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Abstract 
In light of the rise of malicious attacks on the internet and the 
various networks and applications attached to it, new approaches 

towards modeling worm activity in networks is called for. One 
frequently utilized method for W32/Novarg [7], Sober X, Netsky 
P and Mytob ED [18] 

propagation exploited by worms is through the victim's contact 
book. The contact book, which reflects the acquaintance profiles 
of people, is used as a ``hit-list'', to which the worm can try and 
send itself in order to spread fast. In this paper we propose a 
discrete worm propagation model that relies upon a combined 
email and Instant Messaging (IM) communication behavior of 
users in a scale free environment. We also model the effect in 
propagation based on user reaction when a threat is recognized, 
the installation and update of antivirus software as well as the 
network connectivity, arising conclusions about the behavior of 
the network infrastructure in presence of a worm. Our analysis is 
based on Wormald's differential equations method for 
approximating ``well-behaving'' random processes with 
deterministic functions.  
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 1. Introduction 

A worm is a self-contained malicious code that is able to spread 
itself in computer networks. Propagation, usually, occurs through 
the exploitation of network connections, shared storage, email, 
Instant Messengers or Peer to Peer (P2P) file sharing networks. 
Recent research has found that several critical technological 
networks are scale free structures with power law distributions, 
such as the Internet at the autonomous system level and the 
router level [3], the Web [1] [4], and physical SDH 
telecommunications networks [5]. Studies have examined the 
vulnerability of scale free networks finding that they are resilient 
to random attacks, but highly susceptible to targeted attacks [2]. 
These studies have analyzed scale free networks assuming that 
all nodes are homogeneously susceptible to attack or infection. 
Usually in real world networks only subsets of nodes are 
susceptible to attack or infection. One example of such a scenario 
is Internet worms which are designed to attack only in specific 
operating systems or platforms. Simple Mail Transfer Protocol 
(SMTP), for instance, is one of the most common malicious code 
propagation vehicles. To spread by email, a worm can propagate 

