
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

292

Manuscript received February 5, 2007

Manuscript revised February 25, 2007

TIERPEER: A THREE-TIER FRAMEWORK FOR P2P
APPLICATIONS

Abolhassan Shamsaie†, Jafar Habibi††, Fatemeh Ghassemi†††

Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

Summary
Peer-to-Peer (P2P) gained a lot of interest these days and
variety of P2P applications are increasing too. Among
these all applications, P2P frameworks try to simplify the
development process. In past, they provided some high
level functions and had a static architecture dedicated to a
network structure or topology. In present, complex
applications have become more interesting. For instance,
applications require communicating with numbers of
different overlay networks, topologies and underlying
networks. An open and flexible architecture would be
interesting in such cases. Changes and updates of
applications make them difficult to maintain. Extendible
and pluggable architecture can reduce change and update
costs which lead to reduce the maintenance costs. Thus,
the need to a new generation of P2P frameworks to
support these requirements is inevitable. In this paper, we
propose a new extendable framework with a flexible
architecture. This framework so-called TierPeer is based
on three-tier model of client-server paradigm and OSI
model of distributed system paradigm.
Key words:
Peer-to-Peer, P2P Framework, N-Tier Model, OSI Model.

1. Introduction

Since peer-to-peer systems like Napster [12] and Gnutella
[7] became so popular, an increasing interest in peer-to-
peer systems has been ignited. Numerous business projects
and academic searches in this context have been done and
an explosion in theories and papers concerning distributed
searching algorithms, load balancing algorithms, and
garnering statistical data on peer-to-peer systems have
been published. The trend in this field is creating a
framework that should be able to help programmers to
implement and test various components of P2P networks.

Different types of applications, topologies, underlying
networks, protocols or platforms have been used in P2P
applications. The term topology in P2P computing refers
to the structure of the overlaying P2P network. The
topology of a P2P application significantly influences the
performance, search efficiency and functionality, and
scalability of a system. Topologies have some advantages

and disadvantages and each application has a fixed
topology that disables it to work with other topologies.
Underlying networks like ad-hoc network or Internet have
different virtual machine libraries and OS primitives,
which force an application to be dedicated to its network.
Thus, a more flexible and adaptable framework is needed.

P2P frameworks aim to provide an abstraction between
the P2P topologies and the applications that are built on
top of them. These frameworks offer higher level services
such as distributed P2P search services and direct
communication among peers. Such systems often provide
a pre-defined topology that is suitable for a certain task
(e.g. exchanging files).

A difficult decision for system designers is selecting a
P2P architecture that fulfils all requirements of an
application and best fits its topology. So a framework with
an open architecture which is flexible and adaptable can
help designers to confide from fulfilling of all topological
requirements.

Most of current frameworks have a per-defined
topology and programmers should use this fix topology in
their applications. Some others that have open architecture
are difficult to use and almost always professional
programmers use them. Thus openness and simplicity can
encourage researchers to use a framework to test their
ideas instead of implementing all components of a P2P
application which wastes a lot of time. For instance, we
may require updating or testing a component with help of
an existing application, so it will be interested to plug this
component to application and use it without any
modification in application source code.

In this paper, we introduce a flexible and adaptable
framework architecture for P2P applications. In this
context, we call our framework TierPeer. The TierPeer has
an open and lightweight architecture which can be used to
implement any P2P component and application.

TierPeer has a pluggable architecture that allows
different topology descriptions to be plugged, based on
change requirements of an application. The main
advantage of TierPeer is providing an interface to the
application layer and allows the underlying topology to be
changed without making any code modification in the
application.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

293

This paper is structured as follows: Section 2 gives an
overview of P2P topologies. Section 3 presents related
work. Section 4 discusses TierPeer. Section 5 explains
about implementation. Section 6 evaluates the framework.
Section 7 explains our future plans and Section 8
concludes the paper.

