
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

255

Manuscript received February 5, 2007

Manuscript revised February 25, 2007

Intrusion Detection using an Improved Competitive
Learning Lamstar Neural Network

V.Venkatachalam † and S.Selvan ††,

 †H.O.D Dept. of CSE, Erode Sengunthar Engineering College ,Thudupathi,Erode ,Tamilnadu ,India .

 †† H.O.D Dept of IT, PSG College of Technology ,Coimbatore,Tamilnadu ,India

Summary

Computer systems vulnerabilities such as software

bugs are often exploited by malicious users to intrude into
information systems. With the recent growth of the Internet
such security limitations are becoming more and more pressing.
One commonly used defense measure against such malicious
attacks in the Internet are Intrusion Detection Systems (IDSs).
Due to increasing incidents of cyber attacks, building effective
intrusion detection systems (IDS) are essential for protecting
information systems security, and yet it remains an elusive goal
and a great challenge. We developed an Intrusion Detection
System using LAMSTAR neural network to learn patterns of
normal and intrusive activities and to classify observed system
activities. we further investigate the time taken for training and
testing, generate Confusion matrix with KDD CUP 99 data
using simulation tool and compare it with five classification
techniques (Gaussian Mixture, Radial Basis Function, Binary
Tree Classifier, SOM, and ART). The results indicate that
LAMSTAR exhibit high accuracy at the cost of long training
time.

Keywords:
 Intrusion Detection System, LAMSTAR, Gaussian Mixture,
SOM, Radial Basis Function, Binary Tree Classifier, ART.

1.INTRODUCTION

Intrusion detection and prevention generally
refers to a broad range of strategies for defending against
malicious attacks. Intrusion detection can be categorized
into misuse detection and anomaly detection[1]. Misuse
typically is a known attack, e.g., a hacker attempting to
break into an email server in a way that IDS has already
trained. A misuse detection system tries to model normal
and abnormal behavior from known attacks. It works by
comparing network traffic, system call sequences, or
other features of known attack patterns. An anomaly is
something out of the ordinary, e.g., abnormal network
traffic which is actually caused by unknown attacks. An
anomaly detection system models normal behavior and
identifies a behavior as abnormal (or anomalous) if it is
sufficiently different from known normal behaviors.

We developed an Intrusion Detection System
using LAMSTAR neural network to learn patterns of
normal and intrusive activities and to classify observed
system activities. we further investigate the time taken
for training and testing, generate Confusion matrix using
simulation tool and compare it with five classification
techniques (Gaussian Mixture, Radial Basis Function,
Binary Tree Classifier, SOM, and ART)

This paper is organized as follows: section 2

gives some theoretic background about LAMSTAR
neural network. Section 3 presents the details about
KDD cup 99 dataset used for testing and training the
Intrusion Detection system and the cost matrix used to
calculate cost per example. Section 4 gives details about
the various algorithms and the parameters used to obtain
the confusion matrix and cost per example. Section 5
summarizes the obtained results with comparison and
discussions. The paper is finally concluded with the most
essential points

2. LAMSTAR

A Large Scale Memory Storage and Retrieval
(LAMSTAR) network is proposed in [2,3] by combining
SOM modules and statistical decision tools. It was
specifically developed for application to problems
involving very large memory that relates to many
different categories (attributes) where some data is exact
while the other is fuzzy and where for a given problem
some categories might be totally missing [2]. Large Scale
Memory Storage and Retrieval (LAMSTAR) network
research, which targets large-scale memory storage and
retrieval problems. This model attempts to imitate, in a
gross manner, processes of the human central nervous
system (CNS) concerning storage and retrieval of
patterns, impressions, and sensed observations including
processes of forgetting and recollection. It attempts to
achieve this without contradicting findings from
physiological and psychological observations, at least in
an input/output manner. Furthermore, it attempts to do so
in a computationally efficient manner using tools of
neural networks, especially Self-Organizing-Map based

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

256

(SOM) network modules, combined with statistical
decision tools. Its design was guided by trying to find a
mechanistic neural network-based model for very
general storage and retrieval processes involved. This
general approach is related to Minsky’s idea that the
human brain consists of many agents, and a knowledge
link is formed among them whenever the human
memorizes an experience. When the knowledge link is
subsequently activated, it reactivates the mental agents
needed to recreate a mental state similar to the original.
The LAMSTAR network employs this general
philosophy of linkages between a large number of
physically separate modules that represent concepts, such
as time, location, patterns, etc., in an explicit algorithmic
network.

