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Summary 
Change-points detection is one of important problems in data 
analysis. Traditional change-points detection method is based on 
exact data sets which can’t reflect prior information of data. In 
this paper, a new concept, called “fuzzy point data” which is 
defined by giving a fuzzy membership to the data in exact data 
sets, is proposed for helping us handle the confidence of data. 
We introduce regression-classes mixture decomposition method 
for Change-points detection in fuzzy point data sets. In the 
method, different regression classes are mined sequentially in 
fuzzy point data sets and the estimation of change-points are 
determined by the two joined regression-classes, the number of 
the change-points will not be pre-specified. Numerical 
experiments show that by using fuzzy data point data, important 
data can make much contribution to mining regression classes. 
This shows that the change-points we got in fuzzy data point sets 
are more meaningful than we got in exact data sets. 
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1. Introduction 

Detection of change-points in the characteristics of some 
physical system is one of the most important practical 
problems arising in signal processing. (speech processing, 
geophysics, EEG, EMG and ECG analysis, etc., see [1, 2] 
for several examples of application). 
There have been many exciting developments in the 
theory of change-point detection. New promising 
directions of research have emerged, and traditional trends 
have flourished anew. Change-points detection in 
regression model is a most important branch of change-
point detection, and attracts much attention for several 
decades. Quandt[3] and Kim[4] used the likelihood ratio test 
for a change in a regression model. Chen[5] used the SIC 
(Schwarz Information Criterion) to locate and detect a 
change point in the liner regression models. Hobert[6], 
Chen Choy and Broemeling[7] adopted some Bayesian 
methodology. But all the authors mentioned above mainly 
considered one change point in regression models. 
Nowadays multiply change-points problem has received 
much attention. Tang and Fei[8] use SIC to detection 
change points in polynomial regression models. 
All these methods are based on exact data sets, in which 
all training data are treated uniformly in the detection of 
change-points. However, in many applications, the effects 

of the training data are different. Some training data may 
be more important than others, that is to say, different 
training data should make different contributions to 
finding the change. According to these, in these paper, we 
assign a confidence weight to each training data, and use a 
highly robust RCMD[9] (Regression-Class Mixture 
Decomposition) method to detect change-points in the 
data set. In this method, regression model which has one 
or more change-points were regard as mixture of different 
regression-classes[9]. Change-point can be regarded as the 
demarcative point of two regression-classes. We first 
mined all of the regression-classes sequentially in the 
fuzzy data set, and then the number and positions of the 
change-points will be got simultaneously.  
This paper is organized as follows. The basic ideas of 
fuzzy point data are given in Section 2, in which some 
possible methods of determining the fuzzy memberships 
for each train data were discussed. In Section 3, we 
introduce RCMD method for fuzzy point data set, and 
discuss the regression change-points detection. To 
substantiate the theoretical analysis, simulation runs are 
performed in Section 4 to evaluate the effectiveness of the 
proposed method. Conclusions are reported in Section 5.   
 
2. The Fuzzy Point Data 
 
Suppose that x  is p-dimensional predicted variable, y  is 
one-dimensional response variable, and ( )i iyx , , i = 1,..., n   
is training sample. Here, each training data was given a 
different fuzzy membership is  ( 0 1is< ٛ ), where is can 
be regarded as importance degree or confidence degree of 
the corresponding data point towards the population. 
(( ), )iy sx i i, is called a fuzzy point in p+1-dimensional 
space, ( )i iyx , and is are respectively called support point 
and height. {(( ), ), 1, 2,..., }iy s i n=xi i,  is called fuzzy point 
data set. 
The fuzzy membership of each training point was 
determined by the given problem, which has a little 
subjectivity. So they can reflect the prior information of 
the data. In general, according to different kind of data, we 
use different method to compute the fuzzy membership. 
For example following several cases are given. 
(i) Timeliness data: In some application problem such as 

real-time signal process, data are time-dependent. For 
example, the data coming late is more important than 
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the early one. In that case, we can denote 
( )i is f t= ( it is the time which the point ix  arrived in 

the system), here ( )f × is a monotone increasing 
function. 