as an email attachment or embed itself into html code within the 
email body. Then it obtains email addresses from the victim's 
computer in order to propagate. Worm propagation modelling 
has attracted the attention through a series of incidents such as 
the CodeRed [21] worm, Nimda [8] worm, Slammer worm [16], 
Sobig [9], W32/Bagle and  
Recently, worms have appeared that are able to propagate using 
another social-like popular communication method such as 
Instant Messengers (IM) or Peer-to-Peer (P2P) file sharing 
networks [11]. IM networks provide the ability not only to 
transfer text messages, but also files supporting peer-to-peer file 
sharing, leading to the immediate spread of files that are infected. 
Worms use social engineering to trick people into downloading 
and execute malicious code [10]. Using IM, worms spread faster 
as locating potential victims does not require scanning attempts 
to possibly unknown or unused IP addresses. What they need is 
simply online users' contact list. However, there were some IM 
worms which have exploited the processing vulnerabilities 
described in [15] to allow automatic execution of code. These 
worms are much faster than any other that requires user 
intervention and, thus, causes significant devastation. As more 
users adopt IM services, new worms will spread combining 
different propagation vectors, not only using email but also IM 
and P2P links. 
While many researchers deal with the development of new 
techniques for the detection and elimination of worms, there 
seems to be, relatively, little activity in the theoretical modelling 
of viral code replication and propagation. Less research effort has 
been expended on modelling worms that use IM and email 
simultaneously. Creating reliable models of virus and worm 
propagation is beneficial for many reasons. First, it allows 
researchers to better understand the threat posed by new attack 
vector and new propagation techniques. For instance, the use of 
conceptual models of worm propagation allowed researchers to 
predict the behavior of future malware, and later to verify that 
their predictions were substantially correct [13]. In second place, 
using such models, researchers can develop and test new and 
improved models for containment and disinfection of worms 
without resorting to risky "in vitro" experimentation of zoo worm 
release and cleanup on test bed networks. If these models are 
combined with good load modelling techniques such as the 
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queueing networks, we can use them to predict failures of the 
global network infrastructure when exposed to worm attacks. 
In [19] Wang  et al. study a worm propagation model based on a 
clustered and a tree-like hierarchic topologies. In their model, 
copies of the worm propagate at a constant rate without needing 
user interactions. The lack of a user model coupled with the 
clustered and tree-like topologies make it unsuitable for 
modelling the propagation of email and IM worms/viruses over 
the Internet. Zou et al. studied Code Red worm propagation 
based on the classical epidemic Kermack-Mckendrick model [21]. 
Newman et al. derived the analytical solution of the percolation 
threshold of small world topology [12, 19]. Albert et al. were the 
first to explain the vulnerability of power law networks under 
attacks [16]. The authors conclude that the power law topology is 
vulnerable under deliberate attack. Wang, Knight  et al. study the 
effect of immunization on worm propagation [19]. They compare 
the effect of random immunization and selective immunization. 
They show that immunizing nodes with highest degrees has 
better effect than random immunization. This is different from 
reality where the immunization is randomly applied to hosts by 
users or administrators. 
In [21] Zou  et al. an email model is given as an undirected graph 
of relationships between people. It is assumed that each user 
opens an incoming worm attachment with a certain probability, 
depending on the user and not on time. This, however, does not 
describe well the typical user behaviour. Indeed, as the new 
worm starts spreading there is no user alertness, who tend to open 
the contaminated attached file. As news about the worm are 
circulated, users become more cautious. Thus users' behaviour 
should depend on time. The authors consider a ``reinfection" 
model, where a user sends out copies of the worm each time an 
infected attachment is reopened, but this does not add to the 
infected population as long as the host is either already infected 
or it has been immunized by an antivirus. An interesting 
conclusion can be drawn from this study: the overall spread rate 
of worms increases as the variability of users' email checking 
times increases. Thus a worm is more vicious as a better social 
engineering technique is applied. Mannan and van Oorschot [14] 
review selected IM worms and summarize their main 
characteristics, motivating a brief overview of the network 
formed by IM contact lists, and a discussion of theoretical 
consequences of worms in such networks. 
In  [6], we proposed email, IM and P2P networks as forming a 
kind of ``social'' network. These networks can be 
macroscopically considered as an interconnection of a number of 
Autonomous Systems (AS). In this paper we propose a new 
model that adapts the previous model to a more realistic, scale 
free network infrastructure. Using this model we can determine 
the impact of a worm spreading without having proper antivirus 
or informed users in a scale free environment. 
 

2 Acquaintance Networks: motivation and 
formalism 

 
An acquaintance network consists of several hypernodes, where 
each hypernode represents a specific  domain or LAN (e.g. a 
university or a company network). Each hypernode contains 
several nodes which represent personal computers or users' 

contact information (e.g. email or IM addresses). We assume that 
with probability intacqp  a node of a hypernode contains in its 

contact book the contact address of another node of the same 
hypernode. Also, with extacqp  a node of a hypernode is 

associated with a node (user) in a different hypernode. Finally, 
with probability hyperp  we consider that there is a connection 

between two hypernodes (which means that at least one user of 
one hypernode is associated with at least one user of the other 
hypernode). The connections between hypernodes forms the  
network acquaintance graph while the connections between 
nodes forms the  person acquaintance graph. Our focus is on 
modelling a worm outbreak which starts at some random set of 
nodes and propagates along the acquaintance links. 
More formally, an  acquaintance network consists of a set of 
hypernodes 1, , nX XK  containing node sets 1, , nD DK  

respectively, and a set of acquaintance relations C . An edge 

1 2,i
R Ci ∈  is a subset of 

1 2i iD D× , with 1 2,i i  distinct. We 

say that 
1 2,i

R i  bounds hypernodes nodes 
1 2
,i iX X  to mutual 

acquaintance, because of mutual acquaintances stemming from 
the nodes they contain. The  person acquaintance hypergraph of 
a network acquaintance graph is an n -partite graph. Its i th part 

