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Summary 
Increasing applications of mobile communication services makes 
the challenges in location estimation as a fundamental problem 
in many applications. There are error sources such as multipath 
fading, Non Line of Sight (NLoS) propagation and multi-user 
interferences that deteriorate the accuracy of location estimation. 
To mitigate this errors two approach is feasible, statistical 
methods and geometric optimization algorithms. In this paper we 
focus on NLoS error and employ the time of arrival (ToA) for 
range measurement. A new location estimation is proposed based 
on geometric optimization approach that adopts the interior point 
method (IPM) for better location estimation, which is a non 
linear constrained optimization method. This method has a 
salient feature that can solve optimization problems including 
more inequality constraints than equality constraints. The 
estimation can be network or terminal based and doesn’t 
discriminate between LoS and NLoS base stations. The proposed 
algorithm requires ToA measurements only from three BSs and 
doesn't require any priori probabilistic information. Simulations 
were conducted to evaluate the performance of the algorithm for 
different NLoS error distributions, and the results show 
significant improvement than previous works such as range 
scaling (RSA) and density clustering (DCA) algorithms and also 
satisfies the location accuracy demand of FCC E-911 
specification. 
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Introduction 

In recent years the widespread use of mobile 
communications has stimulated the research on it’s related 
subjects. The mobile location estimation is a critical 
parameter that has many applications such as location-
sensitive billing, fleet tracking, package and personnel 
tracking, mobile yellow pages, location-based messaging, 
route guidance, hand over, topology inference and 
providing traffic information. The frequency with which 
location requests are made and the desired accuracy varies 
with the application. The first specification that defines the 
accuracy needs for mobile location estimation was 
published from Federal Communication Commission 

(FCC) as Enhanced-911 (E-911) services [1]. The 
accuracy requirement of E-911 for phase II is 100m for 
67% of the time and 300m for 95% of the time in network-
based location system.  
There are several methods for location estimation that can 
be categorized as received signal strength (RSS), Angle of 
arrival (AoA), time of arrival (ToA) or time difference of 
arrival (TDoA). For an overview of various wireless 
location techniques and technologies, see [2] and [3]. The 
accuracy of radio location schemes depends on the 
propagation conditions of the wireless channels. The main 
error sources in location estimation are measurement 
noises, multipath artifacts, non line of sight (NLOS) 
propagation and multiple access interference [2].Usually 
measurement noise could ne neglected in versus of  other 
errors [5],[6]. 
If LoS propagation exists between the MS and all BSs, a 
high location accuracy can be achieved. Traditional 
algorithms, such as those in [5]–[9], are designed to 
provide accurate location in LoS environments. However, 
in wireless communication systems in which the direct 
path from the MS to BS is blocked by buildings and other 
obstacles, the signal measurements include an error due to 
the excess path length traveled because of reflection or 
diffraction, which is termed the NLoS error [4]. 
Unfortunately, NLoS error is relatively large, of the order 
of hundreds of meters [3], and except for rural areas is 
quite common in all other environments [10]. Therefore 
this type of error causes considerable degradation of 
location estimation accuracy. This has led to the 
development of algorithms that focus on identifying and 
mitigating the NLoS error. 
Hence, In this paper we focus on network based ToA 
method with NLOS error and propose a new and effective 
method for mitigating it’s inaccuracy. 
In ToA methods, the propagation time of signal between 
MS and BS is estimated and the range between them is 
calculated by multiplying the ToA with velocity of 
propagation. The NLOS affects the ToA and makes it 
greater than the correct value and therefore the estimation 
would be biased. 
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A varity of approaches for NLOS mitigation is available in 
literatures. The techniques for NLoS mitigation considered 
in [4] and [11] require a time series of range 
measurements from a mobile and are based on the 
assumption that the standard deviation of NLoS range 
measurements is greater than that for LoS measurements. 
These techniques may prove to be useful to track the MS 
when a mixed measurement set including both LoS and 
NLoS measurements is observed over a time span of a few 
seconds, but they will not give good results for only NLoS 
paths. Several approaches have been proposed to mitigate 
NLoS effects with only single measurements at a set of 
participating BSs. The algorithm in [12] attempts to 
selectively remove or weight NLoS corrupted 
measurements by examining the range residuals of the 
measurements. If the difference between a BS’s measured 
range and the range for the computed position is large, 
then that range measurement is weighted proportionately 
to minimize its effect. 
Similar algorithms have been proposed to deal with NLoS 
in TDoA [13] and AoA [14]. Although increasing the 
number of BSs, improves performance metrics but this 
may not be realizable in practical systems. Some statistical 
algorithms have been designed to work in NLoS 
environments that are described by channel-scattering 
models, such as the ring/disk of scatterers and the 
Gaussian scattering models [15], [16]. These algorithms 
utilize the distribution function of the ToAs that depend on 
the scattering model to estimate the true range 
measurements. However, it becomes important to 
characterize the scattering environment in a particular area 
before the algorithm can be applied. 
Recently, a constrained optimization procedure has been 
proposed that estimates the bias by means of a sequence of 
decreasing bound constraints and corrects the location 
estimate formed from the biased range measurements [17]. 
This method has been shown to produce accurate location 
estimates (40 meter in 67% of times) in field trials. 
However, the authors do not describe how the bounds on 
the bias are formed, which is critical to the success of the 
algorithm. Another algorithm that attempts to mitigate 
NLoS in ToA-based location systems utilizes the 
information that NLoS propagation causes the measured 
ranges to be greater than the true ranges and employs a 
quadratic programming approach to solve for an maximum 
likelihood (ML) estimate of the source position [18]. A 
linear line of position method (LLoP) is presented in [9] 
which make it easier estimating the unknown MS location 
than traditional geometrical approach calculating the 
intersection of the circular lines of position (LoP) [7]. 
LLoP algorithm can mitigate the NLoS error as well as the 
measurement noise, but it needs at least four BSs to 

