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Summary 
Based on the basic theory of fuzzy set, this paper suggests the 
notion of FCM fuzzy set, which is subject to the constraint 
condition of fuzzy c-means clustering algorithm. The cluster 
fuzzy degree and the lattice degree of approaching for the FCM 
fuzzy set are presented, and their functions in the validation 
process of fuzzy clustering are deeply analyzed. A new cluster 
validity index is proposed, in which the two factors such as the 
cluster fuzzy degree and the lattice degree of approaching are 
taken into comprehensive account. The notable advantage of the 
index is that it can adaptively adjust the relative significance 
levels of the two factors. Also, this paper gives the algorithm to 
apply the cluster validity index to the cluster validation for the 
fuzzy c-means algorithm. The experimental results indicate the 
effectiveness and adaptability of the proposed cluster validity 
index. 
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1. Introduction 

Fuzzy clustering analysis is an important research project 
in knowledge discovery and data mining. In practical 
applications, we have the scientific data survey, database 
analysis, customer relations management, medicine 
diagnosis, weather forecast, water analysis, etc. How to 
determine the optimal partition and optimal number of 
clusters for fuzzy partitions belongs to clustering validity 
problems, being one of the most important issues related 
to fuzzy clustering analysis. The construction of cluster 
validity indexes is a common method for solving the 
problem. In the fields of fuzzy clustering analysis, the 
fuzzy c-means (FCM) algorithm [1] is one of the most 
widely used methods, and many cluster validity indexes 
suitable for the algorithm have been proposed. Bezdek's 
partition coefficient (PC) [2] and partition entropy (PE) [3] 
are defined based on the membership values of a fuzzy 
partition. With the evident mathematical significance and 
good mathematical character, and the advantages of 
simplicity and high-effect, both of them have been 
frequently used. However, the two indexes use only the 
membership values of a fuzzy partition of data and may be 
lack for the connection to the geometrical structure of the 
data [4]. To solve this problem, investigators have 

advanced a number of fuzzy cluster validity indexes that 
include both the membership values of a fuzzy partition 
and the information of data structure of the clusters,  for 
example the traditional XB, Vk, FS [5,6,7] , and the 
PACES, FSα [4,8] appeared recently in literature, etc. 
Cluster properties such as compactness and separation are 
often considered as major characteristics by which to 
validate clusters [9]. Compactness is used as a measure of 
the closeness or scattering within clusters, and separation 
as a measure of the isolation of clusters from each other. A 
good clustering result should have the properties of being 
both small intra-cluster compactness and large inter-
cluster separation at the same time.  
   The main objective of our paper is to design a cluster 
validity index that is suitable for FCM. Considering the 
constraint condition, the fuzzy partition obtained from 
FCM clustering algorithm has been defined as the FCM 
fuzzy set in this paper. Based on the definition, we further 
advance the cluster fuzzy degree and the lattice degree of 
approaching of the FCM fuzzy set and they are used as the 
measure of compactness and separation of fuzzy partition 
of data respectively. A new adaptive cluster validity index 
is designed, in which the fuzzy degree and the lattice 
degree of approaching are taken into comprehensive 
account. In the index, the two measures are in the 
symmetric position such that their important levels depend 
on the values themselves. Thus, the proposed cluster 
validity index can adaptively adjust the impact degree of 
the two factors. Also, the FCM validation algorithm is 
suggested in this paper. Experimental results on artificial 
and real-life data sets indicate that the index is stable and 
adaptive. 
   The remainder of this paper is organized as follows: 
Section 2 gives a brief introduction of FCM clustering 
algorithm and some cluster validity indexes suitable for 
the algorithm. Section 3 presents the notion of FCM fuzzy 
set and the definitions of cluster fuzzy degree and the 
lattice degree of approaching. Experimental results on 
both artificial and real data sets are given in Section 4. We 
conclude the paper and have an outlook for further 
research in the last section. 
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2. Brief introduction of FCM algorithm and 
fuzzy cluster validity indexes 

2.1 Fuzzy c-mean algorithm 

FCM belongs to partition algorithm in the fields of fuzzy 
cluster analysis. The algorithm classifies a set of objects 

},...,,{ 21 nxxxX =  into c homogeneous groups 

represented as fuzzy sets }~,...,~,~{~
21 cFFFF = [9]. The 

objective of FCM is to obtain a fuzzy c-partition. It can be 
stated as a constrained nonlinear optimization problem, 
which minimizes Equation (1), under the constraint of 
Equation (2), as follows: 
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where, ][ , jiuU = is a nc× fuzzy partition matrix, n the 
number of the objects and c the number of clusters. The 
weighting exponent m>1, controls the fuzziness of 
membership. },...,{ 21 cvvvV = is a set of c vectors and each 

civi ,...2,1, = , expresses the center of the ith cluster. ||xj-
vi|| is the Euclidean norm between xj and vi. FCM 
algorithm adopts the alternating optimization strategy, in 
which, )(tU ， )(tV are improved by turns in each iteration 
(where t is the iteration step). The iteration is terminated 
when it reaches a stable condition. The outcome of FCM 
can be denoted by the pair (U,V) [9]. 