The LAMSTAR network has been successfully
applied in fields of medicine (diagnosis)[4,5,6],
engineering (automotive fault detection) and multimedia
information systems[7]. Whereas the LAMSTAR design
addresses large-scale memory retrieval problems, we use
LAMSTAR concepts to processes of storage and
retrieval, interpolation and extrapolation of input data,
and the use of reward-based correlation-links between
modules to detect intrusions. In this modified
LAMSTAR network, each Kohonen SOM module
represents a class of sub-patterns. The model assumes
that the input patterns have been separated into sub-
patterns before entering the SOM module . The network
is thus organized to assign each neuron to a class of
neurons (i.e., one SOM module) that best corresponds to
the input sub-pattern. This SOM configuration yields
very rapid matching with good error tolerance, and is
capable of generalization. Arrays of correlation links (C-
links) connect the modules using coefficients determined
by the statistical correlations between the various
patterns considered. A coordinated activation of neurons
between the various modules allows the network to
recreate (interpolate) complex patterns and make
associations.

3.DATA SET & COST MATRIX

3.1 DATA SET

We trained and tested our system using KDD
Cup's 99 dataset [8,9] which covers four categories of
attacks: Denial of Service (DoS) attacks:deny legitimate
requests to a system, e.g.syn flood, User-to-Root (U2R)
attacks: unauthorized access to local super user(root)
privileges, e.g.various buffer overflow attacks, Remote-
to-Local (R2L) attacks:unauthorized access from a
remote machine, e.g. guessing password, and Probing:
surveillance and other probing, e.g. port scanning. The
1999 Defence Advanced Research Projects Agency
(DARPA) Intrusion Detection Evaluation Program was

prepared and managed by MIT Lincoln Labs. The
objective was to survey and evaluate research in
intrusion detection. A standard set of data to be audited,
which includes a wide variety of intrusions simulated in
a military network environment, was provided. Table I
gives the details of KDD CUP 99 data.

Table I : KDD Cup 99 Training and Testing data

D
at

as
et

La

be
l

D
O

S

PR
O

B
E

U
2R

R
2L

To
ta

l
A

tta
ck

To
ta

l
N

or
m

al

Training
data

391458 4107 52 1126 494020 97277

Testing
data

229853 4166 228 16189 311029 60593

3.1.1 Feature Extractions and Preprocessing

The input data to the neural network must be in
the range [0 1] or [-1 1]. Hence preprocessing and
normalization of data is required. The kdd-cup format
data is preprocessed. Each record in kdd-cup format has
41 features, each of which is in one of the continuous,
discrete and symbolic form, with significantly varying
ranges. Based on the type of neural nets, the input data
may have different forms and so needs different
preprocessing. Some neural nets only accept binary input
and some can also accept continuous-valued data. In
Preprocessor, after extracting kdd-cup features from each
record, each feature is converted from text or symbolic
form into numerical form. For converting symbols into
numerical form, an integer code is assigned to each
symbol. For instance, in the case of protocol_type
feature, 0 is assigned to tcp, 1 to udp, and 2 to the icmp
symbol. Attack names were first mapped to one of the
five classes, 0 for Normal, 1 for Probe, 2 for DoS, 3
for U2R, and 4 for R2L.

Two features spanned over a very large integer range,
namely src_bytes [0, 1.3 billion] and dst_bytes [0,
1.3 billion]. Logarithmic scaling (with base 10) was
applied to these features to reduce the range to [0.0,
9.14]. All other features were boolean, in the
range [0.0, 1.0]. Hence scaling was not necessary
for these attributes.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

257

3.1.2 Normalization

For normalizing feature values, a statistical
analysis is performed on the values of each feature based
on the existing data from KDD Cup's 99 dataset and then
acceptable maximum value for each feature is
determined. According to the maximum values and the
following simple formula, normalization of feature
values in the range [0,1] is calculated.
If (f > MaxF) Nf=1; Otherwise Nf = (f / MaxF)
--
F: Feature f: Feature value MaxF: Maximum acceptable
value for F Nf: Normalized or scaled value of F

 Another simple way to Normalize the data is to
use SOM toolbox of the MATLAB software. In this
paper the following MATLAB commands were used to
normalize the data.