corresponds to hypernode iX  and it has exactly | |iD  vertices, 

one for each node in iD . There exists an eedge 
1 2

{ , }i iv v  if 

and only if the corresponding nodes 
1 1i id D∈  and 

2 2i id D∈  

belong to some acquaintance relation that bounds the 
corresponding variables. 
Email, IM and P2P contacts form a kind of social network. 
Modelling these networks as graphs, with each node representing 
a host, is clearly unfeasible. On the other hand, they can be 
macroscopically considered as an interconnection of a number of 
Autonomous Systems (AS). An AS is a subnetwork usually a 
Domain Network which is administered by a single authority. For 
this reason we propose a hypernode based model with a hyper-
node representing a Domain Network. 
According to the above formalism (which, actually, stems from 
the formalism of the Constraint Satisfaction Problem (CSP)), the 
network acquaintance graph represents the structure of email/IM 
acquaintances across network domains (or LANs). The set of 
hypernodes 1, , nX XK  represent  Autonomous Systems (AS) 
or Domains (e.g. universities) of the acquaintance network, while 
the node sets 1, , nD DK  represent distinct contact addresses of 
each domain. These addresses comprise an email or IM 
acquaintances network. We can safely assume, without loss of 
generality, that every distinct email or IM address is associated 
with one host computer which is associated with a single user. 
The connections between the hypernodes form the  network 
acquaintance graph, while the connections among the nodes of 
each distinct email and IM contact address, form the  person 
acquaintance graph. Also, in our model the quantity ( )B i  

represents the number of the infected nodes at step i  while 
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( )W i  represents the number of immunized nodes, i.e. nodes on 
which updated antivirus software is already installed. The 
quantity ( ) ( )nd B i W i− −  represents the number of  
susceptible nodes, that is the number of nodes that have no 
defence against the new worm. 
We will now define some probabilities related to our model: 

hyperp  is the probability that two hypernodes (AS-Domains) are 

connected. We set this probability as 
( 1) ( )= ( 1) g g

hyperp g m k− −−  where 2 < < 3g  is the 

degree exponent, m is the minimum degree in the network and 
we are approximating k as a continuous variable. This probability 
declares how many neighbors on average a hypernode has. Then 

extacqp  is the probability with which a user (or a node) has a 

contact with a specific user of another hypernode. Also, intacqp  

is the probability that a node has a contact with a specific node 
belonging in same hypernode. Moreover, antvp  represents the 
percentage of the nodes protected by updated antivirus software. 
We can model this probability using a function of time and 
network size that is gradually increasing with time and 
decreasing with the size of the network. In particular we set 

( )( , ) =antiv
g tp n t

n
 where ( )g t  is a monotonicaly 

increasing function of t and n is the network size which is the 
number of hypernodes in our model, and openmp  is the 

probability that a user opens his/her email or IM message. We 
also model this probability as a function of time, 

( ) = ( )openmp t f t , which is monotonicaly decreasing with 

time, since as time passes and information of the worm outbreak 
circulates people are more cautious in opening suspicious email 

messages. The pair = ( , )antv openmI p p  is called an  attack 

reaction pair since it characterizes a new worm that has started 
propagating within a network. 

3 Scale-free random acquaintance graphs 

As we saw in the previous section, an acquaintance graph is 
defined by the following four parameters: (a) The number of 
hypernodes n , (b) the size of each hypernode d , (c) The 
network acquaintance graph, and (d) The person acquaintance 
graph. 
In this paper, the random network acquaintance graph will be 
based on a scale-free random graph model, the model  , ,n m gG  , 

which is defined as follows. Each of n  available network nodes 
selects uniformly and independently of the others to have s  
neigbours, where s  is either 0 (i.e. the node chooses to be 
disconnected from the rest of the network) or it ranges from m , 
which is the minimum degree other than 0 that is allowed in the 
network, up to 1n − . The probabilities with which these choices 
are made are given by the following probability function, where 

2 < < 3g : 
 

 
( 1) ( )

1 1

( 1) , 1
[ = ] = {

, = 0.

g g

g g

g m k m k n
Pr s k

m n k

− −

− −

− ≤ ≤ −
    (1) 

 Between two hypernodes we may have a double connection 
(from hypernode A to hypernode B and from B to A) but this 
probability is very small and we do not take it into account. We 
will now compute the probability that two nodes of degrees ,s t  
respectively are joined by an edge. This probability will be used 
in the computation of hyperp . 