2.2 Some cluster validity indexes suitable for FCM 

We can obtain the fuzzy partition of the data set using 
FCM algorithm. However FCM algorithm requires the 
user to pre-define the number of clusters (c), and different 
values of c corresponds to different fuzzy partitions, so the 
validation of clustering results is needed. In practical 
application, we can define cmin and cmax (the minimal and 
the maximal number of clusters) in advance, and then run 
FCM algorithm on each value of c over the range [cmin, 
cmax] to get different fuzzy partitions. Thus, the optimal 
result can be obtained by validating each of the fuzzy 
partitions according to the appropriate cluster validity 
indexes. In recent years, investigators have put forward a 
number of cluster validity indexes that are suitable for 
FCM, some typical ones are as follows. 

   Bezdek advanced two cluster validity indexes [2,3],  the 
partition coefficient (PC) and partition entropy (PE), 
defined as 
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PC and PE is used to measure the fuzziness of the fuzzy 
partition matrix, the lower the fuzziness of a partition is, 
the larger the PC value (or the smaller the PE value). The 
two indexes use only the membership values of the fuzzy 
partition; therefore, they are devoid of connection to the 
structure of the data set.  
   Xie and Beni proposed a validity index (XB) [5] as 
follows: 
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In Eq. (5), the numerator denotes the compactness by the 
sum of square distances within clusters, while the 
denominator denotes separation by the minimal distance 
between clusters. The index is of high reliability and 
accuracy and has been widely uses for fuzzy clustering 
validation. 
   Kwon extended the index XB and proposed a cluster 
validity index Vk [6]: 
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   The validity index, FS, proposed by Fukuyama and 
Sugeno [7] was defined as 
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The first item is the FCM objective function which 
measures the compactness and the second measure the 
separation in Eq. (7).  
   In the Eq. (6) and Eq. (7), ∑ =

=
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i i cvv
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   Wu and Yang [4] proposed )(cPCAES index as follows: 
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PACES index consists of two terms. The first term is the 
normalized partition coefficient to measure the 
compactness. The second term is an exponential-type 
separation measure, which takes advantage of exponential 
function that measures the sum distances between the 
closest pairs of cluster centers [4]. 

(8)
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   Campello and Hruschka [8] proposed a cluster validity 
index, named Fuzzy silhouette (FSα, called in this paper), 
is defined as follows: 
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where up,j and uq,j are the first and second largest elements 
of the jth column of the fuzzy partition matrix respectively, 
α≥ 0 is a weighting coefficient, and sj is the silhouette of 
jth object defined as:  
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where, apj is the average distance of jth object to all other 
objects belonging to pth cluster, while dpj the minimum dqj, 
which is the average distance of jth object to all object 
belonging to another cluster q, q≠p. Exponent αis an 
optional parameter (unit by default) [8]. It can be known 
that the apj and bpj represent the compactness and the 
separation respectively. Campello and Hruschka pointed 
out that the time complexity of computing sj for all objects 
is O(n2). In order to reduce the computational burden, the 
simplified method based on the distances among the 
objects and the cluster centers of the corresponding 
clusters[10] are used in the literature [8]. This 
modification has shown not to degrade accuracy while 
being able to significantly reduce the time complexity to 
O(n) [8]. 
   To sum up the above descriptions, the major cluster 
properties such as compactness and separation are used in 
most of the cluster validity indexes proposed in recent 
decades, and obtaining the minimum compactness of intra-
cluster under the premise of the as large as possible 
separation of inter-clusters in the fuzzy partition is a 
fundamental characteristic of fuzzy cluster validity 
indexes. 

3. The proposed cluster validity index 

3.1 The measure of compactness 

In the fuzzy cluster validity indexes, 
)1(||||

1
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ji  is a usual type of the 

compactness measure, in which both square distances and 
membership values of fuzzy partition are considered at the 
same time. However, the measure suffers from a tendency 
to monotonically decrease when the number of clusters to 
the number of objects, because 0||||lim =−