(ii) Prior information: is can indicate the degrees of 
confidence of training data, and the confidence 
degrees can be decided by the prior information 
about training data. For example, if ( )i iyx ,  is very 
important to analyzer, then a value approximately 1 
can be assigned to the confidence degree is  of this 
point. 

(iii) Repeated measures data: In some research fields, 
response variable must be measured repeatedly in 
each carrier. Then the mean of the measured values is 
regard as observation of this carrier. As different 
carrier has different times of measure, the fuzzy 
membership is  is in contact with the measure 
frequency of corresponding carrier.  

(iv) Categorical data: Usually different categorical has 
different importance in research. Analyzers always 
hope more important one can be gotten exactly, while 
less important one can be allowed something wrong 
with classification. In this case, we can determine the 
fuzzy membership of the training data by labeling 
variable. 

(v) Heteroscedasticity data: In heteroscedasticity data, 
variances of the errors in a model are not always a 
constant. They change with the different of the 
independent variables. If we choose appropriate 
fuzzy weight is  for each data making the variance of 
the error be equal, the hypothesis homoscedasticity 
of variance in classical method can be satisfied. 

In a word, determining the fuzzy memberships for training 
data is not difficulty. In this paper, we 
suppose is , i = 1,..., n  have been known. 
 
3. Change-Points Detection in Fuzzy Point 

Data Set 
 
3.1 RCMD based on Fuzzy Point Data 
 
RCMD is an effect means for data mining. It is a highly 
robust method which can resist a very large proportion of 
noisy data[10].  
A regression class jG is defined by the following 
regression model with random carriers: 

: ( , ) ,      1, ,j j j jG y f e j mb= + = ٛx ,                (1) 
where y Î R is the response variable, the explanatory 
variable that consists of carriers or regressiors pÎx R  is a 
random(column) vector with probability density function 

(p.d.f.) ( )p ×,the error term je is a random variable with a 
p.d.f. ( ; )juy s , js is a parameter, 0jEe =  and x , je are 

independent. Here ( , )jf 利 is a known regression function, 
and jb is an unknown regression parameter (column) 
vector.  
A random vector ( ) jy G,x implies that ( )y,x has a p.d.f. 

( ; ) ( ) ( ( ) )j j j j jp y p y fq y b s, = ? , ;x x x , ( ) .T T
j j jq b s= , (2) 

If the random observations were taken from common 
mixture distribution population, they obey the regression-
class mixture model, the p.d.f. is 

 
1

( ;) ( )
m

j j j
j

p y p yq p q
=

, = , ;åx x .               (3) 

here 1( ,..., )T T T
mq q q= .That is, they consist of random 

observations from m  regression-classes with prior 
probabilities 1,..., mp p  ( 1 1mp p+利? = , 0,1i i mp 끽 ). 
To given data set 1 1{( ) ... ( )}n ny y, , , ,x x ,we assume that there 
are m  regression-classes 1 ...jG j m, = , ,  in data set under 
study and that m  is known in advance (indeed m can be 
determined at the end of the mining process when all 
potential regression-classes have been identified). With 
respect to a particular regression-class jG , all other 
regression-classes in the mixture can be readily classified 
as part of the outlier category in the sense that these other 
observations obey different statistics. Thus, a mixture 
density can be viewed as a contaminated density with 
respect to each cluster in the mixture. According to this 
idea, the mixture p.d.f. in (3) with respect to jG can be 
rewritten as  

( , ; ) (1 ) ( , ; ) [1 (1 )] ( , )j j j j j j jp y p y g ye q p e q p e= - + - -x x x ,  (4) 

where je is an unknown fraction of an outlier which 

present in jG , and 1,...,{ }me e e= . Ideally, a sample point 
( , )i iyx from the above mixture p.d.f. is classified as 
inliers if it is realized from ( ; )j jp y q,x or as outliers 
otherwise (i.e. it comes from the p.d.f. ( , )jg yx ). 
Assuming that 1 1( ) ... ( )j j n n jg y g y d, = = , =x x , the above 
expression is rewritten as 

