
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

124

Extracting Content for News Web Pages based on DOM

Hua Geng, Qiang Gao, and Jingui Pan
State Key Laboratory for Novel Software Technology

Nanjing University, Nanjing, P.R.China

Summary*
Nowadays, RSS is becoming a hot topic for Web
applications. A lot of famous Web sites have provided RSS
for users. However, making RSS files manually is boring,
and so far, most sites haven’t provided such a service. In
this paper, we mainly describe the design, implementation
and evaluation of HTML2RSS, a system to extract content
from HTML Web pages based on DOM structure, and
generate RSS files automatically with the extracted content.
We introduce two algorithms to extract information from
semi-structured Web data. The goal of HTML2RSS is to
provide users with RSS files as a substitute of the HTML
pages.

Keywords
Web information extracting, DOM, XML, time pattern, RSS

1. Introduction

With the huge amount of data available online, the World
Wide Web has become the most popular and important
way for people to obtain information. However, due to the
complexity and hugeness of the WWW, the data on WWW
is semi-structured and heterogeneous. Thus, mining useful
information from Web is always a difficult and exciting
challenge for researchers.

Much recent works have focused on extracting and
mining useful information from semi-structured Web data.
Hammer [4] describes extracting weather data form
various WWW sites and converting the extracted
information into database objects. Lin [7] first partitions a
page into several content blocks according to HTML tag
<TABLE>, and then uses entropy-based approach to
discover informative blocks. Cai [2] advances VIPS
algorithm, which extracts semantic structure of Web pages
based on vision representation. By analyzing the hyperlink
structure of the Web pages, two best-known algorithms,
HITS [6] and PageRank [1], are proposed to rank Web

*This work is supported by the National Natural Science
Foundation of China under Grant Nos.60473113, 60533080

documents. Some later works on topic distillation [3] try to
analyze on HTML DOM (Document Object Model)
structure. SoftMealy described in [5] is a well-known
information extraction system that extracts the structural
information from HTML documents based on manually
generated templates. As the flexibility of HTML syntax
and the difficulty of information extraction from HTML
pages, XML is introduced. However, as we have observed,
most of the web pages are written in HTML rather than
XML.

RSS, which stands for RDF Site Summary, Rich Site
Summary, or Really Simple Syndication, is an XML-based
format that allows web developers to describe and
syndicate web site content [9]. RSS is published in feeds or
channels, and is read with a new category of software
called news aggregators or readers. It is now becoming an
efficient way to distribute information for publishers, and
to obtain information for plain readers.

In this paper, we propose two algorithms (SAMR and
ATP) to extract information for news Web pages based on
DOM, and describe HTML2RSS, a system for generating
RSS files from HTML files, using the two algorithms
mentioned above.

2. Algorithms

Because of the flexibility of HTML syntax, a lot of web
pages do not strictly obey the W3C HTML specification
[10], which may cause mistakes in DOM tree structure. As
a result, we do precleaning on HTML pages first of all,
with a HTML parser. For every HTML file, the parser
analyzes it and corrects mistakes. A DOM tree is generated
after parsing, and the subsequent work is performed on it.

Given a news Web page, we abstract its structure into
three levels: page, subject, and item.
Definition 1. An itemαis a data object, which contains
related information about a piece of news, including item
title (the title of the news, key information), item date (the
release time of the news), item link (the URL of the news),
and item description (the brief description of the news). It
can be represented by a setα= {item title, item date, item

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

125

link, item description}.
Definition 2. A subjectβis a data object, which contains
related information about the current subject, including
subject title (the title of the subject) and a set of item(s). It
can be formulized asβ= {subject title, I}, where I = {α1,
α2,…,αN} is a finite set of items.
Definition 3. Given a news pageγ, page is composed by
all the news information in the page, including page link
(the URL of the page, key information), page title (the title
of the document), page date (the last update time), page
encoding (the encoding set of the document) and a set of
subject(s). It can be formulized asγ= {page link, page
title, page date, page encoding, S}, where S = {β1, β2,…,
βN} is a finite set of subjects.