2 P2P Topologies

This section provides an overview on the most common
P2P topologies. The network structure characteristic and
the degree of centralization aim at looking at systems from
the topological perspective. Two levels of structuring are
identified: unstructured and structured. In an unstructured
topology, an overlay network is realized with a random
connectivity graph. In a structured topology (e.g. DHT
based topologies like CAN [5], CHORD [8], PASTRY [6],
and TAPESTRY [14], the overlay network has a certain
predetermined structure such as a ring or a mesh.

The degree of centralization means to what extent, the
set of peers depends on one or more servers to facilitate
the interaction among them. Three degrees are identified:
fully decentralized, partially decentralized and hybrid
decentralized.

In the fully decentralized case (Gnutella), all peers are
of equal functionality and none of them is important to the
network more than any other peer. The relevant search
algorithms are blind and flooding based, that result in
reduction of the scalability.

In the partially decentralized case (KAZAA [11]), a
subset of nodes can play more important roles than others,
e.g. by maintaining more information about their
neighbour peers and thus acting as bigger directories that
can improve the performance of a search process. This set
of relatively more important peers can drastically vary in
size, while the system remains to be functioning.

In the hybrid decentralized case, the whole system
depends on one or very few irreplaceable nodes which
provide a special functionality in one aspect such as a
directory service. However, all other nodes in the system,
while depending on one special node, are of equal
functionality and they autonomously offer services to one
another in a different aspect such as storage. Thus, a
system of this class is a hybrid system that is centralized in
one aspect and decentralized in another aspect.

3 Related Work

Many P2P systems exist (e.g. Gnutella, Freenet [2], Chord,
PASTRY, JXTA [10], XMIDDLE [15], Groove [19] and
etc.). However, only a small subset of these P2P systems
can be used as framework for other applications. The most

closely related project to the TierPeer framework is the
JXTA project.

JXTA attempts to provide a set of tools on which peer-
to-peer networks and applications can be constructed.
However, after working with JXTA, it was realized that a
new simpler and more accessible set of tools is needed,
which motivate us in creation of the TierPeer framework.

Fig. 1 The JXTA architecture

Figure 1 shows the architecture of JXTA on a
conceptual level. It can be broken down in three layers:
the core layer (which is mainly responsible for
establishing the P2P network structure, the communication,
etc.), the services layer (which provides P2P functionality
such as indexing, searching, and file sharing) and the
applications layer (where the P2P application resides).

One major limitation of JXTA is that the applications
based on it, are required to use a predefined topology.
Another limitation is the complexity of the JXTA
components makes it more difficult to be extended.
Furthermore, JXTA requires every peer to parse and
generate XML messages. This is a serious problem on
computing devices with resource limitations such as
mobile phones (e.g. J2ME-enabled phones) and Personal
Digital Assistants (PDAs). In [4], a short overview of the
main problems of using JXTA [9] with J2ME has been
illustrated. We have implemented TierPeer using Java and
the size of the total implementation is less than one of the
protocols of JXTA. TierPeer has a lightweight architecture
and enables the applications, which use it, to run faster.

Another P2P middleware which is for mobile hosts is
XMIDDLE. It does not assume the existence of a fixed
network or a central authority. It connects peer directly,
peers are not used to forward messages to other peers. In
XMIDDLE, each peer organizes its content in a tree
structure (i.e., XML). It provides primitives for operating

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

294

on these trees and to share branches of them. If a peer
wants to access the content of another peer, it connects to
one of the shared branches. This is comparable to the
mounting of a remote file system share. If a remote tree
branch has been “mounted”, the peer can read and
manipulate the data offline. XMIDDLE provides the
mechanisms for reconciliation when the mounting peer
and the owner of the branch are again connected. If a peer
wants to modify an alien branch and has a connection to
the owner of that branch, it requests the owner to perform
the modification. After that, the owner informs all
connected peers about this change. The modification itself
is represented by using XMLTreeDiff [16]. For specifying
the links between peers, XMIDDLE uses standard XML
techniques, namely XLink [17] and XPath [18].