achieve better location accuracy, and its performance 
highly depends on the relative position of MS and BSs. 
Venkatraman et al. [24], presents a constrained 
optimization approach named range scaling algorithm 
(RSA) that utilizes bounds on the NLoS range error 
inferred from the geometry of the cell layout and range 
circles for three BSs. RSA indeed improved the location 
accuracy in the NLoS environment, but cannot satisfy 
FCC E-911 requirements. A modified version of RSA  
algorithm named density-based clustering algorithm 
(DCA), is developed by Lin et al. [25]. DCA estimates the 
mobile location by solving the optimal solution of the 
objective function of RSA, modified by the high density 
cluster. 
Our approach in this paper is based on another non-linear 
constrained optimization method that is known as interior 
point method (IPM). This optimization method is more 
general and flexible than previous methods and simulation 
results show better accuracy and also are in agree with 
FCC E-911 requirements. This method also has the 
advantage of requiring no modifications to the subscriber 
equipment. The location estimation can be performed at 
either the MS if it has the functionality or at special 
location measurement units in the network. Knowledge of 
the statistics of the measurement noise and NLoS error is 
not required. it is assumed that at any time instant, the BSs 
can be LoS or NLoS and the error in the range 
measurements is positive due to NLoS. it only needs three 
range measurements from three BSs, and does not 
discriminate between NLoS and LoS BSs. 
We would like to emphasize that the proposed algorithm 
applies to any system based on ToA estimation and that 
we do not address the estimation of ToAs, but rather their 
use for location determination in a NLoS environment. 
Methods for estimating ToAs can be found in [19]–[23].  
The remainder of this paper is organized as follows. The 
problem statement and derivation of geometrical 
constraints is outlined in Section 1. In section 2 we 
summarize IPM method and then adopt the location 
estimation problem and its constraints to it in section 3. 
The simulation setup and results are discussed in Section 4, 
followed by some concluding remarks in Section 5. 

1. Problem Statement 

Our method is based on TOA measurement from three 
BSs, denoted as BSi, i=1,2,3. Assume that the measured 
range from ith BS is li and true range is Ri. the 
corresponding relations of these parameters are as: 
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Where c is the light velocity, (xi,yi) is the ith BS location 
and (x,y) is the true location of MS. 
Then according to NLOS error, we can write: 

iii lR δ=  (2)
That δi is a correction factor. Because the NLoS error is 
positive, the measured range is greater than the true range. 
Hence, the value of δi is bounded by 0<δi<1. If and only if 
there is no NLoS error, δi equals 1. It is assumed that the  
 
measurement noise is a zero-mean Gaussian random 
distribution with relatively small standard deviation and is 
negligible as compared to the NLoS error. 
Each range li specifies the MS location as a point on a 
circle with radius li centered at BSi. But li includes NLoS 
error and if we apply the correction factor δi to each li and 
consider the above mentioned bound for δi s, then the true 
MS location lies in the region of overlap of the range 
circles (region enclosed by U,V,W) shown in Fig. 1.   
    