2.1 Mapping Rule

By analysis on large amount of Web pages, we have found
the following facts.

 The content of most pages on Web updates frequently,
especially for news pages and BLOG (Web Log)
pages.

 The structure of a page on Web usually doesn't
change. That is to say, the DOM structures of most
pages on Web are fixed.

Hence, for a specified news page, we first create a
Mapping Rule, and then use it to extract information for
creating the RSS file. Thus, the total process to create RSS
using Mapping Rules can be divided into two steps.
Step.1. Pre-clean the page, and get a DOM tree. Create a

Mapping Rule based on the DOM tree.
Step.2. Extract information from the DOM tree, using the

Mapping Rule. Then create the RSS file with the
information.

When the page is updated, we needn’t modify the
Mapping Rule, but only need to perform the Step 2. As we
need manual help in the Step 1, we call this method SAMR
(SemiAutomatic-extraction based on Mapping Rules).

2.1.1 Rule Format

As we can see in Figure.1, the Mapping Rule is an XML
file, which specifies from which nodes of the DOM tree
the information to be extracted, and which part of RSS the
extracted information to be converted into.

All the occurrences of the word path in Mapping Rule
actually are given in XPath (XML Path Language), which
is a language for addressing parts in XML documents. But
different from W3C Recommendation [11], we simplify it
in our system as follows.
Definition 4. XPath is a path used for addressing elements
in an XML document, supporting the following syntax
only.

 / Selects the document root

 para[i] Selects the (i+1)th para child of the context
node, (i = 0,1,2…)

 para Selects all the para children of the context node
 path/para[i] Selects the (i+1)th para child of the node

specified by the path (path here is an XPath)
 path/para Selects the all the para children of the node

specified by the path (path here is an XPath)
Thus, the XPath /HTML[0]/BODY[0]/TABLE selects all the

TABLE children of the first BODY of the first HTML under
the root.

Figure.1 Form of Mapping Rule

2.1.2 Rule Generating

In order to generate Mapping Rules, we designed a
semiautomatic method, which needs manual help. A
GUI–based tool is developed to help the users1 create
Mapping Rules. With the tool, users can mark any HTML
element (such as text and link) on Web pages, and assign it
to any Mapping Rule element (such as page date, subject
title, etc. except page link, page title and page encoding as
the system will extract them automatically). We define
mark as a binary mapping relation.
Definition 5. For a specified page, mark is a binary
relation between the set of HTML elements named A and
the set of Mapping Rule elements named B. If we define T
as the set of all texts on the page, and L as the set of all
links, then

A = T∪L
B = {page date, subject title, item title, item date, item

link, item description}
The Mapping Rule actually describes mapping relations

between elements of the above two sets with XPath. We
have designed a rule merging mechanism, so that the users
needn’t mark all the news in a page. As Figure 2 shows, in
order to extract all the news under the subject title
“BUSINESS”, we only need to mark two items, says the
first one and the second one. The absolute XPath of the
first item title is

1 Here the word “users” refers to the users of the GUI tool who
create Mapping Rules, not the ultimate users.

<?xml version = "1.0" encoding = "UTF-8"?>
<page>
 <link>page URL</link>
 <date>path of page date</date>
 <encoding>page encoding set</encoding>
 <subject path="common path of all elements of the subject">

<title>relative path of subject title</title>
<item path=”common path of all elements of the item”>
 <title>relative path of item title</title>
 <date> relative path of item date</date>
 <link> relative path of item link</link>
 <description> relative path of item description</description>
……….

 </subject>
 <subject path="common path of all elements of the subject">

……….
 </subject>

……….
</page>

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

126

/HTML[0]/BODY[0]/TABLE[0]/TR[0]/DIV[1]/A[0]/TEXT[0],
while the XPath of the second one is
/HTML[0]/BODY[0]/TABLE[0]/TR[0]/DIV[1]/A[1]/TEXT[0].
The system will merge the two paths into
/HTML[0]/BODY[0]/TABLE[0]/TR[0]/DIV[1]/A/TEXT[0] as
the new item title path. The paths of item date, item link,
and item description are processed in the same way. Thus
all the news under “BUSINESS” will be extracted.
Similarly, to extract all news in Figure.2, marking two
subjects is enough.

