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Summary 

Face recognition has diverse applications especially as an 
identification solution which can meet the crying needs in 
security areas. Pose problem is a big challenge applying this 
technology under real world conditions. Appearance based 
approach was proposed. Face recognition was implemented 
by reconstructing frontal view features using linear 
transformation. Experiments on popular FERET database 
proved that the proposed method can cope with the head 
rotation roughly within half profile view. Compared with 
algorithms model based approaches, feature transformation 
method is not dependent on heavy computation and has 
merit of easy implementing in live conditions. Popular 
feature extractions, least square (LS) and total least square 
(TLS) solution in calculating were compared as well as.. 
Key words: 
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1. Introduction 

Face recognition, an effective biometric method, has 
diverse applications especially as an identification solution 
which can meet the crying needs in security areas. It 
involves image processing, pattern recognition, intelligent 
learning and so on. Considerable achievements of face 
recognition have been attained in recent years [15], but big 
challenges still remain, such as pose variation [15, 18].  

Many algorithms are developed to overcome pose 
effect. A mainstream is to generate frontal image from side 
view image inputted utilizing techniques in computer 
vision [6, 7, 8, 9, 10, 11]. Among these works, one way is 
model-based, such as 3D Morphable Model [6] or Active 
Appearance Model (AAM) [10] which tries to directly 
reflect geometric structure of subject’s head. Another way 
is to use affine transformation or wrap technology [8, 9] in 
virtual frontal image synthesis. Model based methods are 
powerful in posed face recognition, but fitting a face 
model for an input image is time-consuming. Some affine 
transformation technologies reduced computation in a 
great extent, but geometrical aligning input image to 
standard view model still needs sets of feature points 
which mainly marked by hand. Recently, Gross proposed 
Eigen Light-fields algorithm [11] by estimating light-field 
of the subject’s head from face images; but precise 
computation of plenoptic function is difficult. In one word, 
algorithms based computer vision are effective, but their 
disadvantages are also standout, especially many of them 

depend on heavy computation. It limits their applications 
under real world condition.  

Techniques based on face subspace analysis [16, 17] or 
statistical properties of face images are successful in 
frontal view recognition. With no time-consuming model 
fitting and too many fiducial feature points, these 
algorithms are more suitable for applications under live 
conditions. An early work of extending frontal view 
subspace recognition approaches to non-frontal view is 
Pentland’s multi-view work [17]. In multi-view subspace, 
all images are represented by view-dependent subspace 
corresponding to their pose and face recognition is 
performed within same view subspace. Apparently such 
multi-view recognition is duplicating of conventional 
frontal view works, associations between different poses 
are discarded. Murase and Nayar also proposed a generic 
object visual learning method which is called as 
parametric subspace work [16]. In parametric subspace, a 
unique subspace is used as feature extractor, objects are 
represented by their feature manifolds varying with pose, 
and face recognition is converted into manifolds 
identification. A recent face recognition work suing 
parametric subspace was reported in [19] of which 
identification is to compute the shortest Euclidean distance 
from a given feature point to the point on the manifolds 
corresponding with testing view. To form subject’s 
manifold utilizing B-spline interpolation technique, 
images at many different views are required [16, 19].  
Association between views is actually considered into 
these manifolds, but this consideration is quite redundant.  

A limitation of above two subspace algorithms is that 
client’s frontal and non-frontal face images are both 
required to enroll or form manifolds. It is too rigid for 
some applications where only frontal view images are 
enrolled conventionally, but the pose of probing image is 
usually uncontrollable. Recently some scientists have 
turned their attentions to extending statistical work to face 
recognition under similar scenarios, such as [11, 22].  

In this paper we simulate the scenario of applications 
that frontal view images are used for gallery and only non-
frontal view images are available for probing. We develop 
a subspace analysis method of face recognizing across 
poses based on the idea of transformation matrix. To focus 
our attention on feature transformation, we also suppose 
that each image’s pose has been given out (by a pose 
estimator) at present. Different pose estimators could be 
found in [10, 19, 25]. Experiments show that transformed 
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feature is equal to face recognition across poses with a 
large rotation.  
The rest of paper is organized as follows. In Section 2, we 
explain our feature transformation method. In Section 3, 
transformation matrix is generated by solving equations 
composed of feature vectors. Different feature extractions 
are then introduced in Section 4. The experimental results 
are reported in the followed section. Discussions are given 
in Section 6 finally. 

