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Summary 
In this paper, we present the estimation method of global motion 
parameters corresponding to 3D camera motion in the non-
stationary noisy situation. Total least squares problem is first 
formulated to represent the global motion parameters estimation 
procedure from the noise-corrupted image coordinates. Then, a 
recursive total least squares (RTLS) algorithm is proposed to 
estimate 3D camera motion parameters in image sequences. The 
algorithm is proposed based on a five camera parameter model: 
zoom, focal length, pan, tilt, and swing. In the experimental 
results, the efficiency of the proposed RTLS algorithm is shown 
by comparing its MSE and PSNR with those of the conventional 
linear algorithms. 
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Introduction 

Recently, the prominent trends in the video sequence 
coding are to achieve the various video services in Internet, 
multimedia communication, personal communications 
equipment [1]-[2]. Especially for the lower bitrate 
transmission, it is necessary to improve the motion 
estimation (ME) and motion compensation (MC) 
technique in video coding scheme.  

To this aim, many researchers have studied the 
estimation of global motion parameters for video sequence 
coding [5]-[17]. They have shown that the global motion 
compensation can improve motion prediction and remove 
the motion side information greatly. In particular, in the 
model-based video coding systems [4], [5], it is essential 
to exactly model the camera system and to accurately 
extract all the parameters from image sequences. 

Most of the existing camera motion estimations used 
for video coding applications can be divided into the 
nonlinear estimation [5], [15] and the linear estimation [6]-
[11]. Among them, the linear estimation method is mostly 
used due to its simplicity and fast computation.  This 
scheme is based on a simplification and approximation of 
a camera motion model under the assumption that the 
rotation angle is small enough and the focal length is 
sufficiently large. However, all of the existing linear 
methods suffer from the inevitable measurement errors 

such as spatial quantization errors, feature detector errors, 
and camera distortion. Furthermore, as the number of skip 
frames increases in low bitrate video coding, their 
performances decrease greatly since the simplified model 
is not appropriate for a large rotating images. To recover 
these problems, Kim and Kim [13] proposed mixed least 
squares - total least squares (MLS-TLS) method which can 
estimate the camera parameters such as the wide range of 
rotation and focal length.  

The total least-squares (TLS) method to the linear 
regression problem has been shown to result in unbiased 
parameter estimates in which both the data matrix and the 
observation vector are corrupted by noise [20], [22]. In 
TLS problems, when large symmetric matrices,  which 
usually have a dominant main diagonal and are sparse, are 
produced, one or more of their lowest eigenvalues and 
corresponding eigenvectors are required [28]. Specially, as 
the size of the matrices increases, TLS method needs an 
expensive computational load for computing the 
eigenvector and the large amount of memory. Therefore, it 
needs a fast algorithm for efficiently computing TLS 
solution. 

Another serious problem in the global motion 
parameter estimation is the performance degradation due 
to the disturbance of independently moving objects. 
Several researchers assumed that local motion can be 
regarded as matching noise whose distribution is supposed 
to be Gaussian as a stationary noise [5], [13], [18]. 
However, if there exist local motions or the undesirable 
matching errors, these errors seem to be non-stationary 
noise. Therefore, unlike what the conventional methods 
assume, these errors introduce a bias to the estimated 
parameter [4], [17]. In that case, they do not guarantee a 
good estimation. 

To overcome these problems, we propose a recursive 
total least squares (RTLS) algorithm which can accurately 
estimate the camera motion parameters in a non-stationary 
noise environment. In Section 2, we briefly present a 
linear motion parameter model which describes the camera 
motion such as zoom, focal length, and rotation. In Section 
3, a recursive total least squares algorithm for estimating 
the camera motion parameters are described. In Section 4, 
the performance of the proposed RTLS algorithm is 
evaluated.  
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2. Linear Motion Parameter Model 

2.1 Camera Motion Model  

Consider a situation where the features of an object 
are projected on the image plane and only these 
projections are known. Fig. 1 shows the geometry of 
camera motion in the 3D real world space.  