Figure.2 An example of Marking

2.2 Time Pattern

On news Web pages, a news item is often published with
the corresponding release time (Figure.3). This feature is a
prominent and useful clue for locating and extracting the
target news items. With this characteristic, we design an
algorithm called ATP (Automatic-extraction algorithm
based on Time Pattern discovery).

Figure.3 Time Information on News Pages

Since the formats of date and time are simple and

limited, we can easily construct a database called Time
Pattern DB for storing and managing time patterns, which
are abstract representations of time formats (Table.1).

Table.1 : Some Typical Time Formats and the
Corresponding Time Patterns

2.2.1 Discovery of Time Nodes

We use regular expressions to discover text nodes
matching time patterns specified in Time Pattern DB (we
call these nodes time nodes), when pre-order traversing the
DOM tree.

We first generate a regular expression for each time
pattern, e.g. ((0?[1-9]|1[0-2])/(0?[1-9]|[1-2][0-9]|3[0-1])
for mm/dd. For every text node, we try to match its text
with the longest time pattern. That is, for text 2005-04-06,
we'll match it with time pattern yyyy-mm-dd, neither
mm-dd nor yyyy-mm. After traversing the tree, we group
the nodes matching the same time pattern. Sometimes
there are multiple time patterns in a page, and we can
select all groups, or just one group of a certain pattern
selected by a heuristic rule. To refine the result, you can
also specify certain time patterns. Thus, all nodes matching
the specified patterns are selected.

2.2.2 Block-Dividing of Time Nodes
Before further extraction, we group the time nodes by their
addresses. For easily processing, we use numbers to
represent the addresses instead of XPath. The address
consists of numbers joined by a dot, starting with ‘0’, and
followed by the order (index of the node in its parent’s
children nodes list) of the nodes which are ancestors of the
current node. As Figure.4 shows, the address array can be
divided into three blocks.

Figure.4 the Address

Array of time nodes
in Figure.3

Figure.5 Block-Dividing

algorithm (on Left)

Time Format Time Pattern
2004-07-09 21:08:03 yyyy-mm-dd hh:ff:ss

28 日 18：46 dd 日 hh：ff
Mar 15 2005 mmm dd yyyy
2005-March yyy-mmmm
12 時 23 分 hh 時 ff 分

2005 年 5 月 15 日 yyyy 年 mm 月 dd 日

Block-Dividing (addrVect, n) {
if(addrVect.size() == 0) return;
if (addrVect.size() == 1) {

blockVect.push(addrVect);
return; }

for(;n<MAXLEN; n++) {
int count = GetDiffCount(n);
if(n == 1) continue;
if(n == addrVect.size()) {

blockVect.push(addrVect);
return; }

//dividing otherwise
int offset = addrVect.at(0)[n];
vector newVect;
for(int j=0; j<addrVect.size();) {

if(offset == addrVect.at(j)[n]) {
newVect.push(addrVect.at(j);
addrVect.erase(j); }

else {
Block-Dividing (newVect, n+1);
NewVect.clear();
j = 0; }

}
Block-Dividing(addrVect, n+1);

}
}

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

127

Function GetDiffCount(n) computes the count of the
different values in the column n of the address array. Only
if the count is larger than 1 and smaller than the number of
the addresses, we divide the address array.

2.2.3 Extraction from Time Nodes
For each block, news items in it often belong to a same
subject (Figure.3). As a result, before extracting news
items in a block, we discover the subject title of the block
first. The pseudocode in Figure.6 describes the algorithm.

Figure.6 News-Extracting algorithm

3. Implementation

3.1 Feed Server

We constructed a feed server with Apache Tomcat, on Red
Hat Linux platform. In the database, we stored all the
URLs and the related information including Update
Frequency, Last Update Time, Update Algorithm (Mapping
Rule or Time Pattern), Rule File (the Mapping Rule
content) and RSS File (the RSS file content).

