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Summary 

 
Computer systems vulnerabilities such as software 

bugs are often exploited by malicious users to intrude into 
information systems. With the recent growth of the Internet 
such security limitations are becoming more and more pressing. 
One commonly used defense measure against such malicious 
attacks in the Internet are Intrusion Detection Systems (IDSs). 
Due to increasing incidents of cyber attacks, building effective 
intrusion detection systems (IDS) are essential for protecting 
information systems security, and yet it remains an elusive goal 
and a great challenge. We  developed an Intrusion Detection 
System using LAMSTAR neural network to learn patterns of 
normal and intrusive activities and to classify observed system 
activities. we further investigate the time taken for training and 
testing, generate Confusion matrix with KDD CUP 99 data 
using simulation tool and compare it with five classification 
techniques (Gaussian Mixture,  Radial Basis Function, Binary 
Tree Classifier, SOM, and ART ). The results indicate that 
LAMSTAR exhibit high accuracy at the cost of long training 
time. 
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1.INTRODUCTION 

Intrusion detection and prevention generally 
refers to a broad range of strategies for defending against 
malicious attacks. Intrusion detection can be categorized 
into misuse detection and anomaly detection[1]. Misuse 
typically is a known attack, e.g., a hacker attempting to 
break into an email server in a way that IDS has already 
trained. A misuse detection system tries to model normal 
and abnormal behavior from known attacks. It works by 
comparing network traffic, system call sequences, or 
other  features of known attack patterns. An anomaly is 
something out of the ordinary, e.g., abnormal network 
traffic which is actually caused by unknown attacks. An 
anomaly detection system models normal behavior and 
identifies a behavior as abnormal (or anomalous) if it is 
sufficiently different from known normal behaviors. 

 

We developed an Intrusion Detection System 
using LAMSTAR neural network to learn patterns of 
normal and intrusive activities and to classify observed 
system activities.  we further investigate the time taken 
for training and testing, generate Confusion matrix using 
simulation tool and compare it with  five classification 
techniques (Gaussian Mixture, Radial Basis Function, 
Binary Tree Classifier, SOM, and ART)  

 
This paper is organized as follows: section 2 

gives some theoretic background about LAMSTAR 
neural network. Section 3 presents the details about  
KDD cup 99 dataset used for testing and training the 
Intrusion Detection system and the cost matrix used to 
calculate cost per example. Section 4 gives details about 
the various algorithms and the parameters used to obtain 
the confusion matrix and cost per example. Section 5 
summarizes the obtained results with comparison and 
discussions. The paper is finally concluded with the most 
essential points 

2. LAMSTAR 

A Large Scale Memory Storage and Retrieval 
(LAMSTAR) network is proposed in [2,3] by combining 
SOM modules and statistical decision tools. It was 
specifically developed for application to problems 
involving very large memory that relates to many 
different categories (attributes) where some data is exact 
while the other is fuzzy and where for a given problem 
some categories might be totally missing [2]. Large Scale 
Memory Storage and Retrieval (LAMSTAR) network 
research, which targets large-scale memory storage and 
retrieval problems. This model attempts to imitate, in a 
gross manner, processes of the human central nervous 
system (CNS) concerning storage and retrieval of 
patterns, impressions, and sensed observations including 
processes of forgetting and recollection. It attempts to 
achieve this without contradicting findings from 
physiological and psychological observations, at least in 
an input/output manner. Furthermore, it attempts to do so 
in a computationally efficient manner using tools of 
neural networks, especially Self-Organizing-Map based 
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(SOM) network modules, combined with statistical 
decision tools. Its design was guided by trying to find a 
mechanistic neural network-based model for very 
general storage and retrieval processes involved. This 
general approach is related to Minsky’s idea  that the 
human brain consists of many agents, and a knowledge 
link is formed among them whenever the human 
memorizes an experience. When the knowledge link is 
subsequently activated, it reactivates the mental agents 
needed to recreate a mental state similar to the original. 
The LAMSTAR network employs this general 
philosophy of linkages between a large number of 
physically separate modules that represent concepts, such 
as time, location, patterns, etc., in an explicit algorithmic 
network.  