 

Fig. 1 Geometry of camera motion 

The scene is stationary while the camera is zooming and 
rotating in the 3D space. In perspective imaging, the 
relationship between the image coordinate (X, Y ) before 
the camera motion and the image coordinate (X’, Y’) after 
the camera motion is described [12], [13] as 

  

  (1) 
where F1, F2 are the focal lengths of the camera before 
and after zoom s = F2=F1, respectively, and rij for i, j = 1, 
2, 3 is an element of a 3D rotation matrix R which can be 
represented by successive rotations around the y-, x-, and 
z- axes of the camera coordinate system. The parameters 
of equation (1) are composed of five 3D camera motion 
parameters:  zoom factor s, pan angle α, tilt angle β, 
swing angle γ, and focal length F1. 

2.2 Linear Motion Parameter Model 

From (1), the observed image coordinate (X', Y') after 
camera motion is given [12], [13] as  
 

aU rr
H=           (2) 

 
Where TYXU )','(=

r
 , av  consists of the eight motion 

parameters  which are the function of the unknown 
camera motion parameters,  

(3) 
and H is a 2x8 matrix whose entities are functions of 

image coordinates (X,Y) and (X',Y') as 

(4) 
 
From (3), it is shown in [13] that the actual 3D 

camera motion parameters can be obtained as follows, 

(5) 

2.3 Motion Parameter Estimation Using Recursive 
Total Least Squares Algorithm 

In general, the coordinates of features can not be 
measured exactly in all practical situations [5], [13], [18]. 
The sources of errors in the image coordinates include 
spatial quantization errors, feature detector errors, and 
camera distortion. These errors result in the errors of the 
estimates of the motion parameters. In a system that is 
well calibrated so that systematic errors are negligible, 
errors in the image coordinates of a feature can be 
modeled by random variables. 

Let a random variable T
yx ),( δδδ =

r
 denotes the 

errors in the image coordinates measured from the 
previous procedure. First, we assume that the noise in the 
image coordinates has zero mean and known variance 2σ . 
For example, the spatial quantization noise can be well 
modeled by a uniform distribution with the range 
corresponding to the width of the pixels. The variance of 
the feature detector error can also be estimated empirically. 
We assume that the noises at the different points are 
uncorrelated, and the noises in the two components of the 
same coordinates are uncorrelated. 

Let the 2-D image plane vectors denote 
T

iii YXU )','(=
r

and T
iii YXV ),(=

r
, k∀  , respectively. 

If the measured points, 'ˆ,ˆ,ˆ
iii XYX and '

îY  have additive 

errors  
iii xyx ',, δδδ , and 

iy 'δ , respectively, for i=1,…,N, 

(2) can be expressed as 

(6) 
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where ii HHHi Δ+=ˆ .Here, iHΔ denotes the 

noise matrix of iH which is given by 
 

 (7) 
 
and  iÛΔ denotes the noise vector of iÛ which is 

given by 

(8) 
Given k point correspondences )ˆ,ˆ( ii YX  and   

)'ˆ,'ˆ( ii YX , ki ,,2,1 L= , the equation (6) can be 
expressed as 

(7) 
Where 

 
(7) is regarded as Total Least Squares (TLS) problem 

[20], [22] which is formulated as 

(8) 
where 

F
. denotes the Frobenius norm [19]. In [13], 

MLS-TLS method is proposed to solve the multiple linear 
regression problems. In our approach, a recursive 
algorithm is proposed for the efficient computation of the 
TLS solution. In the field of adaptive FIR system 
identification and coordinate relaxation, several 
researchers have studied the similar problems [26]-[29]. 

Define  

 
and 

The TLS problem in (8) can be rewritten as 

(9) 
As in [26],[29], the solution of (9)} can be regarded 

as solving the following generalized eigenvalue problem.  

(10) 
where D is a given symmetric nonnegative definite 

matrix as shown in Appendix A, and kR satisfies the 
Hermitian matrix which is defined as 

(11) 
where jr  is a 9x2 matrix defined as 

(12) 
It is known in [21], [30] that the above constrained 

minimization problem can beassociated with the 
equivalent minimization problem of Rayleigh quotient. 

 

(13) 
 
As a result, the minimization problem in (13) corresponds 
to the finding of the eigenvector kqr  associated with the 

smallest eigenvalue of kR . 