 

Fig. 1 the possible region of MS 

 
Therefore the MS location problem reduced to a 
constrained estimation problem and the optimal estimated 
location should be finding in specified region. For this 
purpose we select an objective function as in [24], and 
apply a constrained non linear optimization method to find 
it’s optimal solution. We select the interior point method 
(IPM) because of its generality and flexibility. This 
method can accept the desired constraints easily and use 
them automatically in its search process. In order to 
declaring IPM constraints, at first step we should 
determine the minimum values of δis in order to 
maintaining in valid region of UVW.  

Let the NLoS range error of the BSi be ηi. Assuming 
the measured range of BS2 is LoS, it can be seen from Fig. 
that if the true range from BS1, namely, R1 is less than 

ABl −1
, then the true range circles of BS1 and BS2 will not 

overlap or intersect. But the true range circles should 
intersect at the MS location, which is impossible, and η1 , 
the NLoS error of BS1, cannot be larger than AB . 

 

 

Fig. 2 Geometry of ToA-Based location. 

Applying the same argument to the ranges from BS2 and 
BS3 , the  value of η1 cannot be larger than EF . thus the 
proper bound of  η1 is: 

},{minmax 1 EFAB=η  
Similarly, the upper bound of  η2 and η3 are: 

},{minmax 2 CDAB=η  
And 

},{minmax 3 EFCD=η  
We know that 

11111 )1( lRl δη −=−=  so that 111 /1 lηδ −= . 
Thus the minimum value that δ1 can take is given by 

11

1
1

},{min1max1min
l

EFAB
l

−=−=
ηδ  

Define the distance between BSi and BSj as Lij. From 
figures 2 and 3 we can see that:  

1221 LllAB −+=  

2332 LllCD −+=  

1331 LllEF −+=  
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Fig. 3 The geometry of the three circular equations formed by BSi and δili 

 
Since AB ,CD and EF  are positive, min δ1 can be written 
as   

1
1

},{min1min
l

EFAB
−=δ  

           
1
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1

l
LllLll −+−+

−=  

           },{max
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l
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Similarly, the lower bounds of  δ2 and δ3 also can be 
written as  

},{maxmin
2

323

2

112
2 l

lL
l

lL −−
=δ  
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3

223

3

113
3 l

lL
l
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=δ  

When the range of the MS from a serving BS is small, it is 
possible that the NLoS error is large enough so that the 
range circle of the serving BS lies fully within the range 
circle of the other BS, as illustrated in Fig. 4. In this 
scenario, δi calculated by the previous equations may be 
negative. So the equations are modified as 
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1
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1

212
1 ρδ

l
lL

l
lL −−

=  
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2

323

2

112
2 ρδ

l
lL

l
lL −−

=  
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3

223

3
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3 ρδ

l
lL

l
lL −−

=  
(3)

 
Where 0<ρ<<0.1, and 0<δi≤1 [24]. 

 
In section 3 we apply above constraints in IPM 
optimization bounds. 

 

 

Fig. 4 Range circles of BS1 and BS2 that do not intersect 

2. Interior Point Method 

In general, the interior-point method [26] is a solution for 
convex optimization problem which include both equality 
and inequality constraints, 

minimize )(0 xf   
subject to mixf i ,...,1,0)( =≤   

bAx =  (4)

Where RRff n
m →:,...,0 are convex and twice 

continuously differentiable, and npRA ×∈  with rank 
A=p<n. We assume that the problem is solvable, i.e., an 
optimal x* exists. We denote the optimal value for  f0(x*) as 
p*. 
We also assume that the problem is strictly feasible, i.e., 
there exists xєD that satisfies Ax = b and fi(x) < 0 for 
i=1,…,m. This means that Slater's constraint qualification 
holds, so there exist dual optimal λ*єRm, v*єRm, which 
together with x* satisfy the KKT [26] conditions: 

mixf

vAxfxf

mixfbAx
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i

T
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∑
=

λ

λ
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(5)
 