2. Linear Transformation matrix 

Human has capability to associate stranger’s photos 
under different poses together. The fact shows that 
correlation between views is helpful to improving posed 
face image recognition. Recent work [11, 21] has proved 
this from the point view of statistics. Traditional subspace 
recognition, such as Eigenface [20] or Fisherface [5], is 
actually view-dependent due to images at the single 
(frontal) view are used to train the representations. When a 
posed image is represented by the frontal view subspace, 
wrongly image representing will lead to system’s failure. 
By introducing additional view subspaces, Pentlad et al. 
[17] avoided wrong image representation. To accomplish 
face recognition across poses successfully, we train the 
similar view-dependent subspaces as [17].  

Thus, the key issue is to learn correlations between 
views which were discarded in the early work [17]. 
Because only frontal view images are available in 
enrollment procedure, knowledge on the correlations must 
be learned from separate training data, which can be 
collected quite freely by imaging a group of people under 
simulated applying conditions before set up a recognition 
system. We call this partition of images as generic training 
set. The scheme of our transformation work is illustrated 
Fig. 1. 

In generic training set, subjects’ one frontal view and 
one side view images comprise image pairs; they are used 
to train two view-dependent subspaces respectively. 
Images in the same pair are taken as simultaneously as 
possible. VF = {vi

F| i = 1, 2, …, N} and VP = {vi
P| i = 1,2, 

…, N} are projections of frontal and profile view images 
on their corresponding subspaces. Superscript “i” denotes 
the projection of images in the i-th pair, N is total image 
pair number. We suppose that frontal view vectors VF 
could be recovered from side view vectors VP by a 
transformation T: 

)( PF VTV =                                     (1)   
Generally speaking, transformation denoted by Eq. (1) 

is non-linear. But a linear transformation is more preferred 
because linear transformation is convenient for problem 
description and well researched by scientists in different 
areas. Fortunately, different works have proved that linear 

transformation could give out satisfying results. Lanitis et 
al. [12] have showed that linear model is sufficient to 
simulate considerable pose variation as long as overlap 
does not seriously take place. Based on the theory of linear 
class [23], Beymer et al. [8] have proved that frontal view 
information can be recovered from side view images 
utilizing the prior information learned from images at 
several example views.  
 

 

Fig. 1. A flow chart of the proposed approach. 

For linear transformation, matrix W connects frontal 
view and side view feature vectors together:  

) ..., , ,() ..., , ,( 2121 N
PPP

N
FFF vvvWvvv ⋅=                  (2) 

F
kk

T
P vwV =                                          (3) 

where wK and vF
K are the k-th column vector of WT and VF

T 
respectively. (⋅)T denotes matrix transpose. We call W as 
transformation matrix. Eq. (2) or (3) could be treated as 
matrix equations which can be resolved by means of linear 
algebra [24]. Once Eq.(2) is resolved, a probe feature 
vector in side view subspace, vtest,  can be converted into 
frontal view subspace by the following Eq. (4). Then 
recognition will be performed in frontal view subspace 
using transformed feature v’

test.  
testtest vWv ⋅=′                                  (4) 

3. Equation solving and similarity metrics 

3.1 Least Square solution 

The solution of Eq.(3) depends on property of the 
coefficients matrix, a detail of derivation could be found in 
[24]. Because we trained two independent subspaces, 
generally rank(VP

T | VF
k) ≠ rank(VP

T). For face recognition, 
VP

T is a N-by-m matrix, N is the total image pairs in 
generic training set and m is dimensionality selected in 
each recognition experiment, generally N > m. So, Eq. (2) 
is a inconsistent and over-determined system of linear 
equations which is exactly unsolvable. According to 
theory of matrix, inconsistent system has approximation 
solutions under 2-norm constraint, which is called least 
square (LS) solution.  LS solution minimizes square error. 
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                           (5) 

where ||·|| denotes Euclidean norm. Among least square 
solutions, an optimum approximation solution is minimal 
linear least square solution. A particular optimum solution 
of Eq. (2) is expressed as: 

)()( T
F

T
P

T VVW ⋅= +                          (6) 
(VP

T)+ is the Moore-Penrose pseudoinverse of VP
T which 

could be calculated by means of singular value 
decomposition (SVD). 