XMIDDLE provides the primitives Connect,
Disconnect, Link, and Unlink. It does not provide a
functionality for searching content in the overall data tree.

Groove is another framework which is a collaboration
software based on the principle of a shared workspace,
where all members of a group (i.e., those in the
workspace) share the same view. Groove provides servers
that are used to detect new peers in the network and to
help peers with lower bandwidth to distribute changes.
These servers are also used to store content if one or more
peers are offline (or not reachable – possibly due to a
firewall) and therefore cannot see the changes made at that
time. It provides higher level services, such as distributed
searches, workflows, offline working, and much more.
Groove is targeted at small workgroups, as the
communication takes place between all peers. With the
increasing number of workgroup members, the
communication overhead increases tremendously. Hence,
it does not scale very well. At the time of writing, Groove
is only available for the Windows platform.

Several other P2P systems that can be used as
framework are Pastry, PeerWare [3] and P-Grid [1]. Each
of these P2P systems has a fixed P2P topology that cannot
be changed. Furthermore, each P2P system has its own set
of methods to access the functionality of the P2P system.
There exists no standardized way of accessing a P2P
network within an application. Thus, in order to have a
simple, lightweight and easy to understand framework, we
have designed the TierPeer framework.

4 The TierPeer

Our goal of designing a framework can be broken to the
following requirements:
• Simplicity: The framework must be easy to use for

programmers. A simple and familiar architecture can
be interested.

• Flexibility: To achieve true flexibility, the framework
must be platform-independent and topology-
independent.

• Maintainability: A well Modulated and layered
framework can reduce updating and maintenance cost.

• Extendibility: Pluggable framework enables
applications to be extended when needed.

• Testability: Test a new component in distributed
environment wouldn't be easy and a testable
framework can ease debugging of new components.

We have studied some well known architecture of
distributed systems that fulfil some requirements, and use
their ideas in our framework to fulfil our requirements. In
section 4.1 and 4.2, we explain them and their ideas.

4.1 Three-Tier Architecture

One of the reasons that the client-server paradigm is still
widely used on the Internet is the simplicity of the three-
tier (figure 2.a) model that made it very popular. Three-tier
model is the most well known n-tier model that partitions
the work into the three parts:
• The Presentation Tier, which is responsible for

displaying information.

• The Business Rules Tier, which is responsible for
processing of data.

• The Data Access Tier, which supports back-end
services such as databases.

Each of these parts could run on different machines,
providing increased flexibility and scalability. Usually, the
first tier runs on a client machine and the others run on the
server machines. In client-server paradigm, there are multi
clients and a single server node, but in P2P paradigm,
which is the next trend in distributed system, every node
can be both client and server and so called peer. Thus we
can also use the three-tier model in the P2P paradigm, and
have all tiers in one machine or peer in order to act as both
client and server.

Fig. 2 Three-tier model

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

295

We renamed these tiers in order to be more significant
in P2P paradigm (figure 2.b) and make this model a basis
for our architecture. In this basic model, the Presentation
Tier is consisted of application specific modules (e.g. UI
modules), the Topology Rules Tier is consisted of modules
which are responsible for controlling the topology and
routing on overlay networks, and the NetData Access Tier
is consisted of modules which support some services such
as logging, security services and etc, and connect peers on
the edge of overlay networks, independent of underlying
platform.

One of the reasons that we have chosen this model as a
basic model for our architecture is its simplicity, which is
one of the important requirements that we considered in
our architecture design. In this basic model, a peer can be
a client (request only) and use the Presentation Tier to
initiate a request and NetData Access Tier to send requests
to and receive replies from its servers (local or remote). It
can be a server (serve only) and use Topology Rules Tier
to reply or route the requests and NetData Access Tier to
send (route) requests to other servers and replies to its
clients (local or remote) or receive replies from other
servers or requests from its clients. It also can be both
client and sever and use all three tiers to act as a client and
server independently.