( ; ) (1 ) ( ; ) [1 (1 )]j j j j j j jp y p ye q p e q p e d, = - , + - -x x . (5) 
After a valid regression-class has been detected, it is 
extracted from the current data set, and the next 
regression-class will be identified in the new size-reduces 
data set. Individual regression-classes continue to be 
estimated recursively until there are no more valid 
regression-classes, or the size of the new data set gets to 
be too small for estimation. Thus the number of the 
regression-classes can be gotten automatically. 
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Now each training data is given a fuzzy degree  is  and 
0, 1, ...,j j me = = , which means we consider the case in 

which ( ; )j jp y q,x is not contaminated. With respect to 
fuzzy point data set {(( ) ) 1 ... }i i iD y s i n= , , , = , ,x , the log-
likelihood function of D can be written as  

1

1( ) log log ( , , ; )
n

j
j j j j i i i j j

ji
l n p x y s p
q p q d

p

殞
油
油
油
油= 薏

-
= + +å , (6) 

where ( ) ( ) ( ( ) )j i i i j i i i i j i jp y s p s y s fq y s, , ; = ? ;x x x . In 
order to estimate jq from D , we need to maximize 

( )j jl q with each jd subject to 0js > . Provided 
that (1 ) /j j j jt p d p= - , then we can discuss the problem 
of maximizing ( ; )j j jl tq inside of maximizing ( )j jl q  

1

( ; ) ln ( )
n

j j j j i i i j j
i

l t p y s tq q殞
油
油薏

=

= , , ; +å x  .      (7) 

In particular, when x is distributed uniformly 
(i.e., ( )p c=x ) and 2(0, )j je N s , the maximization of 
log ( )jl q is equivalent to maximizing  

2

1

( ; ) log[ ( ( , ); ) ]
n

j jj i i i j i j j
i

l t s y s f x tq y b s
=

= - +å , (8) 

here /j jt t c= . For simplicity we will still denote jt  and 

jl by jt and jl , respectively.   

At each selected ( ) ( 0, , )v
jt v V= ٛ , we maximize 

( ; )j j jl tq with respect to ,j jb s by using an iterative 
algorithm or by using a genetic algorithm (GA). Having 
solved ( )

,max ( ; )
j j

v
j j jl tb q q  for ( )ˆ ( )v

jj
tb and ( )( )ˆ v

j jts , the 

possible regression-class ( )ˆ( ( ))v
j jjG tq  can be expressed as   

   ( ) ( ) ( )ˆˆ( ( )) {(( ) ( ( )) 3 ( )}ˆv v v
jj j i i i i j jj j

G t y y f t tsbq = , : - , ٛx x ,    (9) 

followed by the test of normality on ( )ˆ( ( ))v
j jjG tq . If the 

test statistic is not significant, then the hypothesis that a 
valid regression-class ( )ˆ( ( ))v

j jjG tq has been determined, 
otherwise we proceed to the next partial model until the 
upper bound ( )V

jt has not been reached.  
 

3.3 Change-Points Detection in Fuzzy Point Data Set 
To a fuzzy point data set {(( ) ) 1 ... }i i iD y s i n= , , , = , ,x , the 
detection of change-point can be found by using the 
following two steps: 
(i) Step1: By using RCMD method, extract all of the 

regression-classes in the fuzzy point data set 
sequentially; 

(ii) Step2: Analyzing two joined regression-classes, and 
calculating the estimate of the position of change-

points. After all of the regression-classes have been 
considered, the number of the change-points can be 
gotten. 

In step 2, the carriers x  in each regression-class are been 
arranged in sequence, and the maximum and the minimum 
of the carriers of each class will be found. By this 
information we can get the arrangement of the regression–
classes, and find which two models are jointed together. 
Then base on the definition of the change–point, we give 
the estimation of the change–point as 1 2Max Min / 2+（ ） , here 

1Max is the maximum of carriers in the former regression-
class, while 2Min is the minimum of the carriers in the 
latter regression-class. 
 