sD=som_read_data(‘kddcup.data’)
sD=som_normalize(sD,‘var’,1:4)
sD=som_normalize(sD,‘log’,5:6)
sD=som_normalize(sD,‘var’,7:41)
sD=som_normalize(sD,‘var’,1:41)

3.2 COST MATRIX

A cost matrix (C) is defined by associating
classes as labels for the rows and columns of a square
matrix: in the current context for the KDD dataset, there
are five classes, {Normal, Probe, DoS, U2R, R2L},
and therefore the matrix has dimensions of 5×5.
An entry at row i and column j, C(i,j), represents
the non-negative cost of misclassifying a pattern
belonging to class i into class j. Cost matrix values
employed for the KDD dataset are defined elsewhere
in [10]. These values were also used for evaluating
results of the KDD’99 competition. The magnitude
of these values was directly proportional to the impact
on the computing platform under attack if a test
record was placed in a wrong category. A confusion
matrix (CM) is similarly defined, in that row and
column labels are class names: a 5×5 matrix for the
KDD dataset. An entry at row i and column j, CM(i,j),
represents the number of misclassified patterns,
which originally belong to class i yet mistakenly
identified as a member of class j. Given the cost
matrix as predefined in [10] and the confusion
matrix obtained subsequent to an empirical testing
process, cost per example (CPE) was calculated
using the formula,

 CPE =
N
1

 ∑
=

5

1i
∑
=

5

1j

CM(i,j)*C(i,j)

where CM corresponds to confusion matrix, C
corresponds to the cost matrix, and N represents the
number of patterns tested. A lower value for the cost per
example indicates a better classifier model. Comparing
performances of classifiers for a given attack
category is implemented through the probability of
detection along with the false alarm rate, which are
widely accepted as standard measures. Table II shows
the cost matrix used for scoring entries

 Table II The cost matrix used for scoring entries
 Normal Probe DOS U2R R2L
Normal 0 1 2 2 2
Probe 1 0 2 2 2
DOS 2 1 0 2 2
U2R 3 2 2 0 2
R2L 4 2 2 2 0

In the confusion matrices above, columns correspond to
predicted categories, while rows correspond to actual
categories.

The software tool LNKnet, which is a
publicly available pattern classification software
package [11], was used to simulate pattern
recognition and machine learning models. The SOM
and LAMSTAR was simulated using JNNS [12]
software tool.

3.2.1 Standard metrics for evaluations of Intrusions
(attacks)

We evaluated the performance of various IDS
systems based on the Detection Rate :detecting normal
traffic from attack and recognizing the known attack type
False Positive Rate : mis-detecting attack[13] . Table III
shows the standard metrics for evaluation of Intrusions

 No. of samples classified correctly
Detection rate : --
 No. of samples used for training

 False Positives
False alarm Rate :---
 Total no. of normal connections

Table III : Standard metrics for evaluations of Intrusions(attacks)
Predicted Connection label Confusion matrix

(Standard Metrics) Normal Intrusions(Attacks)
Normal True

Negative(TN)
False Alarm(FP) Actual

Connection
label Intrusions

(Attacks)
FalseNegative(FN) Correctly detected

Attacks (TP)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

258

4. ALGORITHMS APPLIED TO INTRUSION
DETECTION

4.1 Gaussian Mixture

The Gaussian Mixture classifier[14] can
perform better than a Gaussian classifier when classifier
distributions are not unimodal Gaussian. Different
simulations were performed by changing various
parameters like, each class has its own Gaussian mixture,
all classes share a single set of tied Gaussian mixtures,
diagonal covariance, full matrices covariance, separate
variance for each gaussian . The simulation result with
parameters ,each class has its own Gaussian mixture and
diagonal covariance gives the better cost per example
0.2796. Table IV shows the Confusion Matrix obtained
for Gaussian mixture IDS

Table IV Confusion Matrix for Gaussian mixture IDS CPE = .2796

 P
re

di
ct

ed

 A

ct
ua

l

N
or

m
al

Pr
ob

e

D
O

S

U
2R

R
2L

%
co

rr
ec

t

Normal 59969 423 190 5 6 98.97
Probe 195 3876 95 0 0 93.03
DOS 18015 9002 202822 9 5 88.24
U2R 145 25 1 52 5 22.8
R2l 13950 650 5 30 1554 9.6

%correct 64.99 27.73 99.85 54.16 98.98

The top left entry in the confusion matrix shows
that 59969 of the actual “normal” test examples were
predicted to be normal by this entry. The last column
indicates that in total 98.97% of the “normal” examples
were recognized correctly. The bottom row shows that
64.99% of test examples said to be normal were indeed
“normal” in reality. From the last column, we can obtain
the average detect rate of 62.52%. The false positive rate
for Normal class is 100-64.99 =35.01 %.