These behaviors of P2P networks are similar to a multi
client multi server paradigm that is an extension to multi
client single server paradigm. Thus we extended the three-
tier model in multi client single server paradigm to adapt
to the multi client multi server paradigm. In this way we
chose another model to extend our basic model. This
model should satisfy the requirements of multi client multi
server paradigm. Our chosen model was OSI which is
discussed in next section.

4.2 OSI Model

There is a lack of standardization in the P2P area. The
International Organization for Standardization (ISO)
created the open 7-layer OSI model and made it standard
for distributed systems in 1979. This standard, which helps
to provide interoperability between different protocols and
makes the protocols independent from the underlying
devices, is clearly missing in the P2P area.

The main advantages of using a layered model such as
the ISO OSI model are:
• Layering helps to identify and understand separate

pieces of a complex system.

• The communication between different systems does
not require changes to the underlying hardware or
software.

• Maintenance and updating is easier due to its
modularization.

Thus we chose a layered architecture based on ISO
OSI model to extend our basic model and fulfil
requirements of a multi client multi server area as
mentioned in section 4.1. In this context we viewed a
multi client multi server paradigm as a distributed system
paradigm and so, we used its ideas. In section 4.3, we
design the TierPeer framework according to these ideas.

A three-tier and layered architecture brings lots of
features that fulfil our principal requirements such as
simplicity, flexibility, maintainability and etc.

4.3 TierPeer Architecture

Our framework is divided to three tiers which form our
basic model. This basic model enables users to identify
and understand the concept of each tier, according to
client-server architecture concepts.

In order to use OSI model in our framework, we
divided each tier to some layers, Application Layer,
Façade Layer, Network Layer, Data Control Layer, and
Transport Layer. Figure 3 shows a high-level abstraction
of these tiers and layers.

C
om

m
on D

ata T
ypes

Fig. 3 Layered architecture of TierPeer

4.3.1 Transport Layer

The Transport Layer (figure 4) is one of the layers of
NetData Access Tier which is above the underling network.
 The Transport Layer (which can be compared to the
physical layer of the OSI model) is responsible for the
actual sending and receiving of point-to-point messages to
and from peers across the available physical network (e.g.,
the Internet). It consists of Transport Components, a
Transport Core and a Transport Interface.

Almost every P2P system currently available has only
been built for working in the Internet's IP network (i.e.,
they are using plain TCP/IP or higher-level protocols such
as HTTP or TLS, which are all based on the IP network).
TierPeer takes a further step from IP networks and

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

296

considers other network types as well (e.g., Bluetooth) to
support heterogeneous platforms and protocols.

NetDataAccess Tier

Transport Interface

DataControl Layer

Data Control Input Interface

EncryptLoging ….

Data Control Components

Transport layer

Transport Core

UDP
Transport

TCP
Transport ….

Transport Components

Data Control Output Interface

D
at

a
C

on
tr

ol

C
or

e

Decrypt Verify….

Fig. 4 NetData Access Tier

Each network has its own Transport Component which
is consisted of some modules to communicate between
peers. Each Transport Component should implements at
least one module inherited from BaseTransportModule
interface:

 public interface BaseTransportModule
 {
 boolean isResponsibleFor(Contact c);
 Connection newConnection (Contact c);
 void startListener(Contact c);
 }

Fig. 5 BaseTransport Module

These Transport Components could easily be plugged
to the framework and be used in P2P applications. The
Transport Components allow multiple protocol structures
to be used and make network transparent to higher layers.

The Transport Core is responsible for organizing the
Transport Components and dispatching messages between
them and Transport Interface. If a message has been
received by a Transport Component, it is passed to the
Transport Core, which is responsible to deliver it to the
Transport Interface. If the Transport Interface gets a
message from higher layer, it is passed to the Transport

Core which determines the Transport Component which
the message should be sent (this information is stored in
the message or in the system configuration).

