
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007 
 
 

 
 

106

Manuscript received  February 5, 2007 

Manuscript revised  February 25, 2007 

A GIS-Based Design and Implementation Approach for 
Modeling Driver’s Behavior in Route Selection Using 

Fuzzy-Neural Networks 

 
Parham Pahlavani, Mahmoud Reza Delavar 

  
Center of Exellence in Geomatics Eng. and Disaster Management, Dept. of Surveying and Geomatics Eng., Eng. 

Faculty, University of Tehran, Tehran, Iran 

Summary 
For modeling a driver's behavior in route selection in outdoor 
situations we have two problems: 1-real situation is very often not 
crisp and deterministic and cannot be described precisely, 2-the 
complete description of driver's behavior in route selection often  
require much more detailed data than driver could ever recognize 
process, and understand simultaneously. In this paper we have 
designed and implemented a GIS-based fuzzy-neural approach for 
modeling driver’s behavior which represents the correlation of the 
attributes with the driver’s route selection. A recommendation or 
route fitness is provided to the driver based on a training of the 
fuzzy adaptive neural network on the main criteria of route 
selection such as length, time and the degree of difficulty. Tests of 
route selection for a part of North-West of Tehran traffic network 
are conducted and the results show the efficiency of the algorithm 
and support our analyses. 
Key words: 
Route selection, deriver’s behavior, fuzzy adaptive neural 
network(FALCON)  

1. Introduction 

Decisions are often evaluated on the basis of quality of the 
processes behind. It is in this context that geospatial 
information systems (GIS) and spatial decision support 
systems (SDSS) increasingly are being used to generate 
alternatives to aid decision-makers in their deliberations.  
Decision making itself, however, is broadly defined to 
include any choice or selection of alternative course of 
actions, and is therefore of importance in many fields in 
both the social and natural sciences including geospatial 
information sciences. 
Among so many implementations GIS, a GIS application 
for Transportation (GIS-T) has become an outstanding one. 
It is possible to state unequivocally that GIS-T has arrived 
and now represents as one of the most important 
application areas of GIS. 
Advanced Traveler Information Systems (ATIS) assist 
travelers with planning, perception, analysis and decision 
making to improve the convenience, safety and efficiency 

of travel. ATIS is one component of the Intelligent 
Transport Systems (ITS) that currently being developed to 
improve the safety and efficiency of automobile travel. 
Route planning is therefore an essential component of 
ATIS, aiding travelers in choosing the optimal path to their 
destinations in terms of travel distance, travel time and 
many other criteria. It is this multi-criteria aspect of route 
planning that we wish to tackle. 
For the first time, we outlined a GIS-based novel approach 
for using a genetic algorithm for urban multi-objective 
optimized route selection in static environment [1] and an 
innovative method that extends the previous novel 
approach in order to include driver's unspecified sites [2]. 
Although the above approaches proposed the quasi-optimal 
route by the driver's consideration for the importance of 
each route criterion, it is essential to say that none of them 
concerned the driver's behavior.    
It is believed that each driver has a set of route choice 
preferences. Very often, drivers would try to select the 
route which is optimum with reference to their preferences. 
In the other words, each quasi-optimal route may have an 
especial meaning for each driver, so it would be necessary 
to have a ranking route engine for proposed genetic 
algorithm in previous approaches in order to calculate the 
fitness of each route based on every driver's behavior and 
preferences.    
The objectives of this paper are to design a ranking route 
engine as follows: 

• It is a decision support system for route selection.  
• It can model the behavior of the drivers by storing 

their preference and previous choices. 
• It can adapt and learn from the recent decisions of 

the drivers. 
Each route candidate has a set of attributes. A GIS-based 
fuzzy-neural approach is used to represent the correlation 
of the attributes with the driver’s route selection. A 
recommendation or route ranking can be provided to the 
drivers based on a training of the fuzzy-neural network on 
the main criteria of route selection. This convenience is 
needed and may happen when planning a special trip on a 
particular day. It is used as a quick and convenient means 
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for drivers to specify their requirements to the routing 
algorithm. 
In section 2, related works are exhibited. The strategy for 
modeling deriver's behavior is outlined in section 3. In 
section 4, a method is proposed in modeling deriver's 
behavior. Experiments are presented in section 5, and 
finally section 6 is devoted to the results and their 
interpretations. 
 
2. Related work 
 
The use of fuzzy logic methodology in route selection was 
first proposed by Teodorovic and Kikuchi [3]. They have 
looked at the problem of route choices between two 
alternative routes. The driver's perceived travel time on 
each route is treated as a fuzzy number and his choice of 
route is based on an approximate reasoning model and 
fuzzy inference. The model consists of rules which 
indicate the degree of preference for each route given the 
approximate travel time of the two routes. The approach 
considers only the travel time criterion and cannot be 
easily generalized to multiple routes. 
Lotan and Koutsopoulos [4] have also proposed a 
modeling framework for route choice based on the driver's 
perception of attributes of the network, attractiveness of 
alternate routes as well as models for reaction to 
information. Such an approach works for a particular 
origin-destination(O/D) set and does not seem general 
enough for different O/D pairs. Also, for an O/D pair, the 
inclusion of an additional feasible route means an entirely 
new set of fuzzy rules. 
Teodorovic and Kalic [5] have considered route choice 
problem in air transportation using fuzzy logic. In addition 
to travel time, the approach can handle additional route 
selection criteria such as travel costs, flight frequency, and 
the number of stopovers. However, the method works well 
when there are two possible routes form the origin to the 
destination. The approach aims to explain the phenomenon 
of route choice when there are alternatives. Any extension 
such as having a third route would mean the development 
of an entirely different and carefully designed rule base. 
The researches in route choice selection using fuzzy logic 
are an ongoing process. As a conclusion, the main problem 
of approaches due to fuzzy reasoning for driver's behavior 
in route selection is to design the set of fuzzy rules 
according to numbers and the essence of any involved 
criteria in routing. As it will be discussed later, this 
modeling is not totally possible by the driver because of 
high complexity in decision making process.  
 