To help the ultimate users access RSS files conveniently,
we wrote a JSP program, which fetches and analyzes users'
requests, then queries in the database to get the required
RSS files and returns to users. The user only needs to open
his browser and type the request URL, which may like this,
http://AddressOfOurFeedServer/RssRequest?url=YourURL
.

3.2 Update Crawler

The crawler is a Java application, which updates the RSS
files in the database constantly. It maintains a thread pool,
in which the number of threads can be specified when the

crawler is started. When it works, it collects all the URLs
from database and assigns the same amount of URLs to
each thread. Before a thread updates the RSS for a URL, it
first compares the value of Last Update to the current
system time. Only when the interval between them is
larger than the Update Frequency, the RSS will be updated.
As the module for extracting information and generating
RSS was implemented in C, to use it in the crawler, we
adopted a technique called JNI (Java Native Interface [8]).

In practice, we also applied some additional strategies to
the crawler, in order to improve the system performance.
For example, a fresh URL, which is newly inserted to the
database, has a priority to those that have been in the
database for a period of time when the crawler updates the
database. For an advanced option, you can also designate
how many threads to update RSS for fresh URLs, and how
many for normal URLs.

4. Experiments

We conducted several experiments to measure and evaluate
the performance of the HTML2RSS system.

4.1 Efficiency

We selected 125 news pages as the test set, in which there
were 50 pages from Chinese news Web sites, 50 pages
from Japanese news sites, and 25 pages from English sites,
all with time information around the news items. Pages
from English sites were much less because news is
released without time information on most English news
pages.

The experiments were performed on a PC with Intel P4
1.6G CPU and 512M RAM. The operating system was
Microsoft Windows 2000. Firstly, we tested the efficiency
of the two algorithms discussed in Chapter 2.

We inserted the URLs of the 125 pages, together with
the rule files, into the database, and started the Update
Crawler. As fresh URLs, they would be updated
immediately. The following figure shows the test result.
The abscissa indicates the number of the threads used for
updating, and the ordinate denotes the total time (in second)
for updating 125 pages.

0

50

100

150

200

250

300

350

1 5 10 40

Threads

Time

SAMR ATP

 Figure.7 Efficiency Test for the Two Algorithms

News-Extracting (blockVect) {
 for each block in blockVect
 {
 SubTitle = FindSubject(CurrentBlock);
 for each time node in CurrentBlock
 {
 ItemDate = GetText(TimeNode);
 UpBounds = FindUpBound(TimeNode);
 DownBounds = FindUpBound(nextTimeNode);
 for each node between UpBounds and DownBounds:
 {
 ItemTitle = ItemLink = ItemDes = "";
 if(tag name of Node is "a") {
 if(ItemTitle is not empty) {
 AddItem(SubTitle, ItemDate, ItemTitle, ItemLink, ItemDes);
 ItemTitle = ItemLink = ItemDes = ""; }
 ItemLink = GetLink(Node);
 ItemTitle += GetText(Node); }
 if(Node is a text node) ItemDes += GetText(Node);
 }
 if(ItemTitle is not empty)
 AddItem(SubTitle, ItemDate, ItemTitle, ItemLink, ItemDes);
 }
 }
}

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

128

Actually, for each page, downloading it from the Web
site takes considerable time, and RSS generating usually
takes less than one second. From Figure.7, we can see that
if we run the crawler with multithread, the efficiency will
increase greatly. But as the number of threads increases
further more, the performance improves much less. We
consider that it was due to the bandwidth limitation of the
network.

4.2 Accuracy

As the evaluation of RSS files is subjective, to improve
the reliability, we invited 30 persons to help us. Among
them, there are college students, company staffers, and
plain users who often browse news on Web. The
participants were asked to browse both the HTML pages
and the corresponding RSS files, and then give a mark for
each RSS file (the mark ranges from 0 to 5, and the higher,
the better) in their own opinions (Table.2).