The Transport Interface is an interface between higher
layer and the Transport Layer. Thus the higher layer is
independent of the Transport Layer and any change in the
Transport Layer components would be transparent to the
higher layer. The Java interface of TransportInterface is:

 public interface TransportInterface
 {
 void sendNetData(NetData nd);
 void recieveNetData(NetData nd);
 void addListener(Contact c);
 }

Fig. 6 Transport Interface

4.3.2 Data Control Layer

The Data Control Layer (figure 4) is one of the layers of the
NetData Access Tier which is above the Transport Layer.

The Data Control Layer (an extension of the OSI data
link layer) deals with the control of incoming and
outgoing messages. It consists of two interfaces, one for
the outgoing and one for the incoming messages. They
make the higher and lower layers transparent of updates or
changes in this layer. The Data Control Core is another
component of this layer which is consisted of two lists of
Data Control Components, each acting upon a received or
to-be-sent message. The Data Control Components
provide basic services like, logging or
encryption/decryption of messages. The main task of this
layer is to provide common services for all types of P2P
systems. We decided to introduce pluggable Data Control
Components that can process incoming and outgoing
messages to change the behavior of the system when
needed.

Each Data Control Component has some modules that
at least one of them should implement following Java
interface to be pluggable:

 public interface BaseControlModule
 {
 void setNextModuleIndex(int indx);
 void goToNextModule(NetData nd);
 void stopContinuing();
 boolean isResponsibleFor(NetData nd);
 NetData process(NetData nd);
 }

Fig. 7 BaseControl Module

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

297

The important aspect in this context is that these
pluggable components are in a layer between the Transport
Layer and the Network Layer. Hence, plugins in this layer
operate on point-to-point messages between two peers.
This makes it possible to introduce services that are
necessary for all P2P topologies (e.g., encryption, error
correction, logging, etc.). In JXTA, there exists no such
pluggable layer between its communication layer (i.e.
Messenger) and the routing layer.

The Data Control Core organizes the Data Control
Components that can process a message in five ways. It
can ignore the message, change the content of it, do silent
processing, send another message or discard it.

4.3.3 Network Layer

The Network Layer (figure 8) is the only layer of
Topology Rules Tier which is above the NetData Access
Layer.

The Network Layer (which can be compared to the
network layer of the OSI model) consists mainly of
Network Components, which are coordinated by the
Network Core. It is the Network Components that contain
the most important part of the P2P applications i.e. routing.

Fig. 8 Topology Rules Tier

A Network Component implements the routing within the
P2P network. Depending on the topology of the network,
different routing algorithms are required. These
Components process all messages that concerning to
structure or topology of overlay network. Peers in P2P
systems have more autonomy and are self-organizing.
They must themselves manage their connectivity to
network to shape the topology and support the correctness
of P2P application systems. Peer discovery is another
problem that should be considered in this layer. Thus all
solutions concerning this context for each topology are
gathered in one Network Component.

Network Core supports multiple topologies and P2P
overlay networks at the same time and sends the received
messages from underling layers to appropriate Network
Component. It is noticeable that these Network
Components are pluggable too. They plug to the
framework when one of its modules implements following
Java interface:

 public Interface BaseNetworkModule
 {
 boolean isResponsibleFor(Message m);
 void handle(Message m);
 }

Fig. 9 BaseNetwork Module

The last component of the Network Layer is Network
Interface which causes to simplify interaction between this
layer and the other layers. It also leads to make future
changes and updates transparent to other layers. In general
this layer allows more than one application use a topology
or an application uses more than one topology (e.g.
bridges two topologies).

4.3.4 Facade

The Facade (figure 10) is one of the layers of the
Presentation Tier which is above the Network Layer.