The LAMSTAR network has been successfully 
applied in fields of medicine (diagnosis)[4,5,6], 
engineering (automotive fault detection) and multimedia 
information systems[7]. Whereas  the LAMSTAR design 
addresses large-scale memory retrieval problems, we use 
LAMSTAR concepts to processes of storage and 
retrieval, interpolation and extrapolation of input data, 
and the use of reward-based correlation-links between 
modules to detect intrusions. In this modified 
LAMSTAR network, each Kohonen SOM module 
represents a class of sub-patterns. The model assumes 
that the input patterns have been separated into sub-
patterns before entering the SOM module . The network 
is thus organized to assign each neuron to a class of 
neurons (i.e., one SOM module) that best corresponds to 
the input sub-pattern. This SOM configuration yields 
very rapid matching with good error tolerance, and is 
capable of generalization. Arrays of correlation links (C-
links) connect the modules using coefficients determined 
by the statistical correlations between the various 
patterns considered. A coordinated activation of neurons 
between the various modules allows the network to 
recreate (interpolate) complex patterns and make 
associations. 

3.DATA SET & COST MATRIX 

3.1 DATA SET 

We trained and tested our system using KDD 
Cup's 99 dataset [8,9] which  covers four categories of 
attacks: Denial of Service (DoS) attacks:deny legitimate 
requests to a system, e.g.syn flood, User-to-Root (U2R) 
attacks: unauthorized access to local super user(root) 
privileges, e.g.various buffer overflow attacks, Remote-
to-Local (R2L) attacks:unauthorized access from a 
remote machine, e.g. guessing password, and Probing: 
surveillance and other probing, e.g. port scanning. The 
1999 Defence Advanced Research Projects Agency 
(DARPA) Intrusion Detection Evaluation Program was 

prepared and managed by MIT Lincoln Labs. The 
objective was to survey and evaluate research in 
intrusion detection.  A standard set of data to be audited, 
which includes a wide variety of intrusions simulated in 
a military network environment, was provided. Table I 
gives the details of KDD CUP 99 data.  

 

 

 

 

Table I : KDD Cup 99  Training and Testing data  
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Training 
data 

391458 4107 52 1126 494020 97277 

Testing 
data 

229853 4166 228 16189 311029 60593 

3.1.1 Feature Extractions and Preprocessing 

The input data to the neural network must be in 
the range [0 1] or [-1 1]. Hence preprocessing and 
normalization of data is required. The kdd-cup format 
data is preprocessed. Each record in kdd-cup format has 
41 features, each of which is in one of the continuous, 
discrete and symbolic form, with significantly varying 
ranges. Based on the type of neural nets, the input data 
may have different forms and so needs different 
preprocessing. Some neural nets only accept binary input 
and some can also accept continuous-valued data. In 
Preprocessor, after extracting kdd-cup features from each 
record, each  feature is converted from text or symbolic 
form into numerical form. For converting symbols into 
numerical form, an integer code is assigned to each 
symbol. For instance, in the case of protocol_type  
feature, 0 is assigned to tcp, 1 to udp, and 2 to the icmp 
symbol.  Attack names  were first mapped to  one  of  the  
five  classes, 0  for Normal, 1  for Probe, 2  for  DoS,  3  
for  U2R,  and  4  for  R2L.   

 
Two  features  spanned over  a very  large  integer  range, 
namely src_bytes  [0,  1.3  billion]  and  dst_bytes  [0,  
1.3  billion].  Logarithmic  scaling  (with  base  10) was  
applied  to  these  features  to  reduce  the  range  to  [0.0,  
9.14].    All  other  features  were    boolean,  in  the 
range  [0.0,  1.0].    Hence  scaling  was  not  necessary  
for  these attributes.   
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3.1.2 Normalization 

For normalizing feature values, a statistical 
analysis is performed on the values of each feature based 
on the existing data from KDD Cup's 99 dataset and then 
acceptable maximum value for each feature is 
determined. According to the maximum values and the 
following simple formula, normalization of feature 
values in the range [0,1] is calculated. 
If ( f > MaxF ) Nf=1; Otherwise Nf = ( f / MaxF) 
-------------------------------------------------------------------- 
F: Feature f: Feature value MaxF: Maximum acceptable 
value for F Nf: Normalized or scaled value of F 
 
 