3. Strategy  
For modeling a driver's behavior in route selection in 
outdoor situations we have two problems: 1-real situations 
are very often not crisp and deterministic and cannot be 
described precisely, 2-the complete description of driver's 

behavior in route selection often requires much more 
detailed data than driver could ever recognize process, and 
understand simultaneously. In these situations, driver’s 
decisions are based on vague or imprecise concepts, which 
can often be expressed linguistically. 
In one side a driver's choice of a route is normally based 
on a complex evaluation process in which the attribute of 
the entire feasible route are also measured subjectively. 
For example, despite the fact that estimated travel time is a 
measurable parameter, when drivers make the route choice, 
their notion of travel time is often fuzzy, also, they would 
tradeoff the different route criteria involved and make their 
judgment. The modeling of such a decision-making 
process of drivers is complex and it is believed that fuzzy 
logic and approximate reasoning model can help to 
understand the process. 
At the other side neural networks can be developed to 
model the driver’s behavior. It is chosen for this study for 
their ability to learn from examples, to generalize, to 
predict and to cope with incomplete input data. A neural 
network is a parallel distributed information processing 
system. It consists of a large number of highly 
interconnected, but very simple processing elements 
known as neurons. Each neuron has a number of inputs 
and one output branches out to inputs of other neurons. 
The output of a neuron is a nonlinear function of the sum 
of all inputs through the weighted links. For our 
application, the inputs will be the various attributes of a 
route and the output will be the fitness or an acceptance 
measure of the route. The neural network can be trained 
off line. The real-time execution of the neural network will 
be extremely fast. It also has the ability to adapt to 
different users. Any new user can train the network to 
learn his/her preferences. 
A fuzzy adaptive neural network approach can combine 
the advantages of both fuzzy and neural network 
approaches.  
We face the following problems in order to model the 
driver's behavior due to fuzzy adaptive neural network 
utilization:  
 

1. The problem with fuzzy-neural networks is that 
they require good training data sets that should be 
a good representation of the complete data set. 
Moreover, such data could lead to an 
unpredictable convergence rate of the network 
learning, which may potentially threaten the 
successful application.  

2. Because of high complexity in decision making 
process, it is impossible for driver to choose all 
the rules for the best alternative in route selection.  
So in modeling the driver's behavior, a method 
should be proposed with the capability of 
introducing some limited rules by driver in 
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preprocessing step along with the other rules 
achieved by GIS training data in processing step.  

4. Proposed method  
 
The proposed method for modeling the driver's behavior in 
this study is includes (1) the generating of training data, 
and (2) designing and implementing of a fuzzy adaptive 
neural network for answering the two latter problems 
discussed in previous section.  
Figure 1 shows the general steps of the algorithm for 
modeling deriver's behavior and the details are presented 
next.  
 
/*A. Generating of training data*/ 
1. Determining the importance or weight of the criterion of length(w1), 
time (w2) and degree of difficulty (w3) by driver for each route (RO,D) in 
which the sum of weighs equals to 1. 
2. Running the proposed GA [1] for an origin-destination (O/D) in order 
to reach to a set of evolutionary route population. 
3. Classifying the obtained evolutionary route collection from the 
proposed GA to 5 categories as very bad, bad, medium, good and very 
good in the range of [0,0.2), [0.2,0.4), [0.4,0.6), [0.6,0.8), and [0.8,1], 
respectively. 
4. Choosing routes form previous 5 classes mentioned in step 3 and 
inserting them in the Xtraining data set. 
 
 
/*B. FALCON-H*/ 
5. Introducing some rules by the driver which are expressing his 
preferences 
6. Self organizing learning phase in order to achieve other rules form 
training data generated in part A. 
7. Supervised learning phase in order to adjust the parameters of the 
(input and output) membership functions optimally.     

Fig. 1  The algorithm of the proposed method 
 
4.1 Generating of training data 
 
A route attribute is a characteristic of a route used by a 
driver as an assessment criterion in route selection. In this 
study the length, time and the degree of difficulty (DoD) 
of a route are considered as the primary criteria for route 
selection.  
These three attributes are called primary attributes because 
they are primary in the sense that they are the important 
attributes and are widely-used by most drivers in the 
assessment of a route [6]. 
Given a set of origin-destination (O/D) pair, there could be 
many possible routes for a driver. Each of these candidate 
routes has different values in their primary attributes. One 
route may have a high value in one attribute (e.g. shortest 
distance) but a low value in another attribute (e.g. the route 
with the highest DoD). 
As stated earlier, for the first time, we outlined a GIS-based 
novel approach for using a genetic algorithm for urban 
multi-objective optimized route selection in static 
environment [1].  
As a result of running the above proposed GA, shown in 

step 2 of Figure 1, a population of candidate routes starts 
evolution in order to reach a population with the highest 
average fitness. The fitness of each route (yd) in proposed 
GA, using sum of weighted global ratios (SWGR) [7] is 
designed in such a way that its value would be in a range 
of [0,1] i.e., 1 is the highest fitness value and 0 is the 
lowest.    
Proposed GA utilization produces a vast range of routes 
which could be used as the preferred routes by the driver. 
For this purpose the routes were classified to the 5 
categories according to their fitness shown in step 3 of 
Figure 1. This classification is done due to fuzzy adaptive 
neural network design, described in section 4.2.  
Figure 2 illustrates the step 4 of the Figure 1. 
 