Interior-point methods solve the problem (1) (or KKT 
conditions (2)) by applying Newton's method to a 
sequence of equality constrained problems, or to a 
sequence of modified versions of the KKT conditions. We 
will concentrate on a particular interior-point algorithm, 
the barrier method, for which we give a proof of 
convergence and a complexity analysis. 
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We can view interior-point methods as another level in the 
hierarchy of convex optimization algorithms. Linear 
equality constrained quadratic problems are the simplest. 
For these problems the KKT conditions are a set of linear 
equations, which can be solved analytically. Newton's 
method is the next level in the hierarchy. We can think of 
Newton's method as a technique for solving a linear 
equality constrained optimization problem, with twice 
differentiable objective, by reducing it to a sequence of 
linear equality constrained quadratic problems. 

2.1 Logarithmic barrier function 

Our goal is to approximately formulate the inequality 
constrained problem (1) as equality constrained problem 
to which Newton's method can be applied [26]. Our first 
step is to rewrite the problem (1), making the inequality 
constraints implicit in the objective: 
 

minimize ∑ = −+
m

i i xfIxf
10 )(()(   

subject to bAx =  (6)
Where I-:R→R is the indicator function for the non-
positive reals, 
 

⎩
⎨
⎧

>∞
≤

=− 0
00

)(
u
u

uI  
(7)

 

Fig. 5 the dashed lines show the function I-(u), and the 
solid curves show )log()/1()(ˆ utuI −−=−

 for different values 
of t. 

Since above function is not differentiable, equation (7) can 
not be solve by Newton method. The basic idea of the 
barrier method is to approximate the indicator function I- 
by the function 

++−− −=−−= RIdomutuI ˆ),log()/1()(ˆ (8)

 
Where t > 0 is a parameter that sets the accuracy of the 
approximation. Substituting this new function in (3) gives 
approximation: 

minimize

)()(

))(log()/1()(

0
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subject to bAx =  (9)
 
The objective here is convex, since -(1/t) log(-u) is convex 
and increasing in u,and differentiable. 
The function 

))(log()(
1∑ =

−−=
m

i i xfxφ  (10)
 
is called the logarithmic barrier or log barrier for the 
problem (1). 
For future reference, we note that the gradient and Hessian 
of the logarithmic barrier function are given by 
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The barrier method can be summarized as 
 
given strictly feasible x, t := t(0)> 0, μ>1, tolerance ε > 0. 
repeat: 

1. Centering step (Newton Optimization Method). 
Compute x*(t) by minimizing tf(x)+Φ(x), subject 
to Ax = b, starting at x. 

2. Update. x := x*(t). 
3. Stopping criterion: quit if  m/t < ε. 
4. Increase t. t := μ t. 

 
Choose of Barrier step size (μ): 
The choice of the parameter μ involves a trade-of in the 
number of inner and outer iterations required. If μ is small 
(i.e., near 1) then at each outer iteration t increases by a 
small factor. As a result the initial point for the Newton 
process, i.e., the previous iterate x, is a very good starting 
point, and the number of Newton steps needed to compute 
the next iterate is small. Thus for small μ we expect a 
small number of Newton steps per outer iteration, but of 
course a large number of outer iterations since each outer 
iteration reduces the gap by only a small amount. On the 
other hand if μ is large we have the opposite situation. In 
practice for values of μ in a fairly large range, from around 
3 to 100 or so, the two effects nearly cancel, so the total 
number of Newton steps remains approximately constant. 
This means that the choice of μ is not particularly critical; 
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values from around 10 to 20 or so seem to work well. 
When the parameter μ is chosen to give the best worst-
case bound on the total number of Newton steps required, 
values of μ near one are used. 
 
Choose of Starting value (t(0)): 

Another important issue is the choice of starting 
value of t. Here the trade-off is simple: If t(0) is chosen too 
large, the first outer iteration will require too many 
iterations. If t(0) is chosen too small, the algorithm will 
require extra outer iterations, and possibly too many inner 
iterations in the first centering step. Since m/t(0) is the 
duality gap that will result from the first centering step, 
one reasonable choice is to choose t(0) so that m/t(0) is 
approximately of the same order as f0(x(0))-p*, or μ times 
this amount. Then we can take t(0)=m/η, where η is the 
duality gap. 
Now we describe the Centering Step which follows the 
Newton Method. 