3.2 Total least square solution 

In above LS solution, one question we have actually 
not answered. Whether there are some noises in the feature 
vectors in Eq. (3)? In another words, we treat VF

T and vF
K 

as precise measurements in above section. A more general 
and reasonable situation is there are some noises in sample 
images. Algebra mathematics tells that LS solution of Eq. 
(3) is unbiased only if there is no noise in Eq. (3) or noise 
is only in the right hand of Eq. (3). When both hands of 
equations are contaminated, LS solution will no longer be 
the optimal solution from a statistical point of view and LS 
approach should be replaced by the total least square (TLS) 
which is a generalized least square technique [1, 2, 24]. 
TLS technique for an over-determined system tries to 
compensate for arbitrary noise in both sides of equations 
using perturbations.  Such solutions can be derived by 
Lagrange multipliers directly form the problem definition 
or by use of SVD. For equation 

ebxEA +=+ )(                                       (7) 
where E and e are noise evolved into both sides of 
equation Ax = b, an equivalent form of above equation is: 

  0)( =+ zDB                                          (8) 
B=[-b, A] and D=[-e, E] are augmented matrix and 
disturbing matrix respectively.  Equation of which form is 
same with Eq. (8) has a TLS solution expressed as [24]: 

⎥
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where v is the right singular vectors of augmented matrix 
B, and v(i, n+1) is the entry of v located in i-th row and 
(n+1)-th column. 

3.2 Comparisons on LS and TLS 

TLS solution of Eq.(7) can also be expressed 
algebraically as the following [1, 2, 24]: 

bAIAAx T
n

T
TLS

+
+−= )( 1σ                      (10) 

In above expression, σn+1 is the smallest singular value of 
matrix B. The above Eq. (10) shows that TLS is a kind of 

LS methods which eliminated noise factor, σn+1I, 
introduced by matrix A.  

Theorem: if B is m × (n-1) matrix by deleting one 
column from m × n matrix A. σA and σB are .the smallest 
singular value of two matrix respectively, then σA <  σB 
[24]. 

For face recognition, feature matrix VF or VP with 
different dimensionalities in Eq. (3) is equivalent to 
deleting some rows from feature matrixes in full subspace. 
When dimensionality increases, the portion subtracted 
from Eq. (10) becomes smaller. So it was expected that 
TLS will trend to LS solution when selected subspace 
augment to full subspace: 

nmLSTLS xx →⎯→⎯                              (11) 
 

4. Feature Extractions 

4.1 Feature Extractions Used in Experiment 

Popular feature extractions, i.e. principal components 
analysis (PCA) [20], linear discriminant analysis (LDA) 
[5] and independent components analysis (ICA) [3] are 
used in our experiments.  

PCA, which is closely related to the Karhunen-Loeve 
Transform (KLT), is a Maximum Expression Feature 
(MEF) extraction and widely used in data reduction and 
image reconstruction. ICA, a generalization of PCA [3], is 
derived form blind sources separation and its components 
are designed to be non-Gaussian. We executed ICA using 
fix-point fast ICA calculation algorithm [4] on Bartlett’s 
[3] “Architecture One”, where images, not pixels, are 
treated as independent random variables.  

Linear discriminant analysis (LDA), also known as 
Fisher linear discriminant (FLD), is a Maximum 
Discriminating Feature (MDF) extracting method. It can 
distinguish within-class and between-class scatters. 
However, a drawback of LDA is larger number images per 
subject are required for training to ensure a good 
generalization, otherwise, “small sample size (SSS)” 
problem is encountered and recognition score will be 
deteriorated. Various revised LDA algorithms, i.e. 
Regularized-LDA [14] we used besides traditional LDA in 
present work, are developed to overcome the SSS problem.  

4.2 Subspace Selection 

Carefully selected subspace could enhance Signal 
Noise Ratio of the representation. Before calculating the 
transformation matrix, it needs further select a subset of 
dimensions from full subspace learned by different 
methods. Subspace selecting criteria we taken in present 
work is base on discriminability of each dimension in 
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itself subspace. PCA and LDA-based subspaces could be 
selected conventionally according eigenvalues of their 
basis vectors in solving the eigen problems. ICA basis 
vectors have no such special order. We calculate 
discriminability of each IC on the generic training data, 
subspace spanned by top discriminibale ICs is selected 
what was suggested in [3]. 

5. Experimental results 

5.1 Database and Experiment Setting 

FERET database [22], which is a standard database in 
this area, was used to evaluate our algorithm. The merits 
of the large scale and plenty of side views in b-subset of 
FERET make it possible to explore more characters of the 
proposed approach.  

For LDA based subspace requires two simples each 
class to train the representation, images in right-side views 
were mirrored to their corresponding left-side views, 
frontal view images were same mirrored. Thus there are 4 
side-views remained (two full profile views are discarded 
for serious overlap), but two images for each subject are 
available under each of poses. The inter-oculars distance 
was set identical before all images were aligned according 
to their eyes coordinates. Then they were cropped into a 
size of 131-by-181 (row-column) pixels. Histogram 
equalization was applied to reduce illumination effect (Fig. 
(2)). 