/*R1: first route; R2: second route; y1

d and y2
d: fitness of first and second 

/*routes respectively computed by proposed GA; C1,C2,C3,C4 and C5: 
/*route fitness classes including very good, good, medium, bad and very 
/*bad respectively 
1. For i=1 to 5     /*Due to 5 classes*/ 
2. Select two random routes (R1 and R2)from a class Ci  
3. If the driver chooses non of the two routes, then Go to step 2 
4. If the driver chooses one route (e.g., R1) and i=1 or i=2 or i=3 then  
5.        If y1

d < y2
d then y1

d= y2
d end if 

6. Else if the driver chooses one route (e.g., R1) and i=4 or i=5 then 
7.        If y1

d > y2
d then y1

d= y2
d end if 

8. End if 
9.Compute x1,x2 and x3 of selected route e.g.,R1 (from Eqs 1,2 and 5)   
10.Form the path descriptive vector (pdv)of selected route (e.g., pdv(R1)= 
(x1,x2,x3, y1

d))and insert it in Xtraining data set 
11. next i 

Fig. 2  The algorithm of route selection in driver's view point 
 

After accomplishing the steps 4 to 7 of Figure 2 by the 
driver, the selected weights in step 1 of Figure 1 will be 
changed.  
The step 9 shown in Figure 2, will be described in section 
4.1.1. 

  
4.1.1 The specific approach used in measuring each 
route criteria 
In this part, every rate of length (x1), time (x2) and the 
degree of difficulty (x3) of each training data will be 
calculated. A detailed discussion of each of the primary 
attributes is given bellow. Each attribute is designed to 
have a score between zero and one.  
 
4.1.1.1 Travel distance and travel time  
Let k

1x  be used to describe the length rate attribute of 
route k. For this attribute, a score of 1 denotes that this 
route has the shortest travel distance among the particular 
set of route candidates in Xtraining  and a score of 0 
designates that this route has the longest travel distance 
among the particular set of route candidates in Xtraining . For 
other candidate routes, the score of this attributes is 
defined in Eq.(1) [1],[2]: 

)value_lengthmin()value_lengthmax(
value_length)value_lengthmax(ratio_lengthx k

k
k

1 −
−

==
  (1) 
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 min(length_value) = best length values in all GA populations 
max(length_value) = worst length values in all GA populations  

Moreover, min(length_value) is equal to shortest length 
values obtained by independent run of modified Dijkstra 
algorithm based on d-Heap’s structure with d=2 for length 
criterion. 
"Travel time" attribute can be developed in a way similar 
to travel distance shown is Eq.(2) [1], [2]: 

)value_timemin()value_timemax(
value_time)value_timemax(ratio_timex k

k
k

2 −
−

==
(2) 

min(time_value) = best time values in all GA populations 
max(time_value) = worst time values in all GA populations 

For this attribute, a score of 1 denotes that this route has 
the shortest travel time among the particular set of route 
candidates in Xtraining  and a score of 0 designates that this 
route has the longest travel time among the particular set 
of route candidates in Xtraining. 
Moreover, min(time_value) is equal to shortest length 
values obtained by independent run of modified Dijkstra 
algorithm based on d-Heap’s structure with d=2 for time 
criterion. 
 
4.1.1.2 Degree of difficulty 
This attribute can be computed as a function of the type 
and nature of the road such as the narrowness, winding, 
slope, number of traffic lights and number of stop signs. A 
simpler way would be to assign different values for 
different types of road. For example, the following table 
can be used as a guideline for determining the degree of 
difficulty (DoD) of the route [1], [2]. 
 

Table 1: Guideline for determining degree of difficulty (DoD) 

Road type Penalty 
for DoD 

Exp. Way with a negative slope 0 
Exp. Way without a slope 0.1 

Exp. Way with a positive slope 0.2 
Major Arterial (outside the central district) 0.4 
Major Arterial(inside the central district) 0.5 

Minor Arterial 0.6 
Collector-Feeder 0.8 

Local street 1 
 
4.1.1.3 Overall score of degree of difficulty for each 
candidate route  
For each candidate route, the travel distance and travel 
time are supposed to be known and a score in the range 
[0,1] can be calculated for each of these attributes. 
However, different road sections for each candidate route 
would have different attribute scores for degree of 
difficulty. In order to calculate the complete set of primary 
attributes of the route candidate, a method is needed to 
combine the attribute score of different road sections into 
an overall score for degree of difficulty. A method is 
developed for this calculation which is described below: 
Let n be the number of road sections of the route candidate. 