Given the previous eigenvector 1−kqr , we update it to 

obtain kqr  from 

(14) 
where kΨ  is a 9 x 2 correction matrix and 

T],[ 21 ααα =
r

. In the gradient method, kψ
r

 is chosen as 

the gradient of  )( kqrμ , which gives a poor convergence 

speed. In the Newton's method, kR  is chosen as a Hessian 
matrix of (13). But it is difficult to compute a second 
derivatives of (13) and guarantee positive definite of 
Hessian matrix in practical situations. 
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kΨ  is chosen to be the Kalman gain matrix, 

(15) 
In Appendix B, we divide the input matrix of (12) into 

the separate input vectors, that is, 

(16) 
First we select kr1

r
. Then, (14) can be reduced into  

(17) 
where $\vec{\psi}_k$ is the Kalman gain vector, 

(18) 
In order to reduce the computational complexity, we 

use the matrix inversion lemma [31] to update the Kalman 
gain.  

So, 1−
kR  is simply updated from the previous value. In our 

approach, it is easy to see that kR satisfies positive 
semidefinite because it is a real-valued symmetric matrix. 
In the presence of noise, the rank ( kR ) is generally full 
since the independent noises are added to the coordinates 
which are the elements of kR  and each coordinates before 
camera motion is measured at the distinct points. 

So, we assume that kR  is positive definite, that is, 

rank ( kR ) is full. 
Instead of  (14), substituting (17)  to (13) and 

differentiating with respect to a scalar α , the value of α  
can be found by minimizing the quadratic equation 

(19) 
where 

 
It has shown in [28], [30] that α  is always real, that 

is, acb 42 ≥ . Among the coefficients cba ,, , the 
quadratic forms are computed efficiently by using 

k
T
kkk

T
k rqRq rrrr

11 −− =ψ  and k
T
kkk

T
k rR rrrr

ψψψ = . Also,  

11 −− kk
T
k qRq rr

  can be computed simply as follows. 

The minimum value of )( kqrμ , )(min kλ can be obtained 
[30], [26] by 

(20) 
where  

 

 
 
As in [26], choosing the smallest root of (19), we 

obtain the update vector kqr  for (17). Once more, kqr  is 

updated by the above procedures for kr2
r

 in (16). Finally, 

the solution of ar can be obtained 

(21) 
where )(iqk is the ith element of the vector kqr . The 

proposed algorithm is summarized as follow. 
Algorithm 
 [Step 1] Permutation : qa rr

→  

 [Step 2] Initialize 0qr  and  0ψ
r

 
For k=1,…,N 
For m=1,2 

 [Step 3] Select input vector mkrr  

 [Step 4] Update mkkk rR rr 1−=ψ by using the matrix 
inversion lemma  

 [Step 5] Calculate α from (19) 

 
 [Step 6] kkk qq ψα

rrr
+=  

End 
End 

 [Step 7] Inverse permutation : aq rr
→  

 
For good initial guess, least-squares method with 

M(=8) corresponding pairs is used to find the initial 
parameter 
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(22) 
where  

 

  
if 0)det( ≠ΗΗT . The initial value of 0qr is set to 

1)1(0 =q and 8,,1for  ),()1( 00 L=−=+ iiaiq . This 

requires at least M input vectors until the rank of  ΗΗT  
is full. 

3. Experimental Results 

In this section, we show the experimental results on 
both the synthetic data and the real image sequences, 
respectively. 

3.1 Experiments with synthetic data 

The proposed RTLS algorithm is compared with the 
conventional linear least squares methods which are Y. T. 
Tse [7], A. Zakhor [6], and 6-parameter method [26, 
p.424], and with MLS-TLS algorithm [13]. The feature 
coordinates are randomly generated with a uniform 
distribution over the image plane coordinates. Random 
noise is added to each feature coordinate. Then, we have 
evaluated the average performance of the estimation 
method through 100 trials, where each has a new set of 
randomly generated feature points. 

In this simulation, the image size of $480 \times 704$ 
is used, which is CCIR601 TV signal format. The focal 
length 1F  and  2F  are set to 100 and 95, respectively. 

The rotation angle ),,( λβα is set to )0.0,1.0,1.0( ooo− . 
Each feature points are contaminated with additive 
Gaussian noise with a mean of zero and a standard 
deviation of 0.5. To evaluate the robustness of the 
proposed algorithm, we generated 20% noisy motion 
fields, which represents the matching errors caused by 
local motion or undesirable observation, by corrupting the 
synthetic motion field with additive Gaussian noise which 
has mean, -2 and standard deviation, 5. This results in that 
in general, the matching noise caused by local motion may 
be biased. We estimated the global motion parameters for 
these motion fields with the proposed algorithm and the 
existing linear least squares algorithms.  