 Another simple way to Normalize the data is to 
use SOM toolbox of the MATLAB software. In this 
paper the following MATLAB commands were used to 
normalize the data. 

sD=som_read_data(‘kddcup.data’) 
sD=som_normalize(sD,‘var’,1:4) 
sD=som_normalize(sD,‘log’,5:6) 
sD=som_normalize(sD,‘var’,7:41) 
sD=som_normalize(sD,‘var’,1:41) 

3.2 COST MATRIX 

A  cost matrix  (C)  is defined by  associating  
classes  as  labels for the rows and columns of a square 
matrix: in the  current context for the KDD dataset, there 
are five classes,  {Normal,  Probe,  DoS,  U2R,  R2L},  
and  therefore  the  matrix  has  dimensions  of  5×5.    
An  entry  at  row  i  and  column  j,  C(i,j),  represents  
the  non-negative  cost  of  misclassifying  a  pattern  
belonging  to  class  i  into  class  j.   Cost  matrix  values  
employed  for  the  KDD  dataset  are  defined elsewhere 
in [10]. These  values were also used for  evaluating  
results  of  the  KDD’99  competition.    The  magnitude 
of these values was directly proportional to the  impact  
on  the  computing  platform  under  attack  if  a  test  
record was placed in a wrong category.    A  confusion 
matrix  (CM)  is  similarly  defined,  in  that  row and 
column  labels are class names: a 5×5 matrix  for  the 
KDD dataset.  An entry at row i and column j, CM(i,j),  
represents  the  number  of  misclassified  patterns,  
which  originally belong  to  class  i yet mistakenly  
identified  as  a  member of class j.    Given  the  cost  
matrix  as  predefined  in  [10 ]  and  the  confusion  
matrix  obtained  subsequent  to  an  empirical  testing  
process,  cost  per  example  (CPE)  was  calculated  
using the formula,  

 

  CPE =
N
1

 ∑
=

5

1i
∑
=

5

1j

CM(i,j)*C(i,j) 

 
where  CM  corresponds  to  confusion  matrix,  C  
corresponds  to  the  cost  matrix,  and  N  represents  the  
number of patterns tested.  A lower value for the cost per  
example indicates a better classifier model.  Comparing  
performances  of  classifiers  for  a  given  attack 
category is implemented through the probability of  
detection along with the false alarm rate, which are 
widely accepted as standard measures.  Table II shows 
the cost matrix used for scoring entries 

        Table II The cost  matrix used for scoring entries  
 Normal Probe DOS U2R R2L
Normal 0 1 2 2 2 
Probe 1 0 2 2 2 
DOS 2 1 0 2 2 
U2R 3 2 2 0 2 
R2L 4 2 2 2 0 

 
 
In the confusion matrices above, columns correspond to 
predicted categories, while rows correspond to actual 
categories.  

The  software  tool  LNKnet,  which  is  a  
publicly  available  pattern  classification  software   
package  [11],   was  used  to  simulate  pattern  
recognition  and  machine  learning models. The SOM 
and LAMSTAR was simulated using JNNS [12] 
software tool.  
 
3.2.1 Standard metrics for evaluations of  Intrusions 
(attacks) 

We evaluated the performance of various  IDS 
systems based on the   Detection Rate :detecting normal 
traffic from attack and recognizing the known attack type 
False Positive  Rate : mis-detecting attack[13] . Table III 
shows the standard metrics for evaluation of Intrusions 

 No. of samples classified correctly  
Detection rate       :  ------------------------------------------ 
  No. of samples used for training 
 
  False Positives 
False alarm  Rate   :----------------------------------------- 
  Total no. of normal connections 

Table III : Standard metrics for evaluations of Intrusions(attacks) 
Predicted Connection label Confusion matrix  

(Standard Metrics) Normal Intrusions(Attacks)
Normal True 

Negative(TN) 
False Alarm(FP) Actual 

Connection
label Intrusions

(Attacks)
FalseNegative(FN) Correctly detected 

Attacks (TP) 
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4. ALGORITHMS APPLIED TO INTRUSION 
DETECTION 