Table.2 : the Average Marks by Users

Algorithm
Page

SAMR ATP

Chinese (50) 4.71 4.60
Japanese (50) 4.62 4.62
English (25) 4.33 4.15

Total 4.60 4.52

Table.3 : the Average Occupancy of RSS
Algorithm

Page
SAMR ATP

Chinese (50) 96% 85%
Japanese (50) 94% 88%
English (25) 90% 73%

Total 94% 84%

Table.3 : the Average Accuracy of RSS
Algorithm

Page
SAMR ATP

Chinese (50) 96% 96%
Japanese (50) 91% 92%
English (25) 95% 95%

Total 94% 94%

We also computed the occupancy and accuracy of each
RSS file (Table.3 and Table.4), by defining them as
follows.
Definition 6. The occupancy of a RSS file is the ratio of
useful news in the RSS file to all useful news contained in
the Web page.

i.e. occupancy = number of news items in RSS / number of all
news items in page
Definition 7. The accuracy of a RSS file is the ratio of

useful news items in the RSS file to all items in the RSS
file.

i.e. accuracy = number of news items in RSS / number of all
items in RSS

Compared to ATP, although SAMR is more accurate and
can be applied to almost any news Web page, it needs
manual work during creating Mapping Rules, which will
take much more time than RSS generating. Sometimes it’s
troublesome to mark on a page with complex structure. As
a result, the two algorithms have their respective
advantages and disadvantages. Choosing which algorithm
for every news page is a problem.

5. Conclusion and Future Works

Now HTML2RSS has been put into practice and it
performs well, according to the users' feedback. As Web
pages have diverse contents and structures, HTML2RSS
has its limitations and still needs further improvement.

At present it mainly deals with pages from news and
BLOG sites, but the application fields can be extended as
the system improved. The idea of time pattern discovery
can be extended to mine other distinct format patterns,
such as currency patterns, which can be used to extract
information about products (such as the name, price and
description of the products) from pages on e-commercial
sites.

Besides SAMR and ATP, We have designed another
algorithm ARP for extracting target information from Web
pages (Automatic-extraction based on Repeated tag
Pattern discovery) and now are testing it in our system. We
will discuss the details of ARP in future.

References

[1] S. Brin, and L. Page, The Anatomy of a Large-Scale
Hypertextual Web Search Engine, In the 7th
International World Wide Web Conference, 1998.

[2] D. Cai, S.P. Yu, J.R. Wen and W.Y. Ma, Extracting
Content Structure for Web Pages based on Visual
Representation, In the Fifth Asia Pacific Web
Conference (APWeb2003), 2003.

[3] S. Chakrabarti, Integrating the Document Object Model
with hyperlinks for enhanced topic distillation and
information extraction, In the 10th International World
Wide Web Conference, 2001.

[4] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, and
A. Crespo, Extracting Semistructured Information from
the Web, In Proceedings of the Workshop on
Management fo Semistructured Data, 1997, pp. 18-25.

[5] C.N. Hsu, and M.T. Dung, Generating Finite-state
Transducers for Semi-structured Data Extraction from
the Web, Information Systems, 23(8):521-538, 1998.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

129

[6] J. Kleinberg, Authoritative Sources in a Hyperlinked
Environment, Journal of the ACM, 46(5):604-632,
1999.

[7] S.H. Lin and J.M.Ho, Discovering Informative Content
Blocks from Web Documents, In Proceedings of ACM
SIGKDD'02, 2002.

[8] Sun Microsystems, Inc. Java Native Interface,
http://java.sun.com/docs/books/tutorial/native1.1/.

[9] O'Reilly Media, Inc. What is RSS?
http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html

[10] World Wide Web Consortium. HTML 4.01
Specification,
http://www.w3.org/TR/1999/REC-html401-19991224, 1999.

[11] World Wide Web Consortium. XML Path Language
(XPath), http://www.w3.org/TR/xpath, 1999.