Let pd and pc be the distance and degree of difficulty 
attribute scores of each road section, respectively (p = 1 to 
n). 
Let pw  be a weight of each road section which is defined 
in Eq.(3) [1], [2]: 

∑
=

= n

1p
p

p
p

d

d
w                   (3) 

Then, the overall score of the degree of difficulty for 
candidate route is calculated using Eq.(4) [1], [2]: 

DoD= p

n

1p
pk cwvalue_DoD ×=∑

=

            (4) 

Note that ∑
=

=
n

1p
p 1w  and 1c0 p ≤≤ . The final overall 

score of the degree of difficulty attribute ( kvalue_DoD ) is 
also in the range [0,1].  
Let k

3x be used to describe this attribute of route k, then 
the score of this attributes is defined in Eq.(5) [1], [2]: 

)value_DoDmin()value_DoDmax(
value_DoD)value_DoDmax(ratio_DoDx k

k
k

3 −
−

==
  (5) 

 min(DoD_value) = best DoD values in all GA populations 
max(DoD_value) = worst DoD values in all GA populations 

For this attribute, a score of 1 denotes that this route has 
the lower travel degree of difficulty among the particular 
set of route candidates in Xtraining  and a score of 0 
designates that this route has the highest travel degree of 
difficulty among the particular set of route candidates in 
Xtraining. 
Moreover, min(DoD_value) is equal to lower degree of 
difficulty values obtained by independent run of modified 
Dijkstra algorithm based on d-Heap’s structure with d=2 
for degree of difficulty criterion. 
 
4.2 Proposed fuzzy-neural control 
 
We use a general connectionist model, the fuzzy adaptive 
learning control network (FALCON) proposed by Lin and 
Lee to study hybrid structure parameter learning strategies 
[8,9]. The FALCON is a feedforward multilayer network 
which integrates the basic elements and functions of a 
traditional fuzzy logic controller into a connectionist 
structure that has distributes learning abilities. In this 
connectionist structure, the input and output nodes 
represent the input states and output control or decision 
signals, respectively, and in the hidden layers, there are 
nodes functioning as membership functions and fuzzy 
logic rules. The FALCON can be contrasted with a 
traditional fuzzy logic control and decision system in 
terms of its network structure and learning abilities. Such 
fuzzy control and decision networks can be constructed 
from training examples by neural learning techniques, and 
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the connectionist structure can be trained to develop fuzzy 
logic rules and determine proper input-output membership 
functions. This connectionist model also provides 
human-understandable meaning to the normal feedforward 
multilayer neural network in which the internal units are 
always opaque to users. So, if necessary, expert knowledge 
can be easily incorporated into the FALCON. The 
connectionist structure also avoids the rule-matching time 
of the inference engine in the traditional fuzzy control 
system. The structure and function of the proposed 
FALCON and its learning scheme are described bellow. 
Figure 3 shows the structure of the FALCON. The system 
has a total of five layers. The nodes in layer 1 are input 
nodes (linguistic nodes) that represent input linguistic 
variables including length rate (x1), time rate (x2), and the 
degree of difficulty rate (x3) of each route in the Xtraining  
data set, and layer 5 is the output layer. There are two 
linguistic nodes for each output variable. One is for 
training data (desired output or yd) to feed into the network, 
and the other is for decision signals (actual output or y') to 
be pumped out of the network for each route in the Xtraining  
data set. Nodes in layers 2 and 4 are term nodes which act 
as membership functions representing the terms of the 
respective linguistic variables. 
The linguistic variables and the terms related to layers 
1,2,4 and 5 are presented in Table 2. 
 

Table 2: Proposed FALCON linguistic variables and terms  
 Linguistic 

Variables 
Linguistic terms 

x1 too_long, long, medium, short, too_short
x2 too_long, long, medium, short, too_shortInput 
x3 very_high,high,medium,low,very_low 
y' very_bad,bad,medium,good,very good Output 
yd very_bad,bad,medium,good,very good 

 
Each node in layer 3 is a rule node that represents one 
fuzzy logic rule. Links in layers 3 and 4 function as a 
connectionist inference engine, which avoids the 
rule-matching process. Layer 3 links define the 
preconditions of the rule nodes and layer 4 links define the 
consequents of the rule nodes. Therefore, for each rule 
node, there is at most one link (maybe none) from some 
term nodes of a linguistic node. This is true for both 
precondition links (links in layer 3) and consequent links 
(links in layer 4). The links in layers 2 and 5 are fully 
connected between linguistic nodes and their 
corresponding terms nodes. The arrow on the link 
indicates the normal signal flow direction when the 
network is in use after it has been built and trained. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  The structure of the proposed FALCON 
 
With this five layered structure of the FALCON, we shall 
define the basic functions of a node. The FALCON 
consists of nodes that have some finite fan-in of 
connections represented by weight values from other 
nodes and a fan-out of connections to other nodes. 
Associated with the fan-in of a node is an integration 
function f which serves to combine information, activation, 
or evidence from other nodes. This function provides the 
net input to this node  

)w,...,w,w;u,...,u,u(net )k(
p

)k(
2

)k(
1

)k(
p

)k(
2

)k(
1i f=       (6)  

where )k(
p

)k(
2

)k(
1 u,...,u,u  are inputs to this node and 

)k(
p

)k(
2

)k(
1 w,...,w,w  are the associated link weights. The 

superscript k in the Eq.(6) indicates the layer number. A 
second action of each node is to output an activation value 
as a function of its net input: 

output= oi
(k)=a(neti)=a(f)                  (7)   

where a(.) denotes the activation function. The functions 
of the nodes in each of the five layers of the FALCON are 
described below. 
Layer 1: The nodes in this layer only transmit input values 
to the next layer directly. That is, 

f=ui
(1)     and        a=f.            (8) 

 
From Eq.(8), the link weight at layer 1 (wi

(1)) is unity. 
Layer 2: We use a single node to perform a bell-shaped 
membership function: 

fMf ea     and      
σ

)m(u
)σ,(m 2

ij

2
ij

(2)
i

ijij
j
xi

=
−

−==   (9) 

where ijm and ijσ  are, respectively, the center (or mean) 
and the width (or variance) of the bell-shaped function of 
the jth term of the ith input linguistic variable ix . Hence, 
the link weight at layer 2 (wij

(2) )can be interpreted as ijm . 
Layer 3: The links in this layer are used to perform 
precondition matching of fuzzy logic rules. Hence, the rule 
nodes perform the fuzzy AND operation, 

f = min(u1
(3),u2

(3),…,up
(3))  and    a=f.      (10) 

x1 x3  x2

... 