To evaluate the performance of the parameter 
estimators, mean square error (MSE) is measured by 

(23) 
where ',uu rr

 is a point before and after the camera 

motion, respectively, 0ar  denotes the true camera 

parameter vector, and ear  denotes the estimated one. The 
average mean squared errors of the estimation methods are 
shown in Fig. 2. 

 

 
 
Fig. 2 MSE as the number of feature points varies 
 
From this figure, the proposed RTLS algorithm 

produces smaller MSE than the existing least-squares 
algorithm when there exist the moving objects as well as 
feature detector errors. 

Compared with MLS-TLS algorithm, the average 
performance of the proposed RTLS algorithm is shown in 
Fig. 3. 

 

 
 

Fig. 3 Estimation accuracy 
 
The proposed algorithm gives higher accuracy than 

MLS-TLS algorithm, and the proposed one is faster than 
MLS-TLS one as the number of feature points increases.  
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The computational complexity of the proposed algorithm 
is 9,2for   )62/5( 2 ==+⋅⋅ nNmnnm . But the 
computational complexity of MLS-TLS algorithm is 

3/84 3/22 3
1

2
1

3
2

2
2

32 nmnnmnnmn ++++−  for 

.7,2,9,2for  21 ==== nnnNm Note that MLS-
TLS algorithm consists of QR decomposition, TLS 
solution, and LS solution. Therefore, the computational 
complexity of MLS-TLS algorithm is larger than that of 
the proposed algorithm. In the aspects of memory cost, the 
proposed algorithm is more efficient than MLS-TLS 
algorithm. 

3.2 Experiments with real image data 

In this simulation, the proposed algorithm has been 
tested for real image data as shown in Fig. 4. The image 
size of 240 x 352 is used. The feature correspondence is 
established by using block matching algorithm whose 
block size and search range are set to (8, -15 ~ +15), 
respectively. 

As shown in Fig. 5, the PSNR of the proposed 
algorithm is higher than that of the conventional 
algorithms. 

 

 
(a) Previous Image 

 

(b) Previous Image 
 

Fig. 4. Table tennis sequence with the camera motion 
parameters: ),,,,( 1 sFγβα = 

)05.1 ,100 ,2.0 ,25.0,5.0( ooo −−  
 

 
(a) Frame difference (PSNR = 20.5060dB) 

 

 
(b) Tse's algorithm (PSNR = 30.4516dB) 

 
(c) MLS-TLS algorithm (PSNR = 36.4962dB) 
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(d) Proposed algorithm (PSNR = 36.6730dB) 

Fig. 5 Prediction error (x5) 

3.3 Experiments in the video coding 

In this simulation, the performance of the proposed 
algorithm is tested on the video sequences which contain 
global motion caused by camera motion and local motion 
caused by object motion. Therefore, a two-stage motion 
compensation (MC) technique is used in H.263 codec. 

In the first stage, the proposed global MC (GMC) is 
used to compute camera motion parameters and to 
construct a globally motion compensated frame. In the 
second stage, a globally motion compensated frame is 
used as the reference frame in local MC (LMC). The 
succeeding LMC method predicts remaining object motion 
as well as "model failure" regions which are the luminance 
regions that cannot be successfully predicted, such as 
shadows or new objects appearing in the scene.  

The coding structure used is IPPPP…, and the PB-
frames mode is not employed. Three-dimensional VLC in 
H.263 is used to encode indexes of quantized DCT 
coefficients. Quantization step size of the DCT 
coefficients is set to 15. VLC for motion vector is the 
same as in H.263 except that half-pel motion estimation is 
not used. 

For GMC, block size and search range are set to (8, -
15 ~ +15) and (16, -7 ~ +7), respectively. For LMC, block 
size and search range are set to 16, -7 ~ +7, respectively. 
In case of H.263, only LMC is used. The initial camera 
parameters can be obtained by the MLS-TLS algorithm 
[13] in first frame. For initial guess in first frame, all the 
rotational angles are set to zeros and zoom factor is set to 
1.  

The coding efficiency of the proposed MC method is 
compared with that of the MLS-TLS method and that of 
H.263. The test image sequences is 240 x352 SIF "Flower 
garden" sequence (44-90frames) whose frame rates are 15 
fps. 