 For a randomly constructed random graph according to model  

, ,n m gG  , the probability of an edge existing between two nodes 

of degrees ,s t  ( 0 , 1s t n≤ ≤ − ), respectively is given by the 

following (note that 2 < < 3g ): 
 

 
3

1

,
3

2 1

1( ), = ( )
1= {

1 , = ( ).
1 ( 1)

g
g

s t
g

g

s t O st o n
n np

s t st O st n
n n n

−
−

−
−

+
+

−
+ ⎛ ⎞− + Ω⎜ ⎟− − ⎝ ⎠

    (2) 

   
Proof. For any two nodes with randomly chosen degrees ,s t  
respectively, there is an edge between them if their neigbour sets 
intersect. The probability of this event can be written as follows  

 
, = [ ]
= [ | 1] [ 1]

[ | < 1] [ < 1]
= 1 [ 1]

[ | < 1] (1 [ 1]).

s tp Pr neigbboursetsintersect
Pr neigbboursetsintersect s t n Pr s t n
Pr neigbboursetsintersect s t n Pr s t n

Pr s t n
Pr neigbboursetsintersect s t n Pr s t n

+ ≥ − ⋅ + ≥ −
+ + − ⋅ + −

⋅ + ≥ −
+ + − ⋅ − + ≥ −

    (3) 

 Also, the following holds:  
 [ 1 ] [ ( 1 )/2 ( 1 )/2 ].P r s t n P r s n t n+ ≥ − ≤ ≥ − ∨ ≥ −  
 
Continuing, we obtain the following:  

 1
( 1) ( )

1=
2
1( 1)

1= 1
2

3
( 1)

1 1

[ 1] [ ( 1)/2 ( 1)/2]
[ ( 1)/2] [ ( 1)/2]

2( 1)

2( 1)

2 ( 3) 3 2 ( 3) 2 ( 1) 2( 1)= 2( 1)
2( 1)

2 .

n
g g

nk

ng g
nu

g g g g g
g

g g g

Pr s t n Pr s n t n
Pr s n Pr t n

g m k

g m u du

n n n n n ng m
g

m n

−
− −

−

−− −
−
−

− − − −
−

− − +

+ ≥ − ≤ ≥ − ∨ ≥ −
≤ ≥ − + ≥ −

≤ −

≤ −

− − ⋅ − − − + −
− ⋅

−

≤

∑

∫

    (4) 

 Also, it is easy to see that the following holds:  
 

2[ | < 1] = .
1 1 ( 1)

s t stPr neigbboursetsintersect s t n
n n n

+ − + −
− − −

    (5) 

 Using (4) and (5) we can rewrite (3) as follows:  
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 ,

2

2 1

1

2 1 2

= [ | < 1]
[ | < 1] [ 1]
[ 1]

=
1 1 ( 1)

1( )
1 1 ( 1)
1( )

1 1= ( )
1 1 ( 1)

s t

g

g

g

p Pr neigbboursetsintersect s t n
Pr neigbboursetsintersect s t n Pr s t n
Pr s t n

s t st
n n n

s t st O
n n n n

O
n

s t st O o
n n n n n

−

−

−

+ −

− + − + ≥ −
+ + ≥ −

+ −
− − −

⎡ ⎤
− + − ⋅⎢ ⎥− − −⎣ ⎦

+

⎛ ⎞+ − + − ⎜ ⎟− − − ⎝ ⎠

    (6) 

 from which (2) follows.  
 We will now compute hyperp . 

