should happen from a set of raw 
states to a higher level representation of provider context 
with a given confidence level. The context engine will be 
explained later in this article.  
At any point in time, a context elicitor can query the 
aggregator to obtain either raw context information or 
macro contextual information about a given provider or 
providers. Macro-contextual information about providers 
contain a given confidence level that indicates to the 
elicitor to what extent the aggregator believes that this is 
the proper context of the provider.  
As an example, raw states of a given provider may 
indicate that the provider has entered a meeting room, that 
the provider is present along with two other people in the 
same room, that a sound is detected from the meeting 
room, and that a projector is activated. According to a 
general form of a policy set by the user, the aggregator can 
conclude with the help of the context engine that the given 
provider is in a meeting, and with a given confidence level.   
As raw states and calculated macro-contextual information 
is stored in the aggregator, and as this information 
becomes irrelevant to the immediate time, the aggregator 
will need to archive such information. Periodically, the 
aggregator will archive raw states, as well as generated 
macro-context states in the context repository.  

7. Policies and the Policy Repository 

Policies reside in the policy repository. Such repository is 
continuously queried by the context engine to allow the 
engine to determine how to compute macro-contexts. 
Context related information is then sent back to the 
aggregator, thus signifying the latest up to date macro-
context of a given provider. 

7.1 The Need for Policies – an Example 

As an example, a user, which we call a provider here, 
roams around a building and is continuously detected by 
various types of sensors distributed around the building. 
Raw information about the user is therefore collected by 
various sensors within the building. The objective is to 
create a policy capable of identifying a macro-context 
associated with the provider. In other words, high level 
questions of the following type need to be answered: Is the 

Table 1: Supported Actions and Corresponding Verbs 

Action Type Predicate Verb 

Motion Detection MoveBy 

Sound Detection HeardBy 

Proximity Detection CloseTo 

Location Detection In 

Pressure Application Detection Pressured 

Pressure Release Detection Released 
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provider currently in a meeting? Is the user evacuating the 
building during a fire drill? Is the user on lunch break? 
Not only should the system provide answers to such 
questions with an affirmation or negation, but should 
rather indicate a confidence level associated with its 
answer. In other words, the provider is in a meeting with a 
confidence level of 0.9, where the maximum confidence 
level is a 1.  
The definition of various policies directs the context 
engine as to how to generate answers for such questions 
such as the ones indicated above. As an example, a 
meeting policy is created that states the following:  

 
• If three or more proximity sensors around a specific 

meeting room detect the presence of the provider. 
• If one or more different other providers are 

detected also in the same meeting room. 
• If one or more audio sensors surrounding the 

meeting room detect noise, or more intelligently at 
a later stage, a human conversation. 

• Then according to such policy, it can be concluded 
that the provider is in a meeting at a specific 
location identified by the various sensor locations. 
 

However, determining the presence in a meeting is not 
sufficient; the question to be asked further is, with what 
level of confidence is the user in a meeting? Various 
confidence levels are thus associated with each component 
of the policy. All confidence levels must sum up to a 
system defined maximum of 1. Table 2 below shows the 
association of various confidence contributions to the 
example indicated above. The detection of proximity 
surrounding the meeting room itself contributes with a 
confidence level of 0.5. The detection of other providers in 
the same room contributes to a confidence level of 0.3, 
and the detection of noise contributes to a confidence level 
of 0.2. All of the contributions should add up to a system 
defined maximum of 1. 

 
If no confidence levels are specified, the various 
components will assume equal contributions to the overall 
evaluation of confidence. If only part of the confidence 
contributions are specified, and the rest are not, the 

unspecified contributions will assume equal values of 
whatever remains to achieve a maximum contribution of 1 
by all policy components. 