4.2 Radial Basis Function

Radial Basis Function classifiers [15] calculate
discriminant functions using local Gaussian functions. A
total of six simulations were performed using the RBF
algorithm .Each simulation used initial clusters created
using K-means algorithm: there were 8,16,32,40 ,64 and
75 clusters each in different output classes. Weights are
trained using least-square matrix inversion to minimize
the squared error of the output sums given the basis
function outputs for the training patterns. During training
and testing variance are increased to provide good
coverage of the data .For each simulation using the RBF,
cost per example for the test dataset was calculated. The
model with 64 clusters performed best with the cost per

example equal to .3801. Table V shows the Confusion
Matrix obtained for Radial Basis Function IDS.

Table V Confusion Matrix for RBF IDS CPE = .3801

 P
re

di
ct

ed

 A
ct

ua
l

N
or

m
al

Pr
ob

e

D
O

S

U
2R

R
2L

%
co

rr
ec

t

Normal 60030 263 290 8 2 99.07
Probe 350 3804 8 3 1 91.31
DOS 37050 20163 172620 15 5 75.10
U2R 190 20 2 16 0 7.01
R2l 7282 7800 200 0 907 5.6
%correct 57.22 11.87 99.71 38.09 99.12

4.3 SOM

For SOM [16,17] the training algorithm can be
summarized in four basic steps. Step 1 initializes the
SOM before training. Best matching unit (BMU) is the
neuron, which resembles the input pattern most. On Step
2, best matching unit is determined. Step 3 involves
adjusting best matching neuron (or unit) and its
neighbors so that the region surrounding the best
matching unit will represent the input pattern better. This
training process continues until all input vectors are
processed. Convergence criterion utilized here is in terms
of epochs, which defines how many times all input
vectors should be fed to the SOM for training. The
epochs ranging from 100 to 130 gives the better
performance cost per example .1996. Table VI shows the
confusion matrix obtained for SOM IDS

Table VI Confusion Matrix for SOM IDS CPE =.1996

 P
re

di
ct

ed

 A
ct

ua
l

N
or

m
al

Pr
ob

e

D
O

S

U
2R

R
2L

%
co

rr
ec

t

Normal 56945 3448 190 8 2 93.98
Probe 1200 2679 280 5 2 64.30
DOS 7964 996 220889 3 1 96.10
U2R 101 68 9 49 1 21.49
R2l 11295 2993 7 0 1894 11.7
%correct 73.47 21.30 99.78 75.38 99.68

4.4 Binary Tree classifier

The binary decision tree classifier[17] trains and
tests very quickly. It can also be used to identify the
input features which are most important for classification
because feature selection is part of the tree-buliding
process. Two different training options were used
1.Expand tree until there are no errors. 2.Stop Expansion
Early .Two different testing options were used 1.Full tree
for testing, 2.Maximum number of nodes during
testing .The simulation with the parameters Expand tree

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

259

until there are no errors for training and Full tree for
testing gives the best cost per example .1841 . Table VII
shows the confusion matrix obtained for the Binary tree
classifier IDS

Table VII Confusion Matrix for Binary Tree Classifier IDS
CPE=.1841

Pr
ed

ic
te

d
A

ct
ua

l

N
or

m
al

Pr
ob

e

D
O

S

U
2R

R
2L

%
co

rr
ec

t

Normal 58430 1475 678 7 3 96.43
Probe 419 3247 492 6 2 77.94
DOS 7159 995 221694 4 1 96.45
U2R 97 99 1 31 0 13.59
R2l 8063 1000 7054 0 72 0.44
%correct 78.78 47.63 96.42 64.58 92.30