Theorem 1.  For a randomly constructed random graph 
according to model  , ,n m gG  , hyperp  is given by the following 

expression:  

 2 ( 1) 1= ( ).
( 1)( 2)hyper

m gp o
n g n

−
+

− −
    (7) 

 
Proof. Take any two vertices ,v w  of the graph. Then the 
probability of being connected can be written, using the law of 
total probability, as follows (using, also, (2)):  

 

1 1

= =

1 1
( 1) ( ) ( 1) ( )

= =

1 1
2 2( 1)

= =

2 2( 1)

= [ , | ( ) = ( ) = ]

[ ( ) = ( ) = ]
1= ( ) ( 1) ( 1)

1
1= ( 1) ( )

1

( 1) (

n n

hyper
s m t m

n n
g g g g

s m t m

n n
g g g

s m t m

g

p Pr v wadjacent deg v s deg w t

Pr deg v s deg w t
s t o g m s g m t
n n

g m s t s t
n

g m o

− −

− −
− − − −

− −
− − −

−

∧

⋅ ∧

+⎛ ⎞− − −⎜ ⎟−⎝ ⎠

− +
−

− −

∑∑

∑∑

∑∑
1 1

= =

1 ) .
n n

g g

s m t m
s t

n

− −
− −∑∑

    (8) 

 Using integral approximations, we can see that the second term 

in the final expression of (8) is 1( )o
n

 while the first term is equal 

to 2 ( 1) 1( )
( 1)( 2)

m g o
n g n

−
+

− −
, completing the proof.  

 
Given a  , ,n m gG   random network, we can construct the person 

acquaintance graph by having each of the possible 2d  edges that 
may exist between two hypernodes that are adjacent in the 
network acquaintance graph selected uniformly and 
independently with probability extacqp  and by having each of 

the d2 edges that may exist between two nodes of the same 
hypernode selected uniformly and independently with probability 

intacqp . If no edges are introduced we repeat the edge formation 

process. We will denote by ( , , , , )hyper extacq intacqG p p p d n  the 

generated acquaintance network. 

4 Virus Propagation Model 

We assume that a worm spreads itself by attaching its malicious 
code to an email, a file transferred or a URL to an infected link 
and sending it to all contact addresses it finds on a users' 
computer. IM contact lists enable users to track the presence 
status of their contacts. To a worm, an online contact list 
provides an instant hit-list. Note that most email clients provide 
an address book which does not reveal any online status of the 
users thus the propagation is slowed down by the time the user 
interacts opening his email. A host is infected when the user 
opens the attached or transferred file or when the client previews 
it or the exploited vulnerability makes it to execute automatically. 
According to the theory above we will now refer to the model 
that the worm uses in order to propagate between the hypernodes 
and the nodes accordingly to the existing connections. We 
assume that a worm randomly infects a node v  of a hypernode. 
By exploiting the address book of the node the worm starts to 
propagate. Initially, all the nodes are susceptible to infection. At 
step zero a randomly chosen set of nodes becomes infected. Then 
the infection spreads as follows: at every infection cycle i  the 
nodes that are infected turn into black and start to infect other 
susceptible nodes by sending infected messages to the hit-list 
they have. The messages that are been sent by the infected nodes 
follow the edges of the person acquaintance graph. We assume 
that all generated messages, infectious or not, are send 
sequentially, as IM and email servers are receiving and sending 
messages sequentially. Step i  is completed after the i th 
message is ready to be dispatched. Every user that receives an 
infected message opens this message with probability openmp . 

The user's computer becomes infected if there is no updated 
antivirus program installed at the computer. A susceptible or 
infected (black) node becomes white (immunized) with 
probability antvp  if an updated antivirus program is installed at 
the node. 

5 Theoretical analysis and model evaluation 

We will now analyze theoretically the proposed worm 
propagation model by applying the differential equations method. 
 
Definition 1 A function f  satisfies a Lipschitz condition on 

jD ⊂ℜ  if there exists some constant > 0L  such that  

 
1 1

=1
| ( , , ) ( , , ) | | |

j

j j i i
i

f u u f v v L u v− ≤ −∑K K  

for all 1( , , )ju uK  and 1( , , )jv vK  in D .  