 

Figure 2. Samples of FERET database. From left to right roughly are:      -
60(bb), -40(bc), -25(bd), -15(be), 0(ba, front), 15(bf), 25 (bg), 40(bh), 
60(bi) degrees. The first row is snapshots of original images in database; 
the second row is normalized images in size of 131-by-181. 

Training set and test set are separate. The database was 
firstly divided into two portions according to subjects’ 
identities. The first portion was selected as generic 
training set, bases of feature subspaces and transformation 
matrixes were learned from this part of data. The 
remainder, test set, was further divided: all frontal view 
images were used as gallery set and non-frontal images 
were used as probe set. To minimize errors attributed to 
the database itself, all experiments were “leave-one-out” 

test by dividing database into 40 smaller parts. The 
simplest Nearest Neighbor (NN) classifier was used in our 
experiments. 

5.2 Experimental Result 

To explore transformation recognition rate, both 
training and test set had a size of 100 persons.  

In the first experiment, two different solution, LS and 
TLS solution were compared. It was found that LS 
solution is more stable than TLS. One of such results on 
15 degree (“be” subset) view was illustrated in Figure 3. 
As expected in Section 3, when selected subspace was 
nearing full, two solutions gave out same recognition 
score. But TLS was not superior to LS solution in the most 
selected dimensionalities except some low dimensions: in 
the case of dimensionality was less than 25, TLS method 
gave out higher scores about three to five percent than LS; 
from 25 to roughly 65, approximation error of TLS 
solution and corresponding recognition rate had an 
oscillation. This phenomenon may due to that TLS is 
based on assumptions of noise distribution but such 
assumptions are too rigid for present application. Before 
full information on noise was known and LS solution is an 
ideal choice. Only LS solution was used in following 
experiments for this reason. 

 

Fig. 3. A comparison on TLS and LS solution in transformation matrix 
calculation using PCA representation. Approximation error has divided 
by a constant for convenience. 

Face recognition rate across different poses was tested 
in the second experiment, four feature extractions and 
different metrics were compared as well (see Table 1). 
From the experiment, it concluded that the proposed 
transformation matrix improved recognition rate in all test 
side views. Within 45 degrees, the scores were satisfying, 
but the converting ability of Matrix W decreased as face 
turned away from frontal view. Euclidean distance (ED) 
had average performances across different feature 
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extractions and was the best metric for PCA. Angle 
measurement (noted as AD, also known as normalized 
correlation or cosine) had similar performances and they 
were more suitable for LDA-based feature extractions.  
 To improve performance of ICA, PCA was used as 
data reduction prior to it. In such experiment on “be” 
subset of FERET database, the top score of 90.2% was 
attained at the PCA dimensionality is 75 or 80. Less than 
half ICs were calculated, and the scores were higher than 
the one obtained without PCA data reduction (refer to 
Table 1), for some noise was eliminated in data reduction.  

 

Fig. 4. Dependence of Recognition rate (solid line) and approximation 
error (dot-line). Arrows points out the maximum recognition rate. For 
clarity, only ICA (thick lines) and PCA (thin lines) feature are illustrated, 
the other features have same dependence. Two approximation errors have 
divided by different constants respectively for convenience in drawing. 

Different dimensions contribute differently to 
recognition. To test this property, different dimensions 
form several to full subspace were selected, transformed 
recognition score and approximation error (see the right-
hand of Eq. (5)) were same time calculated, see Figure 4. 
It showed that the some lower order dimensions contribute 
more for transformation recognition than higher order 
dimensions. The case was similar to conventional frontal 
view recognition. There was certain relation lying between 
transformation recognition and approximation error when 
different dimensions were selected. Though more 
dimensions gave out more accurate image representing, 
larger selected subspace not produced less approximation 
error before a maximum approximation error occured. 
After the maximum error arrived, the highest recognition 
score followed. We argue that such a phenomenon could 
be looked as a clue to subspace selection in transformation 
recognition. The reason may be derived from 
approximation in equation resolving and different weigh 
of each dimension in transformed feature recognition. 

In the last experiment, test set kept a size of 50 persons 
while the size of generic training set varied. The respective 
best similarity measurements for different features are 

used (see Table 2, only result on ‘be’ subset is given out). 
Recognition rate depending on scale of training data was 
learned. Credible transforming performance was attained 
when size of generic training set and test set were equal 
(this is the case of the former experiment). However, 
training data with larger scale brought more satisfactory 
scores due to the statistical inherence of the method. As 
the size of training set reaches triple, the R-LDA feature 
gave out a top score similar to what ICA or PCA feature 
gave. This indicates the fact that training set with larger 
size should be employed to train LDA-based 
representation and transformation matrix.  