2.2 Newton‘s optimization method 

The first step in Newton method [26] is calculation of 
Newton step and Newton decrement at x. For xє dom f, 

Newton step: gHxfxfxnt
112 )()( −− −=∇−∇=Δ  

Newton decrement: 
2/112 ))()()(()( xfxfxfx T ∇∇∇= −λ  (12)

Where H and g are Hessian and gradient matrices 
respectively. 
Now by above mentioned, we can state the Newton’s 
algorithm in this way: 
 
given a starting point xє dom f, tolerance ε > 0. 
repeat: 

1. Compute the Newton step and decrement. 
2. Stopping criterion: quit if λ2/2≤ε. 
3. Line search. Choose step size t by backtracking 
line search. 
4. Update. x := x+t∆xnt . 

2.3 Backtracking line search 

Most line searches used in practice are inexact: the step 
length is chosen to approximately minimize f along the ray 
{x+t∆x | t ≥0}, or even to just reduce f `enough'. Many 
inexact line search methods have been proposed. One 
inexact line search method that is very simple and quite 
effective is called backtracking line search. It depends on 
two constants, with α, β with 0<α<0.5, 0< β<1. 
 
given a descent direction ∆x for f at xє dom f, αє(0,0.5), 
βє(0,1). 

t := 1. 
while ttxxftxfxxf T βα =Δ∇+>Δ+ :,)()()(  

Fig. 6 backtracking line search. The curve shows f, restricted to the line 
over which we search. The lower dashed line shows the linear 

extrapolation of f, and the upper dashed line has a slope a factor of 
smaller. The backtracking condition is that f lies below the upper dashed 

line, i.e., 0≤t≤t0. 

The line search is called backtracking because it starts 
with unit step size and then reduces it by the factor until 
the stopping condition xxftxfxxf T Δ∇+≤Δ+ )()()( α  holds. 
Since ∆x is a descent direction, we have 0)( <Δ∇ xxf T , so 
for small enough t we have 

xxftxfxxftxfxxf TT Δ∇+<Δ∇+≈Δ+ )()()()()( α (13)
 
This shows that the backtracking line search eventually 
terminates. The constant α can be interpreted as the 
fraction of the decrease in f predicted by linear 
extrapolation that we will accept. 
 
Choose α, β: 
The parameter α is typically chosen between 0.01 and 0.3, 
meaning that we accept a decrease in f between 1% and 
30% of the prediction based on the linear extrapolation. 
The parameter β is often chosen to be between 0.1 (which 
corresponds to a very crude search) and 0.8 (which 
corresponds to a less crude search). 

3. Mobile Location Estimation Problem 

The location estimation problem can be formulated as a 
nonlinear optimization problem. The cost function should 
be minimized is taken to be the sum of the square of the 
distances from the MS location to the points of 
intersections of the range circles closest to it (i.e., points U, 
V, and W in Fig. 3). The coordinates of U, V, and W are 
(Ux,Uy), (Vx,Vy), and (Wx,Wy), respectively. The objective 
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function to be minimized for the nonlinear optimization 
problem is, therefore [24] 
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Now we can formulate the optimization problem as 
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As we define in equation (1), we should calculate the 
inequality constraint fi(x)≤0. 
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Where x, y are the mobile position and xi, yi are the 
position of ith base station and li is the TOA base 
measurement of mobile’s distance from base station i. 
The inequalities will be formulated as, 
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[i/2] means the biggest integer next to i/2 value. 
Now we should calculate the logarithmic barrier function 
for these constraints. From (7) and (8) we need to Gradient 
and Hessian of constraints. Then, 
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The same as above, we can find the Hessian matrix of the 
constraints as, 
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Now the Gradient and Hessian of log barrier function will 
be as follows: 
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Base on (14) we can define the Gradient and Hessian of 
cost function as, 
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If we define the problem as (9) then f(x,y) (the function  
that should be minimize by Newton method) is equal: 

minimize ),(),(),( 0 yxyxtfyxf φ+=  (28)
 
Then the Gradient and Hessian of this function which 
should be optimum by Newton method (12) is: 

),(),(),( 0 yxyxftyxfg φ∇+∇=∇=  (29)
),(),(),( 2

0
22 yxyxftyxfH φ∇+∇=∇=  (30)