Layer 1 
(input linguistic nodes)

Layer 2 
(input term nodes)

Layer 3 
(rule nodes)

Layer 4 
(output term nodes)

Layer 5 
(output linguistic nodes)

yd y'
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The link weight in layer 3 (wi
(3)) is then unity. 

Layer 4: The nodes in this layer have two operation 
modes: down-up transmission and up-down transmission 
modes. In the down-up transmission mode, the links in 
layer 4 perform the fuzzy OR operation to integrate the 
fired rules which have the same consequent: 

).min(1,a                and              u
i

)4(
i ff == ∑    (11) 

Hence, the link weight wi
(4) =1. In the up-down 

transmission mode, the nodes in this layer and the links in 
layer 5 function exactly the same as those in layer 2 except 
that only a single node is used to perform a membership 
function for output linguistic variables. 
Layer 5: There are two kinds of nodes in this layer also. 
The first kind of node performs up-down transmission for 
training data being fed into the network. For this kind of 
node, 

f = yi      and        a = f.              (12) 

The second kind of node performs down-up transmission 
for the decision signal output. These nodes and the layer 5 
links attached to them act as the defuzzifier. If ijm  

and ijσ  are, respectively, the center and the width of the 
membership function of the jth term of the ith output 
linguistic variable, then the Eq.(13) can be used to 
simulate the center of area defuzzification method: 

.
u

a    and   u)m(uw
j

)5(
ijij

)5(
ij

j
ijij

)5(
ij

j

)5(
ij ∑∑∑

δ
=σ==

ff  (13) 

Here the link weight in layer 5 (wi
(5) ) is ijijσm    . 

Based on this connectionist structure, a supervised 
gradient-descent learning procedure is developed to 
determine the proper centers (mij) and widths ( ijσ ) of the 
term nodes in layers 2 and 4.  
We shall now present a hybrid learning algorithm to set up 
the FALCON (FALCON-H) from a set of supervised 
training data. The hybrid learning algorithm consists of 
two separate stages of a learning strategy which combines 
unsupervised learning and supervised gradient-descent 
learning procedures to build the rule nodes and train the 
membership functions. In phase 1 of the hybrid learning 
algorithm, a self-organized learning scheme (i.e., 
unsupervised learning) is used to locate initial membership 
functions and to detect the presence of fuzzy logic rules. In 
phase 2, a supervised leaning scheme is used to optimally 
adjust the parameters of the membership functions for 
desired outputs.  
 
4.2.1 Self-organized learning phase 
It is possible to introduce some limited rules by the driver 
in the proposed FALCON which are his ideal condition 
indicators. It is for being assured that all the needed 
knowledge from the deriver is transferred in order to 

model his behavior. Other rules are derived from the 
self-organized learning phase.  
The problem for self-organized learning can be stated as 
follow: Given the training input data )t(xi , i=1,2,3, the 
corresponding desired output value yd(t), the fuzzy 
partitions )x(T i  and )y(T and the desired shapes of 
membership functions, we want to locate the membership 
functions and find the fuzzy logic rules. Here )x(T i  
denotes the number of ix  terms (i.e., the number of 
fuzzy partitions of the input state linguistic variable). 
In this phase, the network works in a two-sided manner; 
that is, the nodes and links in layer 4 are in the up-down 
transmission mode so that the training input and output 
data can be fed into the FALCON from both sides. 
First, the centers (or means) and the widths (or variances) 
of the membership functions are determined by 
self-organized learning techniques analogous to statistical 
clustering technique. This serves to allocate network 
resources efficiently by placing the domains of 
membership functions covering only those regions of the 
input-output space where data is present. Kohonen’s 
learning rule algorithm [9,10] is adopted here to fine the 
center mij of the ith membership function of 'x', where 'x' 
represents any one of the input or output linguistic 
variables x1, …, xn , y1, …, yn; 

},)t(m)t(x{min)t(m)t(x iki1closest −=−
≤≤

       (14) 

)]t(m)t(x)[t()t(m)1t(m closestclosestclosest −α+=+      (15) 

mi(t+1)=mi(t), for closesti mm ≠            (16) 

where )t(α  is a monotonically decreasing scalar learning 
rate and k= )x(T . This adaptive formulation runs 
independently for each input and output linguistic variable. 
The determination of which of the mi is mclosest can be 
accomplished in constant time via a winner-take-all circuit. 
Once the centers of the membership functions are found, 
their widths can be determined using the 
N-nearest-neighbor heuristic by minimizing the Eq.(17) 
with respect to the widths ijσ  [9]: 

22
N

1i Nj i

ji ]r)
mm

([
2
1E

nearest

−
σ

−
= ∑ ∑

= ∈

       (17) 

where "r" is an overlap parameter. Since the second 
learning phase will optimally adjust the centers and the 
widths of the membership functions, the widths can be 
simply determined by the first-nearest-neighbor heuristic 
at this stage as represented in Eq.(18) [9]: 

r
mm closesti

i

−
=σ               (18) 