4.1 Gaussian Mixture 

The Gaussian Mixture classifier[14] can 
perform better  than a Gaussian classifier when classifier 
distributions are not unimodal Gaussian. Different 
simulations were performed by changing  various 
parameters like, each class has its own Gaussian mixture, 
all classes share a single set of tied Gaussian mixtures, 
diagonal covariance, full matrices covariance, separate 
variance for each gaussian . The simulation result with 
parameters ,each class has its own Gaussian mixture and 
diagonal covariance gives the better cost per example 
0.2796.  Table IV shows the Confusion Matrix  obtained 
for Gaussian mixture IDS  
 
Table IV Confusion Matrix for Gaussian mixture IDS CPE = .2796  
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Normal 59969 423 190 5 6 98.97
Probe 195 3876 95 0 0 93.03
DOS 18015 9002 202822 9 5 88.24
U2R 145 25 1 52 5 22.8
R2l 13950 650 5 30 1554 9.6 

%correct 64.99 27.73 99.85 54.16 98.98  
 

The top left entry in the confusion matrix shows 
that 59969 of the actual “normal” test examples were 
predicted to be normal by this entry. The last column 
indicates that in total 98.97% of the “normal” examples 
were recognized correctly. The bottom row shows that 
64.99% of test examples said to be normal were indeed 
“normal” in reality. From the last column, we can obtain 
the average detect rate of 62.52%. The false positive rate 
for Normal class is 100-64.99 =35.01 %.  

4.2 Radial Basis Function  

Radial Basis Function classifiers [15] calculate 
discriminant functions using local Gaussian functions. A 
total of six simulations were performed using the RBF 
algorithm .Each simulation used initial clusters created 
using K-means algorithm: there were 8,16,32,40 ,64 and 
75 clusters each in different output classes. Weights are 
trained using least-square matrix inversion to minimize 
the squared error of the output sums given the basis 
function outputs for the training patterns. During training 
and testing variance are increased to provide good 
coverage of the data .For each simulation using the RBF, 
cost per example for the test dataset was calculated. The 
model with 64 clusters performed best with the cost per 

example equal to .3801. Table V shows the Confusion 
Matrix  obtained for Radial Basis Function IDS. 

Table V Confusion Matrix for RBF IDS  CPE = .3801    
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Normal 60030 263 290 8 2 99.07
Probe 350 3804 8 3 1 91.31
DOS 37050 20163 172620 15 5 75.10
U2R 190 20 2 16 0 7.01 
R2l 7282 7800 200 0 907 5.6 
%correct 57.22 11.87 99.71 38.09 99.12  

4.3 SOM 

For SOM [16,17] the training algorithm can be 
summarized in four basic steps. Step 1 initializes the 
SOM before training. Best matching unit (BMU) is the 
neuron, which resembles the input pattern most. On Step 
2, best matching unit is determined. Step 3 involves 
adjusting best matching neuron (or unit) and its 
neighbors so that the region surrounding the best 
matching unit will represent the input pattern better. This 
training process continues until all input vectors are 
processed. Convergence criterion utilized here is in terms 
of epochs, which defines how many times all input 
vectors should be fed to the SOM for training. The 
epochs ranging from 100 to 130 gives the better 
performance cost per example .1996. Table VI shows the 
confusion matrix obtained for SOM IDS 

Table VI Confusion Matrix for SOM IDS  CPE =.1996 
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Normal 56945 3448 190 8 2 93.98
Probe 1200 2679 280 5 2 64.30
DOS 7964 996 220889 3 1 96.10
U2R 101 68 9 49 1 21.49
R2l 11295 2993 7 0 1894 11.7 
%correct 73.47 21.30 99.78 75.38 99.68    

4.4 Binary Tree classifier  

The binary decision tree classifier[17] trains and 
tests very quickly. It can also be used to identify the 
input features which are most important for classification 
because feature selection is part of the tree-buliding 
process. Two different training options were used 
1.Expand tree until there are no errors. 2.Stop Expansion 
Early .Two different testing options were used 1.Full tree 
for testing,  2.Maximum number of nodes during 
testing .The simulation with the parameters Expand tree 
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until there are no errors for training and Full tree for 
testing gives the best cost per example .1841 . Table VII 
shows the confusion matrix obtained for the Binary tree 
classifier IDS 