→ ijnc
vx  [6]. Also, 

it is difficult to distinguish between the two clusters by the 
measure in some special cases [9]. Thus, there are some 
limitations in using of the measure of compactness. If 

using only the distances within clusters to measure the 
compactness of fuzzy partition, the process of 
defuzzification is required in advance. This method will 
lead to an extra computational error, obviously. In 
literature [13] and [9], the inclusion degree and overlap 
degree between clusters are respectively used as the 
measures of compactness. However, these measures are 
indirect, and some relevant parameters are needed to 
provide in advance for the overlap degree measure. To 
tackle these problems, we define the cluster fuzzy degree 
to measure the compactness of a fuzzy partition obtained 
from FCM algorithm. 
   Definition 1. Let },...,,{ 21 nXXXX =  be a n-data set 
and c× n fuzzy partition matrix ][ , jiuU =  satisfy the 
constraint conditions (2), and then FCM fuzzy set 

},...,1{,~ ciUFi ∈∈ is defined as follows: 
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We adopt L. Zadeh's [11] convenient expressions in Eq. 
(11). It can be known from Definition 1 that the FCM 
fuzzy set is derived from c-fuzzy sets that satisfy the 
constraint condition (2) of FCM. 
   Definition 2. The cluster fuzzy degree of FCM fuzzy set 
is defined as follows: 
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   The cluster fuzzy degree is defined on the FCM cluster 
fuzzy set, so it is suitable for the FCM clustering. 
Following from Definition 2 immediately, we have 
   Property 1. cccUDi /)1();(0 −≤≤ , 1);(0 −≤≤ ccUD  
   Property 2. 0);( =cUD iff U is crisp.  
   Property 3. 1);( −= ccUD  iff ]/1[ cU =  
   The more distinct the fuzzy partition is, the smaller the 
value of cluster fuzzy degree is, and reaches its minimum 
(zero) under the condition of crisp partition (the most 
distinct). On the contrary, the fuzzier the partition is, the 
larger the value of cluster fuzzy degree is. If every object 
belongs to all clusters uniformly, i.e. 

cu ji /1, = )1,1( cinj ≤≤≤≤ , the cluster fuzzy degree 
takes its maximum, c-1, which is the fuzziest state of a 
fuzzy partition. In the FCM cluster algorithm, ui,j, the 
value of membership of an object xj to the jth cluster, is 
dependent on ||xj-vi||, the distance between object xj and 
cluster center vi. The larger the different of distances of an 
object to all cluster centers, the more clearly the object 
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belongs to the cluster being the closest to the object, and 
the further the distribution of fuzzy partition deviate from 
the fuzziest state. As a result the cluster fuzzy degree will 
be smaller, which corresponds to a better property of the 
fuzzy partition. On the basis of the above analysis, the 
cluster fuzzy degree can be used as the measure of 
compactness of fuzzy partitions. 

3.2 The separation measure 

In most of fuzzy cluster validity indexes, such as the 
above-mentioned indexes, XB, Vk, FS, and PACES, the 
separation measures are calculated based on the distances 
among cluster centers, i.e. jivv ji ≠− ||,|| . However, the 
measures have a limited capacity to differentiate the 
geometric structures of clusters because the calculation is 
based only on centroids information and does not consider 
the overall cluster shape [9]. To overcome the 
shortcomings, the lattice degree of approaching is used as 
a measure of separation in this paper. The lattice degree of 
approaching is calculated from the fuzzy partition matrix, 
in which the membership values of all objects belonging 
to each cluster centers are included. We introduce the 
definition of lattice degree of approaching usual used in 
fuzzy set to the FCM fuzzy set. 
   Definition 3. Let the FCM fuzzy set UFF ki ∈

~,~  
},...2,1{, cki ∈ , the lattice degree of approaching is defined 

as follows: 
   ])~ˆ~(),~~min[()~,~( c

kikiki FFFFFFN oo=   (15) 

where, )()~~( ,,1 jkji

n

jki uuFF ∧∨=
=

o  is a inner product, and 

)()~ˆ~( ,,1 jkji

n

jki uuFF ∨∧=
=

o  a outer product. ∨∧,  and 

c)(⋅  denote operators of maximization, minimization and 

complementation respectively. Let a FCM fuzzy set iF~  be 

fixed, if FCM fuzzy set kF~  (k ≠ i)  approaches iF~  
gradually, the inner product will increase while the out 
product decrease. As a result, the lattice degree of 
approaching will get larger. Thus, the lattice degree of 
approaching can measure the degree of similarity between 
FCM fuzzy sets. 
   According to the basic fuzzy set theory, the lattice 
degree of approaching satisfies the following properties. 
   Property 1. 1)~,~(0 ≤≤ ki FFN  

   Property 2. )~,~()~,~( ikki FFNFFN =  
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   In this paper, the lattice degree of approaching is used as 
a measure of the separation of a fuzzy partition. The 
smaller the measure is, the larger the degree of separation, 
and the better the result of clustering. 