After parameters of the membership functions have been 
found, the signals from both external sides can reach the 
output points of term nodes in layers 2 and 4. Furthermore, 
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the outputs of terms nodes in layer 2 can be transmitted to 
rule nodes through the initial connection of layer 3 links. 
So we can obtain the firing strength of each rule node. 
Based on these rule firing strengths [denoted as )t(o )3(

i ] 
and the outputs of term nodes in layer 4 [denoted as 

)t(o )4(
j ], we want to determine the correct consequent 

links (layer 4 links) of each rule node to fine the existing 
fuzzy logic rule by competitive learning algorithms. As 
stated before, the links in layer 4 are initially fully 
connected. We denote the weight of the link between the 
ith rule node and the jth output term node as wji. The 
following competitive learning law is used to update these 
weights for each training data set [9,11], 

)ow(o)t(w )3(
iji

)4(
jji +−=

•
          (19) 

where )4(
jo  serves as a win-loss index of the jth term 

node in layer 4. The essence of this law is learn if win. In 
the extreme case, if )4(

jo  is a 0/1 threshold function, then 
this law indicates learn only if win. 
After competitive learning involving the whole training 
data set, the link weights in layer 4 represent the strength 
of the existence of the corresponding rule consequent. 
From the links connecting a rule node and the term nodes 
of an output linguistic node, at most one link with 
maximum weight is chosen and the others are deleted. 
Hence, only one term in an output linguistic variable’s 
terms set can become one of the consequents of a fuzzy 
logic rule. If all the link weights between a rule node and 
the term nodes of an output linguistic node are very small, 
then all the corresponding links are deleted, meaning that 
this rule node has little or no relation to this output 
linguistic variable. If all the links between a rule node and 
the layer 4 nodes are deleted, then this rule node can be 
eliminated since it does not affect the outputs. 
After the consequents of rule nodes are determined, a rule 
combination is used to reduce the number of rules. The 
criteria for combining a set of rule nodes into a single rule 
node are: (1) they have exactly the same consequents, (2) 
some preconditions are common to all the rule nodes in the 
set, and (3) the union of other preconditions of these rule 
nodes comprised the whole term set of some input 
linguistic variables. If a set of nodes meet these criteria, a 
new rule node with only the common preconditions can 
replace this set of rule nodes. 
 
4.2.2 Supervised learning phase 
The problem for supervised learning can be stated as: 
Given the training input data )t(xi , i=1,2,3 the 
corresponding desired output value yd(t), the fuzzy 
partitions )x(T i  and )y(T , and the fuzzy logic rules, 
adjust the parameters of the input and output membership 

functions optimally. Here )x(T i  denotes the number of 

ix  terms (i.e., the number of fuzzy partitions of the input 
state linguistic variable). In supervised learning phase, the 
network works in the feed-forward manner; that is, the 
nodes and the links in layers 4 and 5 are in the down-up 
transmission mode. The back-propagation algorithm is 
used for this supervised learning. Considering a 
single-output case, the goal is to minimize the error 
function presented in Eq.(20). 

2d ))t(y)t(y(
2
1E −=            (20) 

where yd(t) is the desired output and y(t) is the current 
output. For each training data set, starting at the input 
nodes, a forward pass is used to compute the activity levels 
of all the nodes in the network to obtain the current output 
y(t). Then, starting at the output nodes, a backward pass is 
used to compute w/E ∂∂  for all the hidden nodes. 
Assuming that w is the adjustable parameter in a node (e.g., 
mij and ijσ   in our case), the general learning rule used is 
shown in Eq.(21). 

)
w
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−η+=+        (21) 

where η  is the learning rate and  
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To illustrate the learning rule for each parameter, we shall 
show the computations of

w
E

∂
∂ , layer by layer, starting at 

the output nodes. We will use bell-shaped membership 
functions with centers mi and widths iσ  (single-output 
case) as the adjustable parameters for these computations. 
Layer 5: The adaptive rule of the center mi is derived as 
presented in Eq.(23) [9]. 
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−η+=+
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The adaptive rule of the width iσ  is derived as shown in 
Eq.(24) [9]. 
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The error propagated to the preceding layer is calculated 
using Eq. (25) [9]. 

)t(y)t(y
y
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E d

)5(
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∂
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∂
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Layer 4: In the down-up transmission mode, there is no 
parameter to be adjusted in this layer. Only the error 
signals ( )4(

iδ ) need to be computed and propagated. The 

error signal )4(
iδ is derived as shown in Eq. (26) [9]. 
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Layer 3: As in layer 4, only the computation of error 
signals is required. This error signal can be derived as 
shown in Eq.(27) [9]. 

)4(
i

)3(
i δ=δ                   (27) 

Layer 2: The adaptive rule of mij (multi-input case) is 
derived as represented in Eq.(28) [9]. 