Table VII Confusion Matrix for Binary Tree Classifier IDS   
CPE=.1841 
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Normal 58430 1475 678 7 3 96.43
Probe 419 3247 492 6 2 77.94 
DOS 7159 995 221694 4 1 96.45 
U2R 97 99 1 31 0 13.59 
R2l 8063 1000 7054 0 72 0.44 
%correct 78.78 47.63 96.42 64.58 92.30    

4.5 ART 

Stability and plasticity of ART[18] nets and the 
capability of clustering input patterns based on the user 
controlled similarity between them, made such nets more 
appropriate for using in IDSs, rather than the other types 
of unsupervised nets including SOM, for classifying 
network traffic into normal and intrusive attack. 
Accordingly, we used two types of unsupervised ART 
nets, ART-1 and ART-2. For ART1 and ART2 the 
optimum value for the vigilance parameter and number 
of epochs determines the performance. ART1 with 
vigilance value of .92, ART2 with vigilance value of .97  
and epochs ranging from 90 to 120 gives the better result. 
Cost per example .1830. Table VIII shows the confusion 
matrix obtained for ART IDS 

 

Table VIII Confusion Matrix for ART IDS  CPE=.1830 
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Normal 58894 699 998 1 1 97.19
Probe 54 4103 8 0 1 98.48
DOS 4060 2606 223183 3 1 97.09
U2R 57 127 3 41 0 17.98
R2l 12360 1540 459 1 1829 11.29
%correct 78.08 45.21 99.34 89.13 99.83    

4.6 LAMSTAR 

Using the LAMSTAR[19,4,5] algorithm, 
different clusters were specified and generated for each 
output class. Simulations were run having 
2,4,8,16,32,40,64 clusters. Clusters were trained until the 

average squared error difference between two epochs 
was less than 1%.  

4.6.1 LAMSTAR IDS DESIGN 

 
 
 
 
 
                                                               SOM1                                           
SOM 1 
 
                                   
                                                                     SOM2                                    
C-links                                 
                                                                                                                                 

SOM 2 
                                                                  C-LINKS           3                                    
SOM3                                              -                                                                   
SOM 3 
                                                                                                              
                                                                   

 
             Winning Neuron   For clarity not all C-links are shown                            

Figure 1 : Modified LAMSTAR architecture 
 
A modified LAMSTAR network used for 

intrusion detection is as shown in Figure 1. The model 
reads in KDD cup 99 data sends it first to the feature 
extraction module  which extracts 41 features  of the data   
and sends it to preprocessing module. The preprocessing 
module converts the 41 features into a standardized 
numeric representation  Normalization block reads the 
preprocessed data and normalizes the data into a format 
required by the SOM’s. The normalized input pattern 
was split into sub patterns (basic features 9, content 
features 13, traffic 9, and others 10 )[8]. Each sub pattern  
given to one SOM module. This SOM configuration 
yields very rapid matching with good error tolerance, and 
is capable of generalization. 
  

Between SOM modules, connections are 
established using correlation links. The correlation links 
distribute information between various modules. The 
training data  contains 22 attack patterns and normal 
patterns. The SOM modules are trained using this pattern. 
The coordinated activation of neurons between the 
various modules allows the network to detect intrusions.     
 

The input pattern is stored as a real vector x 
given by:  

X= [ x1T,….xiT,….xmT]T
   

     …..(1) 

KDD Cup 

Normaliza
tion

Pre 
processing
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Pattern 1 

Pattern 2 

Pattern n
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--

 
 
-
 
-

O/P Layer
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To store data concerning the i'th category of the 
input pattern, each sub-pattern xi is then channeled to the 
corresponding i'th SOM module.  A winning neuron is 
determined for each input based on the similarity 
between the input vector xi and weight vectors wi (stored 
information). For a sub-pattern xi, the winning neuron is 
determined by the minimum Euclidean distance between 
xi and wi:  

 
||xi-wi

winner|| = min || xi-wi
winner || ∀   k    

     ….(2) 
where  xi - input vector in i’th SOM module 
winner  -index of the winning neuron 
wi

winner     - winner weight vector in ith SOM module 
k - a number of neurons(stored patterns)in ith SOM 
module 
||-|| - Vector Euclidean distance : 

||x-w|| =∑
=

n

i
w

1
( i- xi)2 

where n  - dimension of sub vectors x and w 
  
 The SOM module is a Winner-Take-All[12] 

network where only the neuron with the highest 
correlation between its input vector and its 
correspondence weight vector will have a non-zero 
output. The Winner-Take-All feature also involves 
lateral inhibition such that each neuron has a single 
positive feedback onto itself and negative feedback 
connections to all other units.  