6. Conclusion and Discussion 

Based on above presentation, It concluded that 
proposed feature transformation work was an effective 
solution for recognition across poses. Comparing our work 
with others, two typical computer vision based works [6, 9] 
were listed in last two rows of Table 1. They all used 200 
subjects’ image to test their algorithm. In our experiment, 
100 subjects’ images were used to evaluate the proposed 
feature transformation recognition. Because different 
works differed in experiment setting and image 
preprocessing, it is hard to do comparison directly. 
Nevertheless, such comparison gave some reference. It 
showed that 3D model [6] was powerful in all tested views 
and there was only five percent score decreased when 
probe view turned from near frontal to near full profile. 
The reported affine transformation work [9] was also 
satisfying in 15 degree view, but it deteriorated with pose 
quickly. Within 45 degree pose rotation, the proposed 
approach still was comparable with others. It must be 
pointed out that the proposed work is basically real-time 
and also do not depend on too many fiducial points. 

So far, we took the linear transformation assumption. 
The recognition rates were not high enough when pose is 
out of 45 degree. The reason is that overlap could not be 
ignored and the linear assumption was broken when face 
turned far away from the front. In such case, 3D-model 
based approaches are more suitable. We have observed 
that different    dimensions     contributed    differently   to    
feature transformation; a more elaborate subspace 
selecting strategy shall improve performance of 
transformed recognition. As for TLS solution, its property 
should be explored fully on the other database. In addition, 
if nonlinear part and more sophisticated classifier were 
concerned, near frontal view face recognition would be 
further improved. All above will be our future work. 

We noticed that similar linear transformation matrix 
was used to generate virtual frontal image using PCA-type 
features in [13]. In present work, face recognition was 
directly performed on transformed features without image 
synthesis; also our experiments showed Maximum 
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Discriminant Feature (MDF), such as R-LDA feature, has 
the same performance with Maximum Expression Feature 
(MEF), such as PCA features. It also proved that image 
synthesis was not necessary. Furthermore, different 
solutions as well as some properties of transformation 
matrix were also explored. 
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Table 1. Recognition rates on the FERET database. Numbers in brackets 
denote the dimension of subspace where corresponding score achieved. 
“Dir.” means directly recognition; “trans.” denotes the transformed 
recognition. 

   be(15º) bd(25º) bc(45º) bb(60º)

LDA Dir. ED 1.0 1.2 1.3 1.3
(99) Trans. ED 19.8 (98) 10.8 (96) 4.5 (99) 3.7 (78)

  AD 38.1 (99) 23.2 (99) 9.6 (99) 5.3 (78)

RLDA Dir. ED 1.5 1.2 1.3 1.3
(99) Trans. ED 86.4 (99) 74.9 (99) 47.7 (99) 28.1 (99)

  AD 87.0 (99) 78.1 (99) 52.0 (99) 29.3 (99)

PCA Dir. ED 7.6 2.18 1.30 1.25
(199) Trans. ED 90.3 (78) 83.6 (106) 63.2 (104) 35.4 (134)

  AD 88.9 (76) 82.0 (128) 61.4 (103) 39.0 (94)

ICA Dir. ED 1.13 1.13 1,15 1.15
(200) Trans. ED 89.1 (197) 82.2 (190) 60.1 (196) 34.1 (191)

  AD 89.1 (198) 82.1 (191) 59.8 (196) 34.2 (192)

Ref. 4   99.5 96.9 95.4 94.8

Ref. 7   77.5 55.5 N/A N/A

Table 2. Recognition rate (RR) varying with model set size (M-Size) on 
“be” part of FERET. Dimension of subspaces where best score occurred 
is in row of “dim”. AD-2 as similarity measurement for RLDA and ED 
for the others. 
M-Size  15 20 25 50 75 100 125 150

PCA RR 69.1 75.3 78.4 87.2 90.7 91.9 92.7 92.7
 dim 22 34 38 60 76 79 90 71

ICA RR 70.15 76.2 80.23 86.6 89.7 91.0 91.7 92.2
 dim 30 40 49 99 134 170 212 230

RLDA RR 55.7 61.6 66.6 82.6 88.9 90.6 91.8 92.3
 dim 14 19 24 49 73 99 124 149
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