4.5 ART

Stability and plasticity of ART[18] nets and the
capability of clustering input patterns based on the user
controlled similarity between them, made such nets more
appropriate for using in IDSs, rather than the other types
of unsupervised nets including SOM, for classifying
network traffic into normal and intrusive attack.
Accordingly, we used two types of unsupervised ART
nets, ART-1 and ART-2. For ART1 and ART2 the
optimum value for the vigilance parameter and number
of epochs determines the performance. ART1 with
vigilance value of .92, ART2 with vigilance value of .97
and epochs ranging from 90 to 120 gives the better result.
Cost per example .1830. Table VIII shows the confusion
matrix obtained for ART IDS

Table VIII Confusion Matrix for ART IDS CPE=.1830

 P
re

di
ct

ed

 A
ct

ua
l

N
or

m
al

Pr
ob

e

D
O

S

U
2R

R
2L

%
co

rr
ec

t

Normal 58894 699 998 1 1 97.19
Probe 54 4103 8 0 1 98.48
DOS 4060 2606 223183 3 1 97.09
U2R 57 127 3 41 0 17.98
R2l 12360 1540 459 1 1829 11.29
%correct 78.08 45.21 99.34 89.13 99.83

4.6 LAMSTAR

Using the LAMSTAR[19,4,5] algorithm,
different clusters were specified and generated for each
output class. Simulations were run having
2,4,8,16,32,40,64 clusters. Clusters were trained until the

average squared error difference between two epochs
was less than 1%.

4.6.1 LAMSTAR IDS DESIGN

 SOM1
SOM 1

 SOM2
C-links

SOM 2
 C-LINKS 3
SOM3 -
SOM 3

 Winning Neuron For clarity not all C-links are shown

Figure 1 : Modified LAMSTAR architecture

A modified LAMSTAR network used for

intrusion detection is as shown in Figure 1. The model
reads in KDD cup 99 data sends it first to the feature
extraction module which extracts 41 features of the data
and sends it to preprocessing module. The preprocessing
module converts the 41 features into a standardized
numeric representation Normalization block reads the
preprocessed data and normalizes the data into a format
required by the SOM’s. The normalized input pattern
was split into sub patterns (basic features 9, content
features 13, traffic 9, and others 10)[8]. Each sub pattern
given to one SOM module. This SOM configuration
yields very rapid matching with good error tolerance, and
is capable of generalization.

Between SOM modules, connections are
established using correlation links. The correlation links
distribute information between various modules. The
training data contains 22 attack patterns and normal
patterns. The SOM modules are trained using this pattern.
The coordinated activation of neurons between the
various modules allows the network to detect intrusions.

The input pattern is stored as a real vector x
given by:

X= [x1T,….xiT,….xmT]T

 …..(1)

KDD Cup

Normaliza
tion

Pre
processing

Feature
Extraction

Pattern 1

Pattern 2

Pattern n

--

--

--

-

-

O/P Layer

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

260

To store data concerning the i'th category of the
input pattern, each sub-pattern xi is then channeled to the
corresponding i'th SOM module. A winning neuron is
determined for each input based on the similarity
between the input vector xi and weight vectors wi (stored
information). For a sub-pattern xi, the winning neuron is
determined by the minimum Euclidean distance between
xi and wi:

||xi-wi

winner|| = min || xi-wi
winner || ∀ k

 ….(2)
where xi - input vector in i’th SOM module
winner -index of the winning neuron
wi

winner - winner weight vector in ith SOM module
k - a number of neurons(stored patterns)in ith SOM
module
||-|| - Vector Euclidean distance :

||x-w|| =∑
=

n

i
w

1
(i- xi)2

where n - dimension of sub vectors x and w

 The SOM module is a Winner-Take-All[12]

network where only the neuron with the highest
correlation between its input vector and its
correspondence weight vector will have a non-zero
output. The Winner-Take-All feature also involves
lateral inhibition such that each neuron has a single
positive feedback onto itself and negative feedback
connections to all other units.

oi

j
 = {1

0
 for ||xi-wi

winner|| < ||xi-wi
j|| ∀ winner ≠ j

 0 otherwise
….(3)

where oi

j
- output of neuron j in ith SOM module

wi
winner - winning weight vector in ith SOM module

winner - index of winning neuron in ith SOM module
The neuron with the smallest error determined

is declared the winner and its weights wwinner are adjusted
using the Hebbian learning law, which leads to an
approximate solution:
wi

winner (t+1)= wi
winner (t)+α .(xi(t) - wi

winner (t))
 ….(4)