2
ij

ij
)2(

i)2(
iijij

)mu(2
e)t(m)1t(m

σ

−
ηδ+=+ fi      (28) 

The update rule of ijσ  becomes is shown in Eq. (29) [9]. 
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5.  Experiments 
 
The proposed method due to fuzzy adaptive learning 
control network in GIS was implemented by ArcGIS 
utilization and customization. ArcGIS has a unique feature 
in architectural design which enables it to be developed by 
COM programming in any visual environment.  
To evaluate the performance of the outlined method, we 
performed some experiments, using actual road maps of a 
part of North-West of Tehran network with 5121 edges and 
4389 nodes at a scale of 1:2000.  In addition, each result 
given bellow was performed on AMD Athlon(tm) XP 
1600+ (1.40 GHz). 
To study the training process of the proposed neuro-fuzzy 
inference system,  20 training data sets were selected from 
the proposed method in Figure 2 having min(length_value)= 
6568.12, max(length_value) = 8564.34, min(time_value) = 14.08, 
max(time_value)= 26.14, min(DoD_value) = 0.28, max(DoD_value)= 
0.53, with the adjusted criterion weight: w1=0.25, w2=0.65 
and w3=0.1 called control reference data. The initial 
weights of each route criterion (step 1; Figure 1) were 
w1=0.2, w2=0.6 and w3=0.2 respectively which were 
changed after choosing preferred routes by the driver 
(steps 4 to 7; Figure 2). To do so, the adjusted weights are 
calculated as following:   
If X=[x1,x2,x3] ; W=[w1,w2,w3] and Yd=[yd] then XW=Yd   

=>   W=(XTX)-1 XTYd               (30) 
With this amount of training data, it can be expected that 
the variety of the appearances of driver's behavior in route 
selection is high which strengthens the significance of the 
training results, in particular, the differences between the 
initial set membership parameters and the adapted ones 
after learning. 10 training samples have been selected 
additionally with the adjusted criteria weight: w1=0.25, 
w2=0.65 and w3=0.1  to check the learning process called 
check reference data. 
The control reference data and the check reference data are 
presented in Tables 3 and 4 respectively. 

 
Table 3: The control reference data 

Length
(m) 

Time
(min) DoD x1 x2 x3 yd y' 

7039.9 14.08 0.364 0.764 1.000 0.653 0.906 0.899
7343.4 14.15 0.327 0.612 0.994 0.804 0.879 0.870
7444.9 14.81 0.342 0.561 0.939 0.742 0.825 0.817

C
1 

7603.4 14.65 0.357 0.481 0.953 0.682 0.808 0.799
7743.9 14.55 0.359 0.411 0.961 0.676 0.795 0.788
7607.8 15.35 0.339 0.479 0.895 0.754 0.777 0.769
7513.2 15.87 0.387 0.527 0.852 0.564 0.742 0.733

C
2 

7453.5 18.5 0.350 0.556 0.633 0.710 0.622 0.613
8002.5 18.05 0.356 0.281 0.671 0.686 0.575 0.566
7823.5 18.05 0.469 0.371 0.671 0.236 0.552 0.544
8054.5 18.46 0.477 0.255 0.637 0.204 0.498 0.508

C
3 

8286.2 18.94 0.523 0.139 0.597 0.016 0.424 0.435
8250.5 19.98 0.510 0.157 0.511 0.070 0.378 0.384
8100.1 22.02 0.400 0.233 0.342 0.510 0.331 0.337
8425.4 21.01 0.493 0.070 0.425 0.140 0.308 0.296

C
4 

8308.5 22.5 0.480 0.128 0.302 0.190 0.247 0.238
8425.1 23.55 0.490 0.070 0.215 0.150 0.172 0.161
8350.7 24 0.490 0.107 0.177 0.150 0.157 0.145
8221.6 25.02 0.490 0.172 0.093 0.150 0.118 0.108

C
5 

8400.5 25.6 0.500 0.082 0.045 0.110 0.061 0.074
 

Table 4: The check reference data 
Length

(m) 
Time
(min) DoD x1 x2 x3 yd y' 

7232.4 14.3 0.315 0.667 0.980 0.848 0.889 0.876

C
1 

7445.1 14.9 0.351 0.561 0.931 0.704 0.816 0.803
7258.1 16.2 0.333 0.654 0.828 0.778 0.780 0.794

C
2 

6568.1 17.9 0.375 1.000 0.680 0.610 0.753 0.743
7946.5 18.6 0.482 0.310 0.629 0.180 0.504 0.516

C
3 

8206.9 18.8 0.512 0.179 0.611 0.060 0.448 0.434
8354.6 19.6 0.484 0.105 0.546 0.172 0.399 0.386

C
4 

8277.9 22.7 0.490 0.144 0.285 0.150 0.236 0.232
8221.6 25 0.460 0.172 0.093 0.270 0.130 0.116

C
5 

8285.4 25.1 0.510 0.140 0.090 0.070 0.100 0.097
 
As stated earlier in section 4.2.1, each driver would have 
his own perspective of a desirable route. The FALCON is 
designed in order to let a driver specify his preferences 
using fuzzy rules with some predefined linguistic terms. 
Other rules are derived from the self-organized learning 
phase. In this part of the experiment, a set of fuzzy rules 
are defined by the driver:  

• IF  Length is too_long AND time is too_long AND 
DoD is very_high THEN route fitness is very_bad 

• IF  Length is very_short AND time is long AND DoD 
Is very_low THEN route fitness is bad 

• IF  Length is medium AND time is medium AND 
DoD is medium  THEN route fitness is bad 
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• IF  Length is short AND time is medium AND DoD is 
medium THEN route fitness is medium 

• IF  Length is short AND time is medium AND DoD is 
low THEN route fitness is medium 

• IF  Length is very_short AND time is medium AND 
DoD is very_ low THEN route fitness is good  

• IF  Length is medium AND time is short AND DoD is 
medium THEN route fitness is good  

• IF  Length is short AND time is short AND DoD is 
low THEN route fitness is very_ good  

• IF  Length is short AND time is very_short AND 
DoD is medium THEN route fitness is very_ good  

To implement the proposed FALCON in modeling 
deriver's behavior, the membership functions of the length 
rate(x1), time rate (x2) and the degree of difficulty rate (x3) 
as well as the route fitness (y) descriptors have to be 
specified. The initial membership functions are depicted in 
Figures 4,5,6 and 7. 