3.3 The proposed cluster validity index 

Based on above-mentioned measures of compactness and 
separation, an adaptive cluster validity index is advanced 
in this paragraph. 
   Definition 4. Let U be a c×n fuzzy partition matrix, the 
cluster validity index DN(U;c) is defined as follows: 
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   According to the Property 1 of lattice degree of 
approaching the value of NM in (18) will belong to 
interval [0,1]. We exploit the maximum value of lattice 
degree of approaching to measure the separation of a 
fuzzy partition in the cluster validity index. It is worth 
noticing that the maximum value is corresponding to the 
closest pair of cluster centers, which is the most 
unfavorable case for the fuzzy partition. From this 
viewpoint, the measure NM in (18) is similar to the 
separation measure ||||min kiki

vv −
≠

in (5) defined by the XB 

index. The main purpose of introducing the term 
)1/(1 −c into DC in (17) lies in counteracting the 

interference of the changing in number of clusters (c), and 
having the value of DC limited to the interval [0,1] so as 
to match with NM in value. 
   The cluster validity index DN can comprehensively 
reflect the two factors of DC ad NM. It is easy to proof 
that DN is the monotonic increasing function with respect 
to DC and NM. Because the values of both DC and NM 
belong to the interval [0,1], we have DN ∈ [0,1] and, 
DN=0 iff DC=0 or NM=0 or DC=NM=0; DN=1,iff 
DC=NM=1. It can be known from Definition 4 that DC and 
NM in DN are two symmetrical terms. When DC and NM 
values are closer, they will have the similar effect upon 
DN; when the value of one of the terms is much smaller 
than that of the other, the term having the small value will 
have the greater effect upon DN. Hence, DC and NM can 
act on the cluster validity index DN adaptively. In some 
practical application, as the cluster shapes in data sets are 
possibly quite different, the sensitivity of DC and NM in 
the cluster validation is also quite different under such 
situation. It just because DN can automatically adjust the 

Property 3 
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relative significance levels of the two factors, DC and NM, 
the cluster validity index has a better discriminating ability 
in various kinds of cluster shapes. In Eq. (16), the term 
DC indicates the compactness of a fuzzy partition, while 
the term NM indicates the degree of the separation 
between clusters. A good fuzzy partition produces a small 
value of the DC, and that well-separated cluster centers 
will bring a small value of NM. Thus, the smaller the DN 
is, the better the performance of fuzzy clustering, and the 
most desirable fuzzy clustering result is obtained by 
minimizing DN for c from cmin to cmax. 

3.4 The FCM validation algorithm 

The FCM validation algorithm is described as: 
   1. Initialization: Chose a cluster validity that is suitable 
for FCM, set the initial values : cmin, cmax, TIME, and m 
(weighting exponent used in FCM), and let c=cmin 
   2. Run FCM algorithm TIME times and select the 
optimal (U,V) (corresponding to the minimum of Jm(U,V) ) 
   3. Compute and store the value of the cluster validity 
index  
   4. if c<cmax，then c←c+1 and go to 2, else go to 5 
   5. Output the optimal (U*, V*) and the optimal c* 
according to the cluster validity index. 
   The performance of a fuzzy cluster validity index 
depends on the outcome of a fuzzy clustering algorithm, 
and a validity index is not able to provide desirable 
evaluation when the used clustering algorithm is not 
appropriate to the partitioning of a given data set[9]. 
Considering that FCM algorithm is sensitive to the initial-
choices (cluster centers or partition matrix), we run the 
algorithm TIME=100 times starting form random 
initialization of cluster centers for each validating, and the 
optimal (U,V) that is correspondent to the minimum of 
Jm(U,V) is selected as the outcome of FCM in each 
iteration of the FCM validation algorithm.  

4. Experimental results 

Five artificial and two real-life data sets are considered for 
testing the performance of cluster validity indexes. In our 
experiments, we execute The FCM validation algorithm 
defined in 3.4, and the proposed index DN(U;c) is 
compared with seven fuzzy cluster validity indexes 
mentioned in Section 2.2: PC [2], PE [3], XB [5], Vk [6], 
FS [7], PACES [4] and FSα [8]. 

4.1 Data sets  

The artificial data sets, Data_A, Data_B, Data_C, Data_D 
and Data_E, are all uniformly distributed inside the bi-
dimensional region appointed, being illustrated in Figs 1-5, 
respectively. Data_A is comprised of 60 objects that are 