The adjustment in the LAMSTAR SOM module
is weighted according to a pre-assigned Gaussian hat
neighborhood function Δ(winner,j):
wi

j (t+1)=wi
winner (t) +Δ (winner, j).α .(xi(t)-wi

winner (t))
 ….(5)
Where wi

j (t+1) - new weight of the neighbour neuron j
from winning neuron winner
Δ (winner, j). –Neighborhood define as gaussian hat

α -Learning rate a slowly decreasing function of time,
initial weights are assumed with random values. The
learning rate is updated by, α (t+1) = 0.5α (t)

4.6.2 Training phase

The training of the SOM modules are done as
described below

SOM modules are trained with sub-patterns

derived from the KDD cup 99 data. Given an input
pattern x and for each xi sub-pattern to be stored, the
network inspects all weight vectors wi in the i’th SOM
module. If any previously stored pattern matches the
input sub-pattern within a preset tolerance (error ε), the
system updates the proper weights or creates a new
pattern in the SOM module. The choice of ε ‘s value
depend on the size of the cluster. The following
expression is used to calculate the value of ε:

ε = Max
clix∈

(dist(x,ci))/10 where ci is the

cluster center and cli is the cluster i. It stores the input
sub-pattern xi as a new pattern, xi = wji, where index j is
the first unused kji neuron in i'th SOM module. If there
are no more ‘free’ neurons, the system will fail, which
means either the preset tolerance has to be increased to
include more patterns in the same cluster of already
stored patterns, or more neurons have to be added on the
i’th SOM module.

Correlation links C-links among SOM modules

are created as follows. Individual neurons represent only
a limited portion of the information input. Sub-patterns
are stored in SOM’s and the correlation links between
these sub-patterns are established in such a way that the
informations are distributed between neurons in various
SOM modules and correlation links. Even if one neuron
fails only a little information is lost since the information
is spread among SOM’s and correlation links.
Correlation-link coefficient values C-link are determined
by evaluation distance minimization to determine
winning neurons, where a win activates a count-up
element associated with each neuron and with its
respective input-side link. During training sessions, the
values of C-links are modified according to the following
simple rule (reward)

C li

jk

,

,
(new)=C li

jk

,

,
(old) - β reward(C li

jk

,

,
(old)- C Max) ,

for C li

jk

,

,
 (old) ≠ 0, 1 otherwise ….(6)

C li

jk

,

,
 - correlation link between k’th neuron in i’th

SOM module and l’th neuron in j’th SOM module

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

261

β reward - reward coefficient ,initially value is assumed
with random values . β reward (t+1) = .5 β reward(t)
To keep link-weights within a reasonable range,
whenever the highest of all weights reaches a certain
threshold all link-weights to that SOM are uniformly
reduced by the same proportion, for example 50%.
Additionally, link-weights are never reduced to zero or
the connection between the two neurons will be lost
permanently. If the correlation link between two sub-

patterns already exists, namely, C ji

lk

,

, > 0 (a result from

previous training), the formula of equation 6 updates
(increases) the analyzed C-link. If there are no

correlations (C ji

lk

,

, = 0), the system creates new C-link

with initial value C ji

lk

,

, =1.

4.6.3 Detection phase

The sub-patterns from input pattern is selected
and the correlations with stored sub-patterns in each
SOM module is examined. For example, one i’th SOM
module could have previously stored source IP address,
and will correlate any given input i’th sub-pattern and
determine if there is a match or not. The Intruder packet
is detected by means of its C-links. Once all the winning
neurons are determined, the system obtains all
correlation-links coefficient values among all SOM
modules. The output SOM layer (Figure 1), with which
all C-links are inter-connected, will determine whether
the input pattern is an intruder packet or a normal packet.
This model achieved the lowest cost per example
value .1020. Table IX shows the confusion matrix
obtained for LAMSTAR IDS
Table IX Confusion Matrix for LAMSTAR IDS
CPE=.1027

Pr
ed

ic
te

d
 A

ct
ua

l

1 2 3 4 5

%
co

rr
ec

t

1 60411 140 37 4 1 99.69
2 56 4103 6 0 1 98.48
3 1603 186 228060 3 1 99.21
4 99 54 8 66 1 28.94
5 7519 985 1015 0 6670 41.20
%correct 86.68 75.03 99.53 90.04 99.94

5. EXPERIMENTAL RESULTS

 Best performing instances of all classifiers
developed through the KDD testing data set[20] . For a
given classifier, its detection rate, false alarm rate,
Training time and Testing time performance on a

specific attack category was recorded. Simulation results
are presented in Table X. Both detection rate, false alarm
rate, Training time and Testing time are indicated for
each classifier and each attack category. The false alarm
rate and detection rate of all the classifiers were recorded.
TABLE X shows the comparison of various classifiers.