7.2 Policy Representation 

As shown in Figure 4, policies stored in the policy 
repository are represented using exactly one context node 
and one ore more policy nodes. A context node identifies 
the type of macro-context to be computed such as a 
meeting, while the policy nodes determine the various 
components contributing to the evaluation of the macro 
context itself. Each policy node in itself may be either 
simple or compound. A compound policy node may 
require the evaluation of another macro-context, and thus 
as shown in the figure below, the policy node may be 
linked to another context node with its associated policy 
nodes. A context node and its policy nodes are represented 
using linked lists. 
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 … Context  
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Policy  
Node 

Policy  
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Context  
Node 

Policy  
Node 

Policy  
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Figure 4 Policy Representation 

The policy repository itself may be composed of 
multitudes of user defined policies as such. Each policy 
will have its usual context node and policy node(s) 
representation to store information associated with the 
policy as shown in Figure 5.  
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Figure 5 Policy Repository 

 
Figure 6 shows the internal structure of a context node, 

Table 2: Policy Confidence Level Contributions 

Policy Component Confidence Contribution 

>=3 Proximity Sensor Detections 0.5 

>=1 Association 0.3 

>=1 Audio Detection 0.2 

∑ 1 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007 
 

 

84 

 

and the corresponding policy node. A context node is 
composed of a name identifying the macro-context, while 
each policy node is composed of an action type, an 
occurrence, a relation, and a weight. Each context node is 
associated with multiple policy nodes. 

Context Node 

Name 

Policy Node 

Action Type 

Occurrence 

Relation 

Weight 

 

Figure 6 Context and Policy Nodes 

 
The action type field: such as a “proximity detection”, or 
“audio detection”, signifies the type of sensor detection 
required for this policy component to be valid. For 
example, a proximity detection action type indicates that 
proximity detection is required for this macro-contextual 
evaluation.  
 
The occurrence field: is a numeric value indicating the 
quantity of action types required for the evaluation to be 
valid. An occurrence value of three for example, and an 
action type of “proximity detection” does not necessarily 
mean that exactly three proximity detections are required, 
but rather, it is up to the relation field to determine 
whether we need exactly three, more than three, more than 
or equal to three, less than three, or less than or equal to 
three.  
 
The relation field: contains one of five relational 
operators: <, <=, >, >=, or == to determine along with the 
occurrence field how many occurrences are needed for this 
policy rule to be satisfied. 
 
The weight field: indicates the contribution of this policy 
node to the overall evaluation of the macro context. For 
example, proximity detection as indicated in this policy 
node may contribute 0.5 to the overall evaluation of this 
context.  

7.3 Policy Example 

As an example shown in Figure 7, the determination 
whether a provider is in a meeting or not, and as indicated 
earlier, may, according to this example be determined 
according to the following weights (that sum up to one):  

 
• If three or more proximity sensors around a specific 

meeting room detect the presence of the provider, 
with a weight of 0.5. 

• If one or more different other providers are 
detected also in the same meeting room, with a 
weight of 0.3. 

• If one or more audio sensors surrounding the 
meeting room detect noise, with a weight of 0.2.  

 

Context Node 

InMeeting 
(x,room) 

Policy Node  

CloseTo (x,room) 

3 

>= 

0.5 

Policy Node  

In (*,room) 

1 

>= 

0.3 

Policy Node  

HeardBy (*,room) 

1 

>= 

0.2 

 
Figure 7 Context and Policy Node Example 

 
As shown in Figure 7 above, the context and policy node 
construction is composed of a single context node with a 
name “InMeeting”, which operates on some provider “x”, 
and location “room”. The purpose of this context node is 
to show the policies determining whether provider “x” is 
in a meeting in a location “room”.  
According to the example in Figure 7, there are three 
policy nodes created. Each policy node contains an 
“Action Type”, an “Occurrence”, a “Relation”, and a 
“Weight”. The first policy node identifies the first rule of 
the example, namely whether three or more proximity 
sensors around a specific meeting room detect the 
presence of the provider, with a weight of 0.5. The 
“Action Type” for this policy node is populated with 
“CloseTo(x,room)”, the “Occurrence” is populated with 
“3”, the “Relation” is populated with “>=”, and the weight 
is populated with “0.5”, thus indicating that more than 
three proximity detection should be found for x, and that 
this policy in itself contributes 0.5 of the overall weight. 
 Similarly, the two other policy nodes are created with 
“Action Types” “In” and “HeardBy” to represent the 
remaining other two rules. The “*” in those policy nodes 
indicates the detection of “any provider”. For example, 
“In(*,room)” indicates the detection of “any provider” in 
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the given “room” with an occurrence of >=1, and a 
contribution of 0.3.  

7.4 Compound Policy Nodes 

Compound policy nodes are those nodes whose evaluation 
depends on the evaluation of other policy nodes, either 
compound or simple. The support for compound nodes 
within this system facilitates the definition of policies and 
allows for a higher level of abstraction when defining such 
policies.  