classified into 3 clusters with some "bridge points" in it as 
shown in Fig. 1. The distribution of Data_B are 
demonstrated in Fig. 2, we can see that there are 4 clusters 
in the data set and two of them are adjacent, while the 
others are well separated from each other. As shown in Fig. 
3 Data_C has 300 objects and 5 clusters with 60 objects 
per cluster, which are well separable from each other. 
Data_D has 490 objects, in which 480 objects are 
classified into 6 clusters with 80 objects per cluster, and 
the other 10 objects are the points of noise as shown in Fig. 
4. Data_E is comprised of 400 objects. As displayed in Fig. 
5, there is some overlapping between some clusters. 
Intuitively, the data set should be classified into 8 clusters. 
   The real-life data sets, Iris data set and Cancer data set, 
are both obtained form the UCI Machine Learning 
Repository [14]. Iris data set expresses different categories 
of iris flowers, having 150 objects with 4 numeric 
attributes, namely sepal length, sepal width, petal length, 
and petal width. It has three classes, i.e. Setosa, Versicolor 
and Virginica, each containing 50 objects. It is known that 
two classes Versicolor and Virginica have some overlap 
while the class Setosa is well separated from the other two 
Thus, we can accept that there are 2 or 3 clusters in the Iris 
data set. The Iris data is wildly used for examining the 
performance of clustering algorithms and the cluster 
validity indexes. Cancer data set is the Wisconsin Breast 
Cancer data set, in which contains 699 objects with 9 
numeric attributes, they are Clump Thickness, Uniformity 
of Cell Size, Uniformity of Cell Shape, Marginal 
Adhesion, Single Epithelial Cell Size, Bare Nuclei, Bland 
Chromatin, Normal Nucleoli and Mitoses. The data set has 
two categories: malignant and benign. In addition, there 
are 16 objects that contain a single missing attribute value, 
which are not considered in our experiments. 
   In our experiments, the algorithm proposed in Section 
3.4 is executed for the 5 artificial data sets and 2 real-life 
data sets respectively. We appoint cmin=2. As far as the 
cmax is concerned, its value can often be obtained from the 
domain knowledge; however, as this is not always 
possible, a rule of thumb that many investigators use is 

nc ≤max [5,9,12]. We adopt the upper limit value of the 
range. The parameter TIME=100 is given. Pal and Bezdek 
showed that the FCM algorithm provided the best results 
for ]5.2,5.1[∈m [12], then we take the medium value m=2 
in the experiments.  

4.2 Results 

The variation of the DN index and its two terms, DC and 
NM, with the number of clusters for the above-mentioned 
experimental data sets are shown in Figs. 6-10. 
   Fig.6 shows that the minimal values of NM at c=3 and 
DC at c=8. Although DC does not detect the correct 
cluster number, NM has a steeper valley at c=3 such that 
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the DN index prefers the optimal cluster number. In 
Data_B, there are 4 clusters and two of them are adjacent, 
while the others are well separated from each other, thus 
the NM is acutely changed at about the optimal cluster 
number c=4 as shown in Fig. 7. The term DC reaches the 
valley point at cluster numbers 4, as it play a great role in 
NM for this data set, the index DN can successfully finish 
the validation and the optimal cluster number c=4 is 
obtained. As far as Data_C is concerned, the clusters are 
well separable from each other, as expected, Fig. 8 shows 
that the DN index and its two terms DC and NM arrive at 
the valley points at c=5 simultaneously, and we can see 
that NM has a better resolution performance than DC. Also, 
the clusters in Data_D are well separable form each other, 
but it is different form Data_C that there are some points 
of noise in Data_D data set. In spite of this, the NM still 
has a steeper valley as shown in Fig. 9. In contrast, curve 
of DC is smoother. Under the action of NM and DC 
together the index DN reaches the optimal point at c=6. In 
Data_E there is some overlapping. For this data set, the 
term DC plays a major role than NM in DN index as 
shown in Fig. 10. Although the term NM has a larger value 
than DC such that NM has less effect to the index DN, the 
term NM has a steeper valley. So it enhances the 
examination performance of the index DN to some degree. 
In this Data set, the index DN can also work well. 
   The values of each cluster validity index for the 
experimental data sets are shown in Tables 1-7 
respectively, where the optimum values of indexes are 
presented in boldface.  
   Data_A is comprised of 60 objects and classified into 3 
clusters clearly, although there are some "bridge points" in 
it, every index can correctly find the optimal cluster 
number as indicated in Table 1. In Data_B data set, the 4 
clusters are separated clearly, in which two clusters are 
closer while the others are more distant. From Table 2 it is 
known that the index FS and DN can correctly recognize 
the optimal cluster number, and FSα only obtain the 
approximate result of c=3, while the other indexes do not 
correctly work. The distribution of Data_C is symmetric, 
and the 5 clusters in it are correctly discerned by the 
indexes: PC, XB, Vk, FS, PACES and DN as shown in 
Table 3. There are some points of noise in Data_D, the 
index XB, Vk, FS, PACES, FSα and DN can overcome the 
influence of noise such that the optimal result c=6 can be 
examined. In contrast, PC and PE provide cluster numbers 
c=2 as shown in Table 4. There are 8 clusters in Data_E 
that is a few more cluster number, the index XB, Vk, FS, 
FSα and DN can correctly validate while the others fail to 
do so.  
   As for the real-life Iris data set, it is acceptable that both 
c=2 and c=3 can be used as the optimal cluster number. 
The Table 6 lists the validation results of each index for 
the data set. The optimal c=2 is identified by PC, PE, XB, 