Fig. 10 Presentation Tier

The Facade Layer (which can be compared to the
transport layer of the OSI model) consists of Facade

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

298

Components, which are coordinated by the Application
Facade Core or Network Facade Core. The Facade Layer
allows the Application Layer (figure 10) to access the
services provided by a topology-independent interface
called Application Facade Interface. In fact this layer
separates those parts of application which are dependent to
their topology and gathers them in this layer. Thus each
application can create some topology-independent
command and send it to the Facade Layer by Application
Facade Interface.

A message from Application Layer to Facade layer is
called command. Each application needs some commands
to interact with Facade layer. For each command there is a
command handler module which must be implemented by
programmers. Thus each application has its Facade
Component which consists of command handler modules
corresponding to its commands. This command handler
modules deal with topologies and so any change in
topologies will be transparent to the Application Tier. The
Java interface of the Application Façade Interface is:

 public interface AppFacadeInterface
 {
 void ExecuteCommand(Command c);
 }

Fig. 11 Application Facade Interface

This enables the Application Layer to be dependent of
implementation of the underlying networks and their
changes. Each command handler module is responsible for
a command which is sent by one of the above applications
and knows how to fulfil it. Thus if some changes
happened in the underlying layers, they won't influence
the Application Layer and only some of command handler
modules of the Facade Layer should be changed to fulfil
its relevant task according to new changes. All command
handler modules are coordinated by Application Facade
Core.

The Network Facade Interface is responsible for
receiving and processing messages arrived from
underlying layers. Thus the Facade Component of each
application consists of some message handler modules too,
which are responsible to process their corresponding
received messages. All these message handler modules are
coordinated by Network Facade Core.

All command and message handler modules are
pluggable too and so it enables us to change the topology
of an application without any modification in existing
components.

4.3.5 Application Layer

The Application Layer is one of the layers of Presentation
Tier which is above the Facade Layer.

The Application Layer (a combination of the session
layer, presentation layer and application layer) consists of
Application Components, which must be developed by
programmers. These components are dedicated to an
application and they can vary from one application to
another.

Each user request is encapsulated in a command and
sent to Facade Layer by Application Interface. Thus if a
new different request is needed, a new command and
command handler module must be added to its Façade
Component in Facade Layer and then be used in the
Application Layer.

In general Facade Layer enables the Application Layer
of P2P applications to be reusable.

4.3.6 Common

All common data types are in Common (figure 12)
component which could be used by any layer. This
component is similar to Common component of three-tier
model which is shown in figure 2.

There is a component called Enterprise in the Common
component which is consists of some base classes. The
others are some entity types like TCP Contact, UDP
Contact, Bluetooth Contact or etc. Each application may
use one of these contacts to communicate to other peers.
The types of these contacts enable the Transport Layer to
determine appropriate Transport Component to send the
requests.

Fig. 12 Common components

4.4 Testability

One of the major benefits of this architecture is that,
testing of new components in real world will be simpler.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

299

For example, assume that we want to test a new topology
component with an existing application, so it could be
done in following manner:
• Implement the Network Components

• Plug it to the Network Layer

• Implement the New Facade Component to allow the
application to use the new topology

• Plug it to the Facade Layer

There is no need to modify or change any other layer
and so the existing layers are reusable. Thus researchers
can concentrate on their research fields and less waste
their time. Furthermore the pluggable architecture of this
framework could help us to debug a new P2P application.

One of the major problems of P2P framework is testing
and debugging of new applications. To test a new
application, numerous of computers or devices are needed
which almost is impossible to provide. Thus a virtual
Transport Component could be plugged which let us to
run lots of instances of an application in one or numbers of
computers or devices. The problems of using a virtual
Transport Components are in applications which use their
system storage or system registry to modify, so a virtual
machine would be a better choice to test these applications.
However they are not often lightweight, so it restricts the
number of instances in a computer. Thus a feather weight
virtual machine is needed which is one of the research area
these days [13].

5 Implementation

We have built a prototype of the TierPeer framework. It
has been tested on PCs and notebooks running Java 1.4.1
and does not require additional libraries to run.