8. The Context Engine 

The context engine within our system is the sole entity 
containing the logic capable of converting raw context 
information about a given provider into macro-contextual 
information. The context engine’s services are only 
available to the aggregator coupled with such context 
engine. When a context elicitor first issues a query to the 
aggregator asking a macro question about a given provider 
such as: Is the given provider in a meeting? Is the provider 
currently having lunch? Or a general question such as: 
What is the given provider currently doing? The query 
request is forwarded by the aggregator to the context 
engine coupled with such aggregator. The aggregator then 
utilizes the services of the context engine to answer such 
question. 
As a prerequisite, the context engine requires the presence 
of policy rules, along with the raw state information in 
order to come up with conclusive decisions regarding the 
answer to the submitted query. We can subdivide queries 
into two major types namely specific queries, and general 
queries as indicated above. 

8.1 Specific Queries 

Specific queries are usually simpler to answer. A specific 
query as indicated earlier could be of the form: Is a given 
provider currently in a meeting? When the context engine 
receives a query as such, the policy rule evaluation domain 
is significantly reduced. Query examples are indicated 
below: 

 
• The format of a query issued to check whether a 

provider identified as John is in a meeting in any 
room is of the following form:  

 
InMeeting(John,*). 

 
• If the query is intended to check if John is in a 

meeting in room1, the query if of the following 

form:  
 

InMeeting(John, Room1) 
 

In such case, it is obvious that the context node related to 
meetings should be traversed, its policy rules evaluated for 
the given provider, and the question about whether the 
given provider is in a meeting or not answered along with 
a calculated level of confidence.  
As shown in the flowchart in Figure 8, the context engine 
initially starts by locating the context node of the relevant 
policy rule related to the query being submitted. In this 
example, the query is related to presence in a meeting. If 
the relevant context node of the policy rule is found, the 
context engine is immediately capable of answering the 
question with a given level of confidence, given that 
corresponding raw state information for such provider 
exists. If the rule is not present however, the context 
engine is simply incapacitated from answering such query. 
The presence of policy rules within the policy repository is 
therefore crucial and a prerequisite for being able to 
answer such queries. 
After locating the context node for a meeting within the 
policy repository, the context engine then starts evaluating 
every single policy node associated with the context node. 
The action type of the policy node indicates to the context 
engine what kind of raw states to look for at the 
aggregator. If the action type is proximity detection, the 
context engine will attempt to locate proximity detections 
for the given provider being queried. The occurrence field 
along with the relation field indicates to the context engine 
how many such proximity detections for the given 
provider to look for. If the relation and occurrence in our 
example are “>” and “3”, this means that the context 
engine is looking for more than three occurrences of 
proximity detections. Once more than three are found, the 
context engine can safely stop evaluating this specific 
policy node. Furthermore, if the condition is also met, then 
the weight contribution of this policy node to the overall 
context evaluation is taken into consideration. If the 
condition is not met, the weight contribution of the policy 
node currently being evaluated is not taken into the overall 
evaluation of the context. The summation of weight 
contributions of all satisfied policy nodes is the overall 
confidence level. The weight contribution of each policy 
node thus signifies to a great extent how important that 
policy node is to the overall evaluation of the queried for 
context. 
 
 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007 
 

 

86 

 

N o  

Y es  

N o  

N o  

Y es  

Y es  

Y es  

S ta rt 

L o c a te  
C o n tex t  

N o d e  

C o n tex t  
N o d e  

F o u n d ? 

E v a lu a te  P o lic y  N o d e  
 u sin g  R a w  S ta te  In fo rm a tio n   

P o lic y  
N o d e  

S a tis fied ?  

A c c u m u la te  
P o lic y  

C o n trib u tio n  

M o re  
P o lic y  

N o d es?  