Vk, PACES, FSα and DN, while only the FS index yield 
cluster number c=5. In the other real-life data set, the 
cancer data set, we have the optimal cluster number c=2. 
From Table 7, we can know that the index PC, PE, XB, Vk, 
PACES and DN provide the optimal value at c=2, but the 
index FS and FSα are wrong for the data set. 
   Table 8 summarizes the results obtained when the above 
validity indexes are applied to the artificial and real-life 
data sets. In the Table, the column coptimal expresses the 
optimal number of clusters for each data set and the other 
columns show the optimal cluster numbers obtained from 
each validity index. The last row indicates the accuracy, 
i.e. the ratio of the number of data sets that are correctly 
validated by the cluster validity index in corresponding 
column and the total of data sets. We can observe that the 
proposed cluster validity index DN has the highest 
accuracy of the indexes considered. 
 

 

Fig. 1  Data_A data set 

 

 

Fig. 2  Data_B data set 
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Fig. 3  Data_C data Set 

 

Fig. 4  Data_D data set. 

 

Fig. 5  Data_E data set. 

 

 

Fig. 6  Variation of the DN, DC and NM with the number of clusters for 
Data_A. 

 

Fig. 7  Variation of the DN, DC and NM with the number of clusters for 
Data_B. 

Fig. 8  Variation of the DN, DC and NM with the number of clusters for 
Data_C. 
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Fig. 9  Variation of the DN, DC and NM with the number of clusters for 

Data_D. 
Fig. 10  Variation of the DN, DC and NM with the number of clusters for 

Data_E. 
 

Table 1. Cluster validity value for Data_A data set 
 

c PC PE XB Vk FS PACES FSα DN 
2 0.717907 0.43657 0.253279 15.4467 38.0565 1.89149 0.632466 0.449523

3 0.78833 0.41852 0.05924 3.91529 -169.97 2.80754 0.76035 0.18523

4 0.694391 0.609075 0.114483 7.7477 -162.943 2.26164 0.697261 0.212696

5 0.633037 0.745828 0.334781 23.5366 -163.689 0.957353 0.669325 0.225353

6 0.581302 0.855665 0.266549 19.9055 -153.968 0.142718 0.619255 0.239482

7 0.578629 0.894818 0.193881 15.5662 -163.59 1.52618 0.644751 0.214932

8 0.570312 0.943899 0.154688 13.0464 -166.57 1.1012 0.655424 0.191606

Table 2. Cluster validity value for Data_B data set 
c PC PE XB Vk FS PACES FSα DN 
2 0.90999 0.18391 0.04754 15.4628 -2575.05 1.92965 0.78948 0.123082

3 0.895088 0.229788 0.096144 31.965 -3583.82 1.18534 0.82993 0.084807

4 0.891205 0.238918 0.054949 19.9247 -3653.8 1.62214 0.821602 0.07318

5 0.821232 0.362328 0.41685 154.824 -3595.36 0.069141 0.780002 0.116415

6 0.758776 0.476893 0.331143 129.545 -3094.67 -1.58631 0.737225 0.144094

7 0.710105 0.564557 0.274648 111.599 -2964.06 -2.69017 0.673697 0.164517

8 0.6743 0.633289 0.212948 90.7198 -2836.52 -1.22183 0.63449 0.173598

9 0.652746 0.688439 0.360252 158.595 -2796.37 -2.40878 0.63764 0.173658

10 0.627307 0.751592 0.390907 176.072 -2674.23 -2.7965 0.632401 0.177553

11 0.620138 0.778612 0.358626 168.148 -2679.66 -3.04609 0.640839 0.166914

12 0.599727 0.834893 0.404284 202.879 -2506.11 -5.64023 0.642695 0.17024

13 0.593443 0.865882 0.329548 160.331 -2577.81 -4.89203 0.653765 0.167156

14 0.580713 0.909997 0.311471 154.04 -2496.52 -5.55757 0.660653 0.167326

15 0.584568 0.907383 0.273262 144.635 -2497.63 -5.4117 0.668671 0.161349
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Table 3. Cluster validity value for Data_C data set 
c PC PE XB Vk FS PACES FSα DN 
2 0.662822 0.51401 0.347776 104.583 118.309 1.95388 0.511135 0.480961