 
Definition 2. Given a random variable X  depending on n , 

denoted by ( )nX , we say that ( ) = ( ( ))nX o f n  always if  

 ( )max{ | [ = ] 0} = ( ( )).nx Pr X x o f n≠  
 

Theorem 2. Let ( ) ( )n
iY t , 1n ≥ , be a sequence of real-valued 
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random variables, 1 i k≤ ≤  for some fixed k , such that for all 

i , all t  and all n , ( )| ( ) |n
iY t Bn≤  ( > 0n ) for some 

constant B . Let ( )H t  be the history of the sequence, i.e. the 
matrix (0 ) , , ( )Y Y t〈 〉

su su
K ,  

where ( ) ( )
1( ) = ( ( ), , ( ))n n

kY t Y t Y t
su

K . 
 

Let 
1 1={( , , ) : [ (0) = ( , , )] 0 }k kI y y Pr Y y n y n forsomen≠

su
K K . Let D be 

some bounded connected open set containing the intersection of 
1{ ( , , , ) : 0 }ks y y s ≥K  with a neighborhood of 

1 1{ ( / , , , ) : ( , , ) }k kt n y y y y I∈K K . (That is, after taking 
a ball around the set I, D is required to contain the part of the 
ball in the half-space corresponding to = /s t n , 0s ≥ .) 

Let 1: ,1k
if i k+ℜ →ℜ ≤ ≤ ,and suppose that for some 

= ( )m m n , 
 

(i)  for all i  and uniformly over all <t m , always  
 

( ) ( ) ( ) ( )
0[ ( 1) ( ) | ( )] = ( / , ( )/ , , ( )/ ) (1),n n n n

i i i kE Y t Y t H t f t n Y t n Y t n o+ − +K

 
(ii)  for all i  and uniformly over all <t m , 

 
 
( ) ( ) 1 /5 3[ | ( 1 ) ( ) |> ] = ( ) , ,n n

i iP r Y t Y t n o n a lw a y s−+ −  

(iii) for each i , the function if  is continuous and satisfies a 
Lipschitz condition on D.  

 
Then 

(a) for 
(0) ( )늿(0, , , )kz z D∈K  the system of differential 

equations  

 
0= ( , , , ),1i

i k
d z f s z z i k
ds

≤ ≤K  

has a unique solution in D for :iz ℜ→ℜ  passing through 
( )ˆ(0) = ,1i

iz z i k≤ ≤ , and which extends to points 

arbitrarily close to the boundary of D ; 
 
(b) almost surely ( ) ( ) = ( / ) ( ),n

i iY t z t n n o n⋅ +  uniformly for 

0 m in{ , }t mσ≤ ≤  and for each i , where ( )iz s  is the 

solution in (a) with ( ) ( )ˆ = (0)/i n
iz Y n , and = ( )nσ σ  is the 

supremum of those s  to which the solution can be extended.  
 
This theorem says is that if we have a number of co-evolving 
discrete random variables (associated with some discrete random 
process) that satisfy a Lipschitz condition and their expected 
fluctuation at each time step is known, then the value of these 
variables at each time step can be approximated using the 
solution of a system of differential equations. Furthermore, the 
system of differential equations results directly from the 
expressions for the expected fluctuation of the random variables 
describing the random process. 

 
In [6] we have analyzed the process that involves two jointly 
evolving random variables: ( )B i , the number of black nodes at 

step i  of the worm spread process, and ( )W i , the number of 

immune nodes at step i  of the process. According to our 
discussion in Section, step i  is completed after the i th message 
(according to some global ordering) is ready to be dispatched 
from one node (i.e. personal computer) belonging to some 
hypernode (a domain). For our model, the following holds: 
 

Theorem 3. Let =hyper
cp
n

, with 2 ( 1 )=
2

m gc
g

−
−

, extacqp  

a constant independent of n  and t , ( )( , ) =antiv
g tp n t

n
, 

intacqp  a constant independent of ,n t , and 

( ) = ( )openmp t f t . Let, also,  

 
( )0

0

= [ (0 ) (0 ) ]

g ( )
f ( )

( ) = .

e x ta c q e x ta c q in ta c q in ta c q

y
dx

h d

h c p w p c p w p

z d z
y e d x

u x e

−

−

− + −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫
∫

    (9) 

  
Then the solution to the system of differential equations given in  
[6] is the following:  
 