We have implemented two applications: a chat
application and a file sharing application. The chat
application uses a pure P2P topology which targets PCs in
a local environment (e.g. LAN). The file sharing
application uses a server-base topology like Napster and
its target is Internet. Thus a TCP Transport Component
and a UDP Transport Component in Transport Layer, a
default Data Control Component in Data Control Layer
and two Network and Application Components that
mentioned above have been implemented and plugged to
TierPeer.

We have implemented a virtual TCP Transport
Component and a virtual UDP Transport Component too,
to enable us to test these two applications.

Although TierPeer has been implemented in Java, it is
completely language-independent. The communication
between peers does not rely on any Java-specific
technology (e.g. RMI).

6 Evaluation of TierPeer

As mentioned in section 4 our goal of designing a new
framework is following requirements, which we tried to
fulfil them:
• Simplicity: The well-known concepts of three-tier and

seven-layer models simplify learning and usage of
TierPeer model.

• Flexibility: Our architecture is based on OSI model
which is an open model and so it's independent of
topologies and platforms.

• Maintainability: Three-tier and five-layer architecture
of our framework which is well modulated reduces
maintenance cost.

• Extendibility: TierPeer is pluggable framework and so
it can be extended without any modification in existing
components.

• Testability: Pluggable architecture of TierPeer gives us
the opportunity to add virtual Transport Component to
Transport layer which enable us to test new
components.

We although compare TierPeer to some other P2P
frameworks in a table 1.

Table 1: Comparison of Frameworks

 XMIDDLE Groove JXTA TierPeer
P2P
Framework

No Yes Yes Yes

Support for small
device

No No No Yes

Topology
independent

No No Yes Yes

Server-less

Yes Yes Yes Yes

Platform
Independent

Yes No Yes Yes

Scalable

Yes No Yes Yes

Network protocol
independent

Yes No Yes Yes

Support for
testing

No No No Yes

7 Future Work

A security module to encrypt and decrypt messages before
they are processed by other modules is a candidate future
works. It tries to create a so-called web of trust to
authenticate peers in a P2P network before any
communication. The main challenge of this aim in a P2P

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

300

environment is that there is no central authority to check
the credentials of a remote peer.

A logging module which logs the messages is one of
other future works. It enables us to evaluate different
applications or algorithms.

We are planning to create additional topology modules.
This is definitely a process over time because it is very
likely that new P2P topologies will emerge frequently.

8 Conclusion

P2P is an idea, not a system. Many P2P systems with
different topologies evolved in the recent past. The P2P
paradigm is especially useful in architectures where
scalability and configuration flexibility issues are
important and distributed search support is needed.

In this paper, we have shown that the topology of a
P2P network has a great deal of impact on its usability,
scalability and etc. It is safe to assume that other P2P
topologies will emerge in the future. To cope with the
challenges that come with the increasing usage of P2P
technologies, it is necessary to adapt the P2P topologies to
the respective use cases. The TierPeer provides an
abstraction from the underlying P2P topology and so it
allows programmer to always use the same Interface and
the same services provided by the P2P network without
depending on a single topology or the device it is running
on.

We proposed a three-tier and five-layer architecture
that is loosely based on the client-server and ISO OSI
models. TierPeer defines the corresponding components of
the four lowest layers of the OSI model: physical, data
link, network and transport layer. The upper layers are
combined in the application layer.

TierPeer has a pluggable architecture and so there are
lots of opportunities to extend the framework. For
example some new Transport Components of other
networks could be implemented and plugged. There are
different opportunities for extension of the Data Control
Components of Data Control Layer.
 Thus with the rapidly increasing interest in peer-to-peer
technologies the TierPeer Framework provides a useful
tool in the development and testing of existing and new
P2P algorithms and applications.

REFERENCES
[1] K. Aberer, “P-Grid: A self-organizing access structure for

P2P information systems”.Sixth International Conference
on Cooperative Information Systems (CoopIS 2001),
Lecture Notes in Computer Science, 2172:179–194.