3 0.653924 0.618972 0.125014 37.8528 -100.064 2.48942 0.680572 0.321761

4 0.743706 0.52889 0.054877 16.994 -318.574 3.33579 0.80026 0.196307

5 0.7688 0.521067 0.05317 16.8096 -342.35 3.33582 0.77377 0.10933

6 0.715155 0.633081 0.409304 130.74 -337.77 1.62945 0.747637 0.142393

7 0.670341 0.728931 0.346188 112.263 -307.15 -0.06343 0.721368 0.153258

8 0.638778 0.796174 0.295515 97.3355 -306.864 -1.66013 0.691204 0.165522

9 0.617947 0.863065 0.285866 94.9036 -300.704 -2.51452 0.698925 0.162777

10 0.595571 0.918822 0.280587 93.6427 -296.571 -3.24794 0.677133 0.169631

11 0.569326 0.970828 0.248969 85.5558 -276.462 -1.12418 0.628183 0.174458

12 0.573157 0.986365 0.189081 65.4294 -275.868 -1.27442 0.654324 0.161508

13 0.566736 1.01427 0.16902 59.6568 -271.899 -2.12502 0.66248 0.164237

14 0.555051 1.04932 0.187455 67.6596 -271.052 -2.56168 0.655751 0.164727

15 0.554185 1.06479 0.255923 94.4244 -284.276 -4.5834 0.673213 0.163918

Table 4. Cluster validity value for Data_D data set 
c PC PE XB Vk FS PACES FSα DN 
2 0.79551 0.33986 0.115832 57.0075 -468.149 1.94358 0.691938 0.349093

3 0.694361 0.556088 0.191033 94.3278 -751.929 1.83221 0.67249 0.290824

4 0.68218 0.632649 0.111323 55.3446 -970.371 2.19397 0.689987 0.217821

5 0.68277 0.669871 0.13078 65.5763 -1173.53 1.62344 0.711313 0.179818

6 0.694526 0.673733 0.10603 54.0547 -1309 2.83438 0.72675 0.14499

7 0.656996 0.764082 0.189353 97.2691 -1308.05 1.38258 0.719184 0.159115

8 0.621141 0.849361 0.237335 122.717 -1237.77 0.133122 0.702011 0.170465

9 0.597376 0.915847 0.245337 128.261 -1198.91 -0.81367 0.693468 0.16993

10 0.578514 0.964591 0.25149 132.48 -1177.73 -1.42709 0.676501 0.17809

11 0.570492 0.99286 0.218359 116.054 -1169.23 -2.60876 0.665802 0.176957

12 0.558055 1.04528 0.276692 148.004 -1155.49 -3.46056 0.678192 0.171706

13 0.548339 1.06907 0.239029 129.712 -1132.3 -1.32462 0.659903 0.171441

14 0.535508 1.11233 0.221208 120.918 -1114.36 -2.45799 0.662066 0.17047

15 0.525838 1.15331 0.232902 128.373 -1096.1 -3.06898 0.661184 0.173171

Table 5. Cluster validity value for Data_E data set 
c PC PE XB Vk FS PACES FSα DN 
2 0.75552 0.39101 0.15924 63.9458 -82.0912 1.94124 0.659599 0.400286

3 0.594601 0.705188 0.224432 90.3998 -196.361 2.25491 0.552711 0.366068

4 0.577277 0.799811 0.196535 79.779 -431.872 1.81867 0.633739 0.325125

5 0.605335 0.806627 0.090208 37.0885 -661.777 2.73353 0.723333 0.254295

6 0.646228 0.774014 0.078865 32.8561 -757.442 3.62034 0.769347 0.209718

7 0.655341 0.78293 0.081482 34.3136 -777.748 2.94469 0.76699 0.174396

8 0.670109 0.769567 0.06264 26.7605 -789.89 3.21537 0.77084 0.13338

9 0.646533 0.839803 0.194469 83.3159 -766.287 2.09655 0.764381 0.140938

10 0.625762 0.892571 0.21686 94.3074 -753.197 0.575882 0.749632 0.14626

11 0.61004 0.936029 0.22222 97.8051 -755.809 -0.96664 0.737718 0.150237

12 0.593829 0.987371 0.25876 114.249 -748.259 -2.20504 0.730073 0.156873

13 0.564428 1.05635 0.301355 134.831 -704.223 -3.88959 0.699977 0.163652

14 0.555949 1.08662 0.28858 130.323 -662.488 -3.88495 0.688237 0.164556

15 0.546322 1.12379 0.274431 124.713 -662.74 -5.34366 0.687569 0.163013
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Table 6. Cluster validity value for the Iris data set 
c PC PE XB Vk FS PACES FSα DN 
2 0.89202 0.19606 0.05425 8.38702 -401.073 1.57435 0.8052 0.20931