S to p  

R e tu rn  M a c ro  C o n tex t  
w ith  C on fid en c e  L ev e l 

 

Figure 8 Evaluating a Specific Query 

8.2 General Queries 

General queries on the other hand are relatively more 
demanding to evaluate. To answer a general question 
about the current context of a given provider requires an 
exhaustive evaluation of all relevant context nodes. Each 
context node is traversed, and its corresponding policy 
nodes evaluated. Eventually, each context node will have a 
corresponding level of confidence associated with it 
depending on the outcome of the evaluation of policy 
nodes within the context node itself. The contexts, along 
with their levels of confidence are then returned back as 
part of the query response itself.  
For example, given three policy rules are populated in a 
policy repository, namely for meetings, lunch, and 
evacuation. Given also that raw state information is 
gathered at the aggregator, a general query asking about 
the current context of a provider John Smith will return 

back with an output that looks similar to the following 
show in Figure 9: 

 

 John Smith is Currently 
 

In Meeting  Confidence 95% 
Evacuating  Confidence 60% 
At Lunch  Confidence 30% 

 
 

Figure 9 Sample Output of a General Query 

 
The services of the context engine are only available to an 
aggregator. Figure 10 below shows how a context elicitor 
first requests a macro-context from an aggregator, and 
how the aggregator invokes the context engine. The 
context engine on the other hand uses the data stored in 
both the aggregator (in the form of raw states), and that 
stored in the policy repository (in the form of policies) to 
evaluate the query.  
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Figure 10 Interactions for Query Answering 

9. Experimental Results 

We conducted implementation and experiments to 
determine the performance behavior of the system as 
policy rules became more complicated. As indicated 
earlier, a specific query submitted to the system will entail 
the evaluation of a single policy rule. Such policy rule is 
composed of a single context node describing the rule 
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itself, and a number of policy nodes.  
We measured the amount of time taken to fully evaluate a 
policy rule as we increased the number of policy nodes 
within the rule itself. Compound policy nodes are 
composed of a number of policy nodes also themselves. 
We started off with a single policy rule composed of one 
single policy node. We varied the number of policy nodes 
from one to thirty, each time adding a policy node to the 
already existing policy nodes. With each run, we measured 
the total time taken to evaluate the entire rule itself given 
the number of policy nodes composing that rule. We were 
not only interested in the amount of time taken to evaluate 
the rule itself, but rather the behavior of the evaluation 
time as the number of policy nodes increased.  
The results obtained in Figure 11 illustrate the total time 
taken by the system to evaluate the rule as the number of 
policy nodes ranges from one to thirty. The graph below 
illustrates that as the number of policy nodes increases, the 
rule evaluation time increases gracefully in a semi-linear 
fashion, that, which makes the system gracefully scalable 
in terms of rule size. Of course, the exact evaluation time 
highly depends on the type of policy nodes within the rule 
itself, but the semi-linear behavior of the system is 
illustrated below. 
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Figure 11 Behavior of Rule Evaluation Time 

 
Given the behavior of the system in evaluating specific 
queries as indicated in the figure above, more general 
queries will entail the evaluation of multiple policy rules. 
Figure 12 below shows the behavior of the system as 
multiple rules are evaluated to answer a given query. The 
same experiment as above was conducted, yet with 
increasing the total number of rules to be evaluated. The 
same semi-linear behavior of the system is exhibited, yet 
with an increased rule evaluation time proportional to the 
number of rules being evaluated.  
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Figure 12 Behavior of Multiple Rule Evaluation Time 

10. Conclusion 

Capturing context-related information poses itself as one 
of the fundamental aspects of building useful pervasive 
systems. In many scenarios, context-related information is 
either ambiguous or conflicting. In this article, we 
presented a policy-based framework to reduce ambiguity 
in context aware systems. Multitudes of sensors 
continuously capture the state of various providers 
roaming around a given environment, and generated raw 
states are forwarded to an aggregator. Well-defined policy 
rules, in the form of predicates, defining the interpretation 
of raw states are stored in a policy repository. Context 
elicitors can query about the status of various providers 
within the system, after which the aggregator invokes the 
services of a context engine to answer questions regarding 
the providers in question. The context engine utilizes the 
raw states at the aggregator, along with the various 
defined policy rules to infer a macro-context of the 
providers in question. Such macro-context is coupled with 
a confidence level indicating how certain the aggregator is 
in its context inference. Eventually, both raw-contexts and 
macro-contexts are invalidated and archived into the 
policy repository. Conducted experiments demonstrated 
the performance of the system as the number of policy 
nodes increased, and as the number of evaluated rules also 
increased. Our future work involves the utilization of 
historical context related information for increased 
ambiguity reduction. 
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