oi

j
 = {1

0
   for ||xi-wi

winner|| < ||xi-wi
j|| ∀  winner ≠  j             

             0 otherwise 
….(3) 

 

where  oi

j
- output of neuron j in ith SOM module 

wi
winner  - winning weight vector in ith SOM module 

winner - index of winning neuron in ith SOM module 
The neuron with the smallest error determined  

is declared the winner and its weights wwinner are adjusted 
using the Hebbian learning law, which leads to an 
approximate solution:  
wi

winner (t+1)= wi
winner (t)+α .( xi(t) - wi

winner (t)) 
     ….(4) 

The adjustment in the LAMSTAR SOM module 
is weighted according to a pre-assigned Gaussian hat 
neighborhood function Δ(winner,j):  
wi

j (t+1)=wi
winner (t) +Δ (winner, j).α .(xi(t)-wi

winner (t))
               ….(5) 
Where  wi

j (t+1)  - new weight of the neighbour neuron j 
from winning neuron winner 
Δ (winner, j). –Neighborhood define as gaussian hat 

α  -Learning rate a slowly decreasing function of time, 
initial weights are assumed with random  values. The 
learning rate is updated by, α (t+1) = 0.5α (t)  

4.6.2 Training phase  

The training of the SOM modules are done as 
described below 

 
SOM modules are trained with sub-patterns 

derived from the  KDD cup 99 data. Given an input 
pattern x and for each xi sub-pattern to be stored, the 
network inspects all weight vectors wi in the i’th SOM 
module. If any previously stored pattern matches the 
input sub-pattern within a preset tolerance (error ε), the 
system updates the proper weights or creates a new 
pattern in the SOM module. The choice of  ε ‘s value 
depend on the size of the cluster. The following 
expression is used to calculate the value of ε: 

ε = Max
clix∈

(dist(x,ci))/10  where ci is the 

cluster center and cli is the cluster i. It stores the input 
sub-pattern xi as a new pattern, xi = wji, where index j is 
the first unused kji neuron in i'th SOM module. If there 
are no more ‘free’ neurons, the system will fail, which 
means either the preset tolerance has to be increased to 
include more patterns in the same cluster of already 
stored patterns, or more neurons have to be added on the 
i’th SOM module.  

 
Correlation links C-links among SOM modules 

are created as follows. Individual neurons represent only 
a limited portion of the information input. Sub-patterns 
are stored in SOM’s and the correlation links between 
these sub-patterns are established in such a way that the 
informations are distributed between neurons in various 
SOM modules and correlation links. Even if one neuron 
fails only a little information is lost since the information 
is spread among SOM’s and correlation links. 
Correlation-link coefficient values C-link are determined 
by evaluation distance minimization  to determine 
winning neurons, where a win  activates a count-up 
element associated with each neuron and with its 
respective input-side link. During training sessions, the 
values of C-links are modified according to the following 
simple rule (reward)  

C li

jk

,

,
(new)=C li

jk

,

,
(old) - β reward(C li

jk

,

,
(old)- C Max) , 

for C li

jk

,

,
 (old) ≠ 0, 1 otherwise   ….(6) 

C li

jk

,

,
 - correlation link between k’th neuron in i’th 

SOM module and l’th neuron in j’th   SOM module 
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β reward - reward coefficient ,initially  value is assumed 
with random values . β reward (t+1) = .5 β reward(t)  
To keep link-weights within a reasonable range, 
whenever the highest of all weights reaches a certain 
threshold all link-weights to that SOM are uniformly 
reduced by the same proportion, for example 50%. 
Additionally, link-weights are never reduced to zero or 
the connection between the two neurons will be lost 
permanently. If the correlation link between two sub-

patterns already exists, namely, C ji

lk

,

,  > 0 (a result from 

previous training), the formula of equation 6 updates 
(increases) the analyzed C-link. If there are no 

correlations (C ji

lk

,

, = 0), the system creates new C-link 

with initial value C ji

lk

,

, =1.  