 
By substituting the (24), (25), (26) and (27) in (29) and 
(30), the algorithm could be run. 
The flow-chart of Fig. 7 shows the algorithm overview.  
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given strictly feasible x, t := t(0)> 0, 
μ>1, tolerance ε > 0

tolerance ε > 0

gHxfxfxnt
112 )()( −− −=∇−∇=Δ

)()()( 122 xfxfxf T ∇∇∇= −λ

λ2/2≤ε

x := x+t∆xnt

given a descent direction ∆x 
for f at xє dom f, αє(0,0.5), 

βє(0,1)

t := 1

xxftxfxxf T Δ∇+>Δ+ )()()( α tt β=:yes

no

no

Newton 
Method

m/t < εt := μ t

End

yes

no

Line 
Search

Barrier 
Method

yes

Fig. 7 Flow Chart of IPM Algorithm 

4. Simulation results 

In simulation of problem, we consider three BSs, measure 
the TOA from MS in NLoS environment. The location of 
BSs are (1000,1000), (4500,1000) and (2750,4500). The 
support of NLoS error range is assumed in [0,400] interval. 
four different distribution for NLos error is considered as 
shown in figure 8. 

 

Fig. 8 different types of NLoS error distribution  

Circular Disk of Scatterers Model (CDSM) is a relatively 
standard distribution for studding scattering effects [28]. 
CDSM is used for situations that both LoS and NLoS exist, 
but the LoS is more considerable than NLoS. In contrast, 
for opposite situations, we consider the reverse CDSM 
distribution that emphasize on NLoS compared to LoS. 
The variance of Gaussian error distribution assumed to be 
0.04. 
In simulation at first we find the intersection points of 
range circles by solving the system of equation of each 
two circles and find two points of intersection. As in Fig.1 
U is the nearest intersection point of BSs 2, 3 from BS 1, 
V is the nearest intersection point of BSs 1, 3 from BS 2 
and W is the nearest intersection point of BSs 1, 2 from BS 
3. 
In the next step, we find the constraints from equation (3) 
and applying them to the IPM algorithm. The simulation 
results are shown in Fig. 9 for different distributions. 
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Fig. 9 the CDF of location error of the IPM on CDSM, Uniform, Reverse 
CDSM and Gaussian NLoS models 

 
As Fig. 9 shows, all of the curves are started with a non-
zero bias. This effect is caused by averaging from input 
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measurements. In this algorithm we average from 1000 
sequential range measurements and this average is 
assumed as input to IPM algorithm. Now it helps us to 
prevent from variation of error but add a bias to 
measurements (error’ bias). This means that we omit the 
samples which have been contained zero NLoS error for 
obtaining smaller range of variation (error’s variance).  
Also it can be seen from Fig. 9 that while the NLoS 
conditions is increased then the estimation error will grow. 
For the reverse CDSM that has strongest NLoS features, 
the estimation error is greater than other situations.   
Finally, for a performance comparison with previous 
works, we show the results of proposed algorithm and 
other methods for CDSM case in Fig. 10. 
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Fig. 10 the CDF of Location Error of the IPM, RSA and DCA algorithms 
for CDSM NLoS model 

The FCC E-911 requirement thresholds are also depicted 
in Figures 9 and 10. It is shown for CDSM in 67% of 
times the error is less than 75 meter and for 95% of times, 
error is less than 95 meter. This will be approved the FCC 
E-911 specification.  

5. Conclusion 

A new location estimation algorithm based on interior 
point method for mitigating NLoS error was developed 
and evaluated. In practice no priori probabilistic 
distribution of NLoS is required and only three ranges 
obtained from ToA measurements is adequate. We 
simulated the algorithm subject to four different 
probability distributions and for all of them the results 
showed superior performance over the previous works, 
such as RSA and DCA. For pervasive analysis of problem, 
we considered both LoS and NLoS conditions by applying 
CDSM and Reverse CDSM probability distributions. It 
can be seen from the error CDFs that the location error of 

IPM is less than 75 meter for 67% of the time, and less 
than 95 meter for 95% of the time and hence the obtained 
accuracy is beyond the FCC E-911 requirements. 
Combining the statistical estimation and IPM geometrical 
optimizations is still an open problem that in future may 
be studied.  
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