4. Simulations  
 
We give two numerical simulation examples to illustrate 
the effectiveness and applicability of our method. Example 
1 is an application of the method in the problem of linear 
models. Example 2 deals with structure mining involving 
the mixture of curve and line.  

Example1. This example considers two regression-classes 
in the data set. In simulation run, 40 data points are 
generated according to the following models: 

2
1 11

2
2 22

0.5;reg-class 1 (0 0 25 )
8 0.5.reg-class 2 (0 0 26 )

y x e e N
y x e e N

p

p

ì = + , =: , . ,ïïí
ï = - + , =: , . ,ïî
That is, there are approximately 20( 40 0.5´ ) data point 
from reg-class1 (regression-class), 20( 40 0.5´ ) data point 
from reg-class2, each data point ( )i ix y, , 1 ... 40i = , , was 
given a fuzzy degree  is  1 ... 40i = , , . The scatter plot of 
the data set and the fitting result is depicted in Fig.1. The 
small circles indicate the fuzzy points and each size of 
these small circles is direct proportion to the 
correspondence value of fuzzy weight is . The dash line in 
Fig.1 shows the fitting result in the exact data set and the 
solid line shows the result in the fuzzy data set. 
From Fig.1, we can see that bigger weighting fuzzy point 
can make much contribution to the fitting curve, and the 
position of change-point is also change accordingly. And 
by using fuzzy point data sets, the prior information of the 
data can be considered in analyzing. When 1is º , the 
change-points detection in fuzzy point data sets 
degenerates to the case in exact point data sets. 
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Fig. 1. Scatter plots and line with one change-point,  * show the position 
of the change-point in fuzzy point data, ◇ show the position in the exact 
data set. 

 

Example2. Detection change-point in nonlinear structure 
is an important problem of computer vision and pattern 
recognition. In this example, we use RCMD method to 
accomplish this work effectively. 
The sample data set {( ) 1 ... 40}i ix y i, , = , , is generated 
according to the following models: 

2
1 1 1

2 2
2 2 2

reg-class1: 3 (0 0 1 )  0 5;
reg-class2 4 0 25 , (0 0 2 ) 0 5.

y x e e N
y x x e e N

p

p

ì = + , , . , = .ïïí
ï : = - . + , . , = .ïî
there are approximately 20( 40 0.5´ ) data point draw from 
reg-class 1, 20( 40 0.5´ ) data point draw from reg-class 2, 
each data point ( )i ix y, , 1 ... 40i = , , was given a fuzzy 
degree  is  1 ... 40i = , , . The scatter plot of the data set and 
the result is showed in Fig.2.The dotted line in Fig.2 is the 
fitting result of in the exact data set and the solid line 
shows the result of in the fuzzy data set. 
From Fig.2, we can see that the fitting curve is apparently 
closer to the data which have bigger weight, and the 
position of change-point also change. That is to say, by 
using the prior information of the data set, we can get a 
different value of the change-point which is more suitable 
than we got form exact data set.  
This example also shows that our method can be used to 
find change-points in nonlinear patterns in fuzzy data sets. 
Hence, the RCMD method has a great potential in 
detecting change-points. 
 

  

Fig. 2. Detecting change-point in linear and nonlinear structures, * show 
the position of the change-point in fuzzy point data, ◇show the position 
in the  exact data. 

5. Conclusion  
 
In this paper, we introduce the concept of fuzzy point data 
into change-points detection, so that the prior information 
of the data which is always ignored can be considered in 
the method again, and help us to find more reasonable 
estimation of the change-point. By using RCMD method 
for change-point detection, we first mining all of the 
regression-classes sequentially, and then determining the 
position of the change-point, so the number of the change-
point is gotten automatically. Numerical examples have 
also shown that the method appears to be a promising 
method to detection change-points and has much potential 
application in a variety of disciplines such as quality 
control, seismic signal processing and economy.  
In this paper, we only study the change-point detection in 
2-dimensional space, how to find change-points in higher 
space is also a challenging and difficult problem for 
further research.  
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