3 0.783196 0.395927 0.137108 21.9837 -449.735 1.43672 0.73829 0.228204

4 0.706524 0.56173 0.195753 32.0404 -475.062 0.246231 0.712571 0.21931

5 0.665464 0.675854 0.228209 38.3145 -543.86 -0.83608 0.703556 0.209765

6 0.597752 0.796956 0.301621 54.2332 -392.182 -0.07311 0.599421 0.228372

7 0.55697 0.907886 0.373145 68.3604 -399.107 -1.30135 0.597351 0.235752

8 0.534346 0.98472 0.25315 46.8747 -393.286 -2.27352 0.599586 0.235567

9 0.496311 1.07288 0.373904 72.6405 -332.005 -1.53992 0.580652 0.241001

10 0.472859 1.14613 0.328013 65.6562 -332.004 -2.87783 0.575366 0.243481

11 0.462675 1.19794 0.30272 61.6189 -330.858 -3.76337 0.58116 0.239209

12 0.450905 1.2475 0.395271 81.322 -329.749 -4.93582 0.584671 0.237494

Table 7. Cluster validity value for the Cancer data set 
c PC PE XB Vk FS PACES FSα DN 
2 0.8409 0.26668 0.11032 75.599 -13508.1 1.30428 0.761968 0.29563

3 0.715577 0.50641 1.21502 833.701 -25728.2 -0.31611 0.772319 0.321573

4 0.640335 0.698262 7.99857 5490.88 -31025 -1.4738 0.78493 0.303156

5 0.489004 0.959756 802.516 552898 -16542 -2.40121 0.533705 0.37474

6 0.463938 1.06667 1162.68 801812 -20133.9 -3.40966 0.560177 0.368005

7 0.364448 1.29084 693.82 479709 -12118.5 -4.25905 0.479503 0.379245

8 0.351203 1.366 1307.98 905573 -14042.3 -5.2789 0.47525 0.382447

9 0.342588 1.43248 452.299 313439 -15818.6 -6.28647 0.497428 0.369175

10 0.301087 1.57226 1853.19 1287430 -12002.4 -7.05034 0.507574 0.3475

11 0.283688 1.64406 36308.1 25255200 -12494.3 -8.1859 0.515976 0.35236

12 0.274435 1.7006 2427.45 1689990 -13258.3 -9.21378 0.52687 0.353241

13 0.256133 1.78838 7506.32 5243300 -10872.6 -8.65539 0.526126 0.35927

14 0.251199 1.83203 3872.6 2708090 -11650.5 -9.67722 0.544633 0.359416

15 0.244489 1.89451 715.938 501612 -10822.7 -10.4992 0.571269 0.359949

Table 8. Values of preferred by validity indexes for the experimental data sets  
Data set coptimal PC PE XB Vk FS PACES FSα DN 
Data_A 3 3 3 3 3 3 3 3 3 

Data_B 4 2 2 2 2 4 2 3 4 

Data_C 5 5 2 5 5 5 5 4 5 

Data_D 6 2 2 6 6 6 6 6 6 

Data_E 8 2 2 8 8 8 6 8 8 

iris 2 or 3 2 2 2 2 5 2 2 2 

breast 2 2 2 2 2 4 2 3 2 

accuracy -- 4/7 3/7 6/7 6/7 5/7 5/7 4/7 7/7 

 
 

5. Conclusions 

This paper applies fuzzy set theory to the clustering 
analysis, and further proposes the notion of FCM fuzzy set, 
which subject to the constraints of FCM. The cluster fuzzy 
degree and the lattice degree of approaching for the FCM 
fuzzy set is defined; the former is used as the measure of 
compactness and the latter used as the measure of 
separation of a fuzzy partition matrix obtained using FCM 

algorithm, and their functions in the process of validation 
are deeply analyzed. The two measures express two 
aspects of clustering process respectively. Compactness is 
used as a measure of the closeness or scattering of clusters, 
and separation as a measure of the isolation of clusters 
from one another. A good clustering result will have small 
intra-cluster compactness and large inter-cluster separation. 
The new adaptive cluster validity index, called DN is 
designed, which consists of two terms: DC and NM, where 
DC is a type of normalized cluster fuzzy degree and NM is 
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the maximum of lattice degree of approaching 
corresponding to the nearest pair of cluster centers. In 
order to take the effect of the two terms upon the cluster 
validation into comprehensive consideration, DC and NM 
are in the symmetric position, whereby rendering the 
cluster validity index DN to be able to adjust the action 
level of DC and NM adaptively. When DC and NM values 
are closer, they will have the similar effect upon DN; 
when the value of one of the terms is much smaller than 
that of the other, the term having the small value will have 
the greater effect upon the index. Also, this paper proposes 
the FCM validation algorithm, in which the FCM 
algorithm is repetitiously executed to obtain the optimal 
clustering result. Experimental results indicate that the DN 
cluster validity index is stable and adaptive. The future 
research work will include the further improvement of the 
validation efficiency as well as the practical applications 
of the cluster validity index.  
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