Fig. 6 show the peak-to-peak signal-to-noise ratio 
(PSNR) of decoded pictures, the PSNR of globally motion 
compensated (GMC) pictures, the total bitrates of coded 
pictures, and the bitrates of motion vector only, and the 
number of iteration in estimation procedure. 

As shown in Fig. 6, the overall performance of the 
proposed method becomes considerably better than that of 
the conventional method [6,7] as well as that of H.263 
(LMC only) even in a large 3D rotating image. The total 
PSNR and bitrates of the proposed method are slightly 
better than those of the MLS-TLS method. 

In the view of GMC, the proposed GMC method has 
better performance in Fig. 6 (b). In the aspect of 
computational time, the proposed method significantly 
outperforms the MLS-TLS method as shown in Fig. 6 (d). 
The average number of iteration of the proposed method is 
1/3 of the MLS-TLS method. This implies that the 
proposed algorithm can accurately estimate the camera 
motion parameters by means of fewer iterations.  Thus, the 
computational effort can be reduced greatly in the 
estimation procedure. 

 

 
 

(a) PSNR of decoded pictures 
 

 
 

(b) PSNR of GMC pictures 
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(c) total bitrates 
 

 
 

(d) the number of iteration 
Fig. 6 The performance of the proposed method in 

the flower garden sequence 

4. Conclusions 

 
In this paper, we have described a recursive total least 

squares algorithm for estimating 3D camera motion in 
image sequences. The proposed RTLS algorithm is based 
on a five camera parameter model: zoom, focal length, pan, 
tilt, and swing. Specially, we have shown that the 
recursive total least squares algorithm for MLS-TLS 
problem can be applied to estimate the motion parameters. 
RTLS algorithm has an advantage in efficiently computing 
an eigenvector associated with TLS solution. The 
parameter estimation using the RTLS algorithm reduces 
the effect of the non-stationary noises greatly. It has been 
shown in the simulation that the proposed algorithm 
outperforms MLS-TLS algorithm as well as the existing 
linear least squares algorithms in the presence of 
measurement errors. 

The proposed method can improve the motion 
estimation accuracy in the video coding. The simulation 

result shows that the overall performance of the proposed 
method is considerably better than that of the conventional 
method. 

Appendix A 

We explain how to get D. In (7), the matrix 
]ˆ,[ˆ

21 HHΗ = can be divided into the two noise-free 

columns 1H and the other noise-corrupted columns  2Ĥ . 
It is easy to see that 3rd, 6th columns of HΔ  are all zeros. 
In some applications, the similar problems are solved by 
modified TLS method when some of the columns of the 
data matrix may be known exactly [23]-[24]. In mixed LS-
TLS problem, the closed-form solution can be interpreted 
as 

(24) 
as in [25], where  

 
*σ is a smallest singular value of ],[ 222 bRR  [13], and   

(25) 
Remind that the diagonal terms of Γ , correspond to 

the exactly known columns of  Ĥ , are zeros.  In (11), we 
get 9 x 9 matrix, .ΦΦ= TR  ],[ HU

r
=Φ  has the 

exactly known columns, 4th and 7th columns. Using the 
relationship between  (10) and the above properties, it is 
easy to see that  

(26) 
and D is a 9 x 9 symmetric nonnegative matrix. 

Appendix B 

We find α
r

by substituting (14) to (13) and 
differentiating with respect to 21,αα , respectively. From 

(14), .2211 kkk ψαψαα
rrr

+=Ψ  First, let 
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2212 kkk q ψαφ
rrr

+= − and, for fixed 2α , minimizing (13) 

requires setting its derivative with respect to 1α equal to 
zero. We get 

(27) 
where 

Then, for fixed 1α  and 1111 kkk q ψαφ
rrr

+= − , we get the 
following equation with respect to 2α  

(28) 
where  

As in [26], we choose the smallest root of (27) and (28) as 

(29) 
From upper equations, it is difficult to solve 1α  and 

2α  simultaneously. So, we can solve them alternately after 
one value is fixed. But it needs an expensive 
computational load. Therefore, we first solve 1α  for fixed 

02 =α , and then solve 2α  finally from the estimated 1α . 

This procedure means that if $\alpha_2=0$, kr2
r

, the 
second column of the input matrix in (12), is removed. In 
other words, it separates input matrix into each column 
vector and update the parameter kqr successively. As a 
result, the column vectors, consisting of the input matrix, 
are considered as each input vector, separately. 
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