TABLE X Comparison of Detection Rate, False Alarm Rate, Training
Time and Testing Time of various classifiers

C
os

t P
er

Ex

am
pl

e

 N
or

m
al

Pr
ob

e

D
O

S

U
2R

R
2L

DR 98.97 93.03 88.24 22.8 9.6
FAR 35.01 72.27 0.15 45.84 1.02
Training
Time

40s 15s 60s 5s 10

G
m

ix

0.
27

96

Testing
Time

28s 10s 45s 5s 12s

DR 99.07 91.31 75.10 7.01 5.6
FAR 42.78 88.13 0.29 61.91 0.88
Training
Time

41s 14s 55s 5s 11s

R
B

F

0.
38

01

Testing
Time

31s 10s 40s 5s 9s

DR 93.98 64.30 96.10 21.49 11.70
FAR 26.53 78.70 0.22 24.62 0.32
Training
Time

41s 16s 58s 6s 12s

SO
M

0.
19

96

Testing
Time

29s 11s 29s 5s 11s

DR 96.43 77.94 96.45 13.59 0.44
FAR 21.22 52.37 3.58 35.42 7.70
Training
Time

39s 14s 53s 6s 11s

B
in

ar
y

Tr
ee

0.
18

41

Testing
Time

30s 12s 29s 6s 9s

DR 97.19 98.48 97.09 17.98 11.29
FAR 21.92 54.79 0.66 10.87 0.17
Training
Time

40s 16s 51s 5s 12s

A
R

T

0.
18

30

Testing
Time

28s 13s 29s 4s 8s

DR 99.69 98.48 99.21 28.94 41.20
FAR 13.32 24.97 0.47 9.96 0.06
Training
Time

47s 16s 60s 6s 15s

LA
M

ST
A

R

0.
10

27

Testing
Time

28s 13s 28s 5s 9s

CONCLUSION

In this paper, we proposed a novel method
based on LAMSTAR neural network for intrusion
identification. A simulation study was performed to

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

262

assess the performance of a set of machine learning
algorithms on the KDD 1999 Cup intrusion
detection dataset. Simulation results demonstrated
that all the algorithms performed well for
NORMAL ,DOS and PROBE classes except SOM which
shows poor result for PROBE class. For the U2R class
SOM and LAMSTAR gives a better performance than
the other algorithms For R2L class LAMSTAR gives the
better result. Overall LAMSTAR gives better
performance at the cost of long training time

REFERENCES

[1] .K.Anup Ghosh et.al, “ Study in Using Neural Networks
 for Anomaly and Misuse Detection ”, Proceedings of the
 8th SENIX Security Symposium, pp 131-142, August
 1999, Washington, D.C.

[2] Abirami Muralidharan, J.Patrick Rousche, “ Decoding of

auditory cortex signals with a LAMSTAR neural network ”,
Neurological Research, Volume 27, pp. 4-10, January
2005

[3] D.Graupe and H. Kordylewski, “A Large Memory Storage

and Retrieval Neural Network for Adaptive Retrieval and
Diagnosis ”, International Journal of Software
Engineering and Knowledge Engineering, volume 8,
pp.115-138, 1998.

[4] D.Graupe, “Principles of Artificial Neural Networks”, pp.

191-222, World Scientific Publishing Co. Pte. Ltd.,
Singapore, 1997.

[5] H. Kordylewski, “A Large Memory Storage and Retrieval

Neural Network for Medical and Engineering
Diagnosis/Fault Detection ”, Doctor of Philosophy’s
Thesis, University of Illinois at Chicago, TK-99999-K629,
1998.

[6] D.Graupe and H. Kordylewski, “A Large Memory Storage

and Retrieval Neural Network for Adaptive Retrieval and
Diagnosis ”, International Journal of Software
Engineering and Knowledge Engineering, volume 8,
pp.115-138, 1998.