[2] I. Clarke, O. Sandberg, B. Wiley and T. W. Hong, “Freenet:
A distributed anonymous information storage and retrieval
system”. Lecture Notes in Computer Science, 2009:46–49,
2001.

[3] G. Cugola and G. Picco, “Peerware: Core middleware
support for peer-to-peer and mobile systems”, Technical
report, Politecnico di Milano, May 2001.

[4] J. Knudsen, “Getting started with jxta for j2me”,
http://developers.sun.com/techtopics/mobility/midp/articles/
jxme/.

[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S.
Schenker, “A scalable content-addressable network”. In
SIGCOMM '01: Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for
computer communications, pages 161–172, New York, NY,
USA. ACM Press.

[6] A. Rowstron and P. Druschel, “Pastry: Scalable,
decentralized object location, and routing for large-scale
peer-to-peer”, systems. Lecture Notes in Computer Science,
2218:329–351, 2001.

[7] A. Sotira, “What is gnutella?”,
http://www.gnutella.com/news/4210.

[8] I. Stoica, R. Morris, D. Karger, F. Kaashoek and H.
Balakrishnan, “Chord: A scalable Peer-To-Peer lookup
service for internet applications”. InProceedings of the 2001
ACM SIGCOMM Conference, pages 149–160.

[9] jxme Project home, http://jxme.jxta.org.
[10] JXTA, http://www.jxta.org.
[11] Kazaa, http://www.kazaa.com.
[12] Napster, http://www.napster.com.
[13] Y. Yu, F. Guo, S. Nanda, , L. C. Lam and T. C. Chiueh, “A

feather-weight virtual machine for windows
Applications”,InVEE '06: Proceedings of the 2nd
international conference on Virtual execution environments,
pages 24–34, New York, NY, USA. ACM Press.

[14] B. Y. Zhao, J. D. Kubiatowicz and A. D. Joseph, “Tapestry:
An infrastructure for fault-tolerant wide-area location and
routing”. Technical Report UCB/CSD-01-1141, UC
Berkeley, 2001.

[15] C. Mascolo, L. Capra, and W. Emmerich. "An XML-based
Middleware for Peer-to-Peer Computing", In IEEE
International Conference on Peer-to-Peer Computing, Use
of Computers at the Edge of Networks (P2P, Grid, Clusters),
2001.

[16] IBM alphaWorks. XML TreeDiff
http://www.alphaworks.ibm.com/tech/xmltreediff, 1999.

[17] S. DeRose, E. Maler, and D. Orchard. "XML Linking
Language (XLink), 1.0". Technical report, World Wide
Web Consortium, Jun 2001.

[18] J. Clark and S. DeRose. "XML Path Language (XPath) ",
Version 1.0, W3C Recommendation,
http://www.w3.org/TR/xpath, 1999.

[19] Groove Networks, http://www.nfcr.org/, 2006

Abolhassan Shamsaie received his B.Sc.
degree in Software Engineering from
University of Tehran, Iran in 2004. He is
currently an M.Sc. student in Sharif
University of Technology, Tehran,
Iran. His research interests are
Performance Evaluation, Simulation,
System Analysis & Design and
Distributed Systems.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

301

Jafar Habibi received his PhD in
Computer Science from The University of
Manchester, UK in 1998. He joined the
Department of Computer Engineering,
Sharif University of Technology, Tehran,
Iran, as an assistant professor. His
research interests are Software
Engineering, Information Systems,
Simulation, System Analysis & Design
and Distributed Systems.

Fatemeh Ghassemi received her B.Sc.
degree in Software Engineering from
University of Tehran, Iran in 2004 and
M.Sc from University of Isfahan. She is
currently an PHD student in Sharif
University of Technology, Tehran, Iran.
Her research interests are Verification,
Semantic of Programming Languages And
the Refinement Calculus.