 
      Fig. 4  Initial membership function of Length ratio(x1) 

 

 
       Fig. 5  Initial membership function of Time ratio(x2) 

 

 
       Fig. 6  Initial membership function of DoD ratio(x3) 

 

 
       Fig. 7  Initial membership function of route fitness (y) 

 
All the control and check reference data are participated in 
the self-organized learning phase in order to locate the 
membership functions and find the rest of fuzzy logic 
rules. Check reference data have not been included in the 
objective function (Equation 20) of the optimization 
process i.e., in supervised learning phase.  

The overlap parameter 'r' is set to  2.0, the learning rate 
( ηα  and ) is 0.15, and the error tolerance is 0.01. After 
Self-organized learning phase, 51 fuzzy logic rules are 
obtained.  
In order to perform rule verification, the 3D plot of 
changeability of the route fitness plane is shown in Figures 
8 and 9, respectively. 

  
      Fig. 8  The changeability of the route fitness plane with 

respect to time rate(x2) and length rate(x1)  

  
Fig. 9  The changeability of the route fitness plane with respect to time 

rate(x2) and the degree of difficulty rate(x3) 
 
As shown in Figures 8 and 9, the more the length rate, 
time rate and DoD rate become closer to 1, the higher 
fitness value is achieved.  
 Moreover, the degree of importance of each route 
criterion (w1=0.25, w2=0.65 and w3=0.1) are clear in the 
Figures. For instance, if time rate would be in the range of 
0.7 to 1, the fitness plane is around 0.5 and it is because of 
higher importance degree of time with respect to the 
degree of difficulty (Figure 8).  
For the whole areas of the 3D Plot, all values of the 
transfer characteristic are plotted. This means, we have not 
areas in which no inference result was derived by the 
system due to either non-overlapping membership 
functions or undefined rules. It means that the proposed 
method was capable to generate the training data, and the 
generated data could be sufficient for extracting the rest of 
fuzzy rules.   
The learned membership functions of x1,x2,x3 and y after 
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unsupervised self organized learning phase are shown in  
Figures 10,11,12 and 13, respectively. 
 

 
      Fig. 10  Membership function of Length ratio(x1) after 

unsupervised learning 
 

 
       Fig. 11  Membership function of Time ratio(x2) after 

unsupervised learning 
 

 
       Fig. 12  Membership function of DoD ratio(x3) after 

unsupervised learning 
 

 
       Fig. 13  Membership function of route fitness (y) after 

unsupervised learning 
 

By taking the output of the trained proposed FALCON for 
the reference data a corresponding mean square error 
measure related to the 'fitness truth' (yd), output can be 
calculated. Figure 14 shows the error measure as a 
function of the number of iterations. The curve for the 
error measure calculated with the check reference data is, 
as expected, slightly above the error curve obtained for the 
control reference training data. The very small difference 
for the final iterations indicates that the achieved route 
fitness with the trained proposed FALCON agrees well 
with the check reference data. 
The column y' which is the indicator of the proposed 
FALCON output after supervised training is shown in 
Tables  3 and 4. 

 
      Fig. 14  Training data graph 

 
Figures 15,16,17 and 18 show the adapted membership 
functions after training. The comparison with the initial 
membership functions indicates that most of the 
membership functions have changed more significantly 
indicating that for these ones the training was quite useful.  
 

 
      Fig. 15  Membership function of Length ratio(x1) after 

supervised learning 
 

 
       Fig. 16  Membership function of Time ratio(x2) after 

supervised learning 
 

 
       Fig. 17  Membership function of DoD ratio(x3) after 

supervised learning 
 

 
       Fig. 18  Membership function of route fitness (y) after 

supervised learning 
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6. Conclusions 
 
In this paper we have designed and implemented a 
GIS-based fuzzy-neural approach for modeling driver’s 
behavior which represents the correlation of the attributes 
with the driver’s route selection.  
A recommendation or route fitness is provided to the 
driver based on a training of the adaptive fuzzy-neural 
network on the main criteria of route selection such as 
length, time and the degree of difficulty. 
In this context, we have applied an innovative 
methodology based on modified genetic algorithm to 
generate training data set as well as a fuzzy adaptive 
learning control network (FALCON) with hybrid learning 
to extract fuzzy rules from the generated training data and 
to train the membership functions. 
Major characteristics of this innovative approach are as 
follows: 
1. Generating proposed FALCON training data by GA 
utilization in a GIS-based approach with the capability of 
taking and adjusting the “importance” of each route 
criterion chosen by the driver.  
2. Utilizing “range (scale)-independent ranking” in 
measuring each route criteria as FALCON inputs.  
3. Letting driver to specify his preferences using fuzzy 
rules with some predefined linguistic terms and deriving 
other rules from the self-organized learning phase of 
proposed FALCON from generated training data. This 
fuzzy rules extraction provides a simple representation of 
complex procedures of driver's decision making and 
reflects a kind of knowledge which is applied in modeling 
driver's behavior. 
4. Performing better than the purely supervised learning 
algorithm (e.g., the back-propagation algorithm) because 
of a priori classification of training data through an 
overlapping receptive field according to unsupervised 
learning before the supervised learning. 
Further efforts will be made on expanding the algorithm in 
combination with GA and proposed FALCON in dynamic 
route selection. 
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