[7] S.Chang.et.al, “An Active Multimedia Information System

for Information Retrieval, Discovery and Fusion ”,
International Journal of Software Engineering and
Knowledge Engineering, volume 8, pp. 139-160, 1998.

[8] http://kdd.ics.uci.edu//databases/kddcup98/kddcup98.html

[9] Srilatha Chebrolu et.al, “Feature deduction and ensemble

design of intrusion detection systems”, Elsevier Journal
of Computers & Security” Vol. 24/4, pp. 295-307, 2005.

[10] Itzhak Levin, KDD-99 Classifier Learning Contest

LLSoft’s Results Overview , “SIGKDD Explorations.

Copyright 2000 ACM SIGKDD” , Volume 1, Issue 2, pp.
67 -75, January 2000.

[11] www.ll.mit.edu/SST/lnknet/

[12] www-ra.informatik.uni-
 tuebingen.de/software/JavaNNS/welcome_e.html

[13] Dae-Ki Kang, “Learning Classifiers for Misuse and

Anomaly Detection Using a Bag of System Calls
Representation”, Proceedings of the 6th IEEE Workshop
on Information Assurance and Security United States
Military Academy, West Point, NY,2005.

[14] Jing Gao et.al, “A Novel Framework for Incorporating

Labeled Examples into Anomaly Detection”, Proceedings
of the Siam Conference on Data Mining, April 2006.

 [15] Dima Novikov et.al, “Anomaly Detection Based Intrusion

Detection” Proceedings of the Third IEEE International
Conference on Information Technology: New Generations
(ITNG'06), pp. 420-425.

[16] Khaled Labib and Rao Vemuri , “ NSOM: A Real-Time

Network-Based Intrusion Detection System Using Self-
Organizing Maps ” , Networks and Security, 21(1), Oct.
2002.

 [17] Richard Lippmann, “Passive Operating System

Identification From TCP/IP Packet Headers” published in
the Proceedings of the Workshop on Data Mining for
Computer Security (DMSEC), Lincoln
Laboratory ,Massachusetts, 2003.

 [18] Morteza Amini et.al, “Network-Based Intrusion

Detection Using Unsupervised Adaptive Resonance
Theory (ART)”, Published in the Proceedings of the 4th
Conference on Engineering of Intelligent Systems (EIS
2004), Madeira, Portugal, 2004.

[19] Liberios VOKOROKOS et.al, “Intrusion detection system

using self organizing map”, Acta Electrotechnica et
Informatica , Vol. 6 No.1, pp.1-6, 2006

 [20] Chaker Katar, “Combining Multiple Techniques for

Intrusion Detection”, International Journal of Computer
Science and Network Security, VOL.6 No.2B, February
2006.

[18] Morteza Amini et.al, “Network-Based Intrusion Detection

Using Unsupervised Adaptive Resonance Theory (ART)”,
Published in the Proceedings of the 4th Conference on
Engineering of Intelligent Systems (EIS 2004), Madeira,
Portugal, 2004.

 [19] Liberios VOKOROKOS et.al, “Intrusion detection

system using self organizing map”, Acta Electrotechnica
et Informatica , Vol. 6 No.1, pp.1-6, 2006

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

263

 [20] Chaker Katar, “Combining Multiple Techniques for
Intrusion Detection”, International Journal of Computer
Science and Network Security, VOL.6 No.2B, February
2006.

 Dr. S. Selvan received the B.E. degree in
Electronics and Communication Engineering and
M.E. degrees in Computer Science. He received
his Ph.D degree in Computer Science. His area
of specializations are Soft computing,
Information Processing, Computer Networks,
Digital communication Techniques. He has
presented 12 papers in International conference
and 21 papers in National Conference . He has
published 4 papers in International Journal and
12 Papers in National Journal. Presently working
as Professor and Head of the Dept. IT in PSG
College of Technology, Coimbatore

V. Venkatachalam rceived the B.E. degree in
Electronics and communication Engineering
from Bharathiyar University and M.S. degree in
software systems from Birla Institute of
Technology. He received M.Tech. degree in
Computer Science from National Institute of
Technology. His Research interest includes
Network Security and Pattern recognition.He is
currently pursuing his P.hd degree in Network
Security. Presently working as Head of the Dept.
CSE in Erode Sengunthar Engineering
College ,Erode