4.6.3 Detection phase  

The sub-patterns from input pattern is selected 
and the correlations with stored sub-patterns in each 
SOM module is examined. For example, one i’th SOM 
module could have previously stored source IP address, 
and will correlate any given input i’th sub-pattern and 
determine if there is a match or not.  The Intruder packet  
is detected  by means of its C-links. Once all the winning 
neurons are determined, the system obtains all 
correlation-links coefficient values among all SOM 
modules. The output SOM layer (Figure 1), with which 
all C-links are inter-connected, will determine whether 
the input pattern is an intruder packet or a normal packet. 
This model  achieved the lowest cost per example 
value .1020.  Table IX shows the confusion matrix 
obtained for LAMSTAR IDS 
Table IX Confusion Matrix for LAMSTAR IDS  
CPE=.1027 

Pr
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1 2 3 4 5 

%
co

rr
ec
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1 60411 140 37 4 1 99.69
2 56 4103 6 0 1 98.48
3 1603 186 228060 3 1 99.21
4 99 54 8 66 1 28.94
5 7519 985 1015 0 6670 41.20
%correct 86.68 75.03 99.53 90.04 99.94    

5. EXPERIMENTAL RESULTS 

 Best performing instances of  all classifiers 
developed through the KDD testing data set[20] . For a 
given classifier, its detection rate, false alarm rate, 
Training time and Testing time performance on a 

specific attack category was recorded. Simulation results 
are presented in Table X. Both detection rate, false alarm 
rate, Training time and Testing time are indicated for 
each classifier and each attack category. The false alarm 
rate and detection rate of all the classifiers were recorded. 
TABLE X shows the comparison of various classifiers. 
 
 
 
 
TABLE X  Comparison of Detection Rate, False Alarm Rate, Training 
Time and Testing Time of various classifiers 
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DR 98.97 93.03 88.24 22.8 9.6 
FAR 35.01 72.27 0.15 45.84 1.02
Training 
Time 

40s 15s 60s 5s 10 

G
m
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0.
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96
 

Testing 
Time 

28s 10s 45s 5s 12s 

DR 99.07 91.31 75.10 7.01 5.6 
FAR 42.78 88.13 0.29 61.91 0.88
Training 
Time 

41s 14s 55s 5s 11s 

R
B

F 

0.
38

01
 

Testing 
Time 

31s 10s 40s 5s 9s 

DR 93.98 64.30 96.10 21.49 11.70
FAR 26.53 78.70 0.22 24.62 0.32
Training 
Time 

41s 16s 58s 6s 12s 

SO
M

 

0.
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96
 

Testing 
Time 

29s 11s 29s 5s 11s 

DR 96.43 77.94 96.45 13.59 0.44
FAR 21.22 52.37 3.58 35.42 7.70
Training 
Time 

39s 14s 53s 6s 11s 
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0.
18

41
 

Testing 
Time 

30s 12s 29s 6s 9s 

DR 97.19 98.48 97.09 17.98 11.29
FAR 21.92 54.79 0.66 10.87 0.17
Training 
Time 

40s 16s 51s 5s 12s 

A
R

T 

0.
18

30
 

Testing 
Time 

28s 13s 29s 4s 8s 

DR 99.69 98.48 99.21 28.94 41.20
FAR 13.32 24.97 0.47 9.96 0.06
Training 
Time 

47s 16s 60s 6s 15s 
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0.
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27
 

Testing 
Time 

28s 13s 28s 5s 9s 

CONCLUSION 

In this paper, we proposed a novel method 
based on LAMSTAR neural network for intrusion 
identification. A  simulation  study  was  performed  to  
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assess  the performance of  a  set of machine  learning  
algorithms  on  the  KDD  1999  Cup  intrusion  
detection  dataset.   Simulation  results demonstrated  
that all the algorithms performed well for 
NORMAL ,DOS and PROBE classes except SOM which 
shows poor result for PROBE class. For the U2R  class 
SOM and LAMSTAR gives a  better  performance than 
the other algorithms  For R2L class LAMSTAR gives the 
better result. Overall LAMSTAR gives better 
performance at the cost of long training time 
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