0 0
( ) = e x p ( ) (0 ) 1 e x p ( )

t t
w t d g z d z w d g z d z⎡ ⎤ ⎡ ⎤+ − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫
 

0

( )b ( ) = (0 ) .
(0 ) ( ) ( ) f ( ) 1

t

e x ta c q in ta c q

u tt b
b d p c p u s s d s+ +∫

   

 
We will now plot these solutions, for various values of the 
parameters, in order to see the interaction between the numbers 
of black and white nodes. In our model, the main parameters that 
affect this interaction are antvp , openmp  and hyperp . In 

addition, as we have already argued above, the probabilities 

antvp  and openmp  should depend on the time parameter. In 

particular, we have set 
( )

1=
1a n t v tp

a e β γ− ++
, 

(

0 .9=
)o penm tp

e ζ θδ + −+
, where , , , ,a β γ δ ζ  and θ  are 

constants. We also have 
=h y p e r

cp
n

, with 

= 2 ( 1/( 2)c m g g− −  where 2 < < 3g  is the degree 
exponent and m is the minimum degree in the network. From 

hyperp  we can observe that when g  is decreasing, the average 

degree (how many neighbors on average a hypernode has) is 
increasing and is equal to ( 1 ) / ( 2 )m g g− − , and vice versa. 
When the average degree is large then the worm outbreak's much 
faster, and this is depicted to the following figures. The chosen 
function for antvp  is, initially, monotonicaly increasing with a 
small rate while afterwards it increases at a faster rate. This has 
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the interpretation that after a new worm has been analyzed, as 
time goes by, more people start downloading and installing 
defense software against it while at first only few antivirus 
installations take place. The chosen function for openmp  has the 

opposite behaviour. At first, this function is monotonicaly 
decreasing at a slow rate, reflecting the fact that people tend to 
open emails without a second thought. Then the function is 
decreasing with a faster rate reflecting the fact that information 
about the worm becomes available and people become more 
cautious with opening their email. 
In the figures that follow, we plot the percentage of black and 
white nodes, as a function of time, for = 20d  (hypernode or 

local network size). We can see the effect that antvp , openmp  

and hyperp  have to the relative size of the populations of white 

and black nodes for the value of d , all other parameters being 
fixed. First we observe that the effect of the worm in Figure 3 is 
more severe than in the Figures 1, 2 and 4 This is due to the fact 
that in Figure 3 we have a large openmp  and g  and a small 

antvp , which makes the worm's outbreak much faster. With 
regard to the effect of the antivirus installation rate as well as the 
users' opening mail easiness, in Figures 1 and  2 we have higher 
installation rate and less easiness, in comparison with Figures 3 
and 4. One can also tune the other parameters of the model and, 
thus, construct ``what-if'' scenarios for various worm propagation 
patterns and and acquaintance network structures. 

 
 Fig. 1 d=20, large antvp , small openmp  and large g ,(black 

nodes dotted, white nodes continuous)   
 

Fig. 2  d=20, large antvp , small openmp  and small g ,(black 

nodes dotted, white nodes continuous)   
 

Fig 3 d=20, small antvp , large openmp  and small g (black 

nodes dotted, white nodes continuous)   
 

 
Fig 4 d=20, small antvp , large openmp  and large g (black 

nodes dotted, white nodes continuous)   
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6 Conclusions 

The availability of reliable models of computer worms 
propagation would prove useful in a number of ways, in order 
both to predict future threats and to develop new containment 
measures. In this paper we have proposed a model for users' 
acquaintance profiles based on a scale free network infrastructure, 
as they result from their email address books or their IM 
communication habits. This model can be used for the study of 
worm propagation as a function of the antivirus installation rate 
the users' easiness in opening their email attachments as well as 
the probability in which the hypernodes are connected. We 
showed that the theoretical analysis of this model leads to a 
system of differential equations that result from the application of 
Wormald's theorem to the analysis of the expected fluctuations of 
infected as well as immunized nodes. These equations can be 
analytically solved, offering a practical means of conducting 
``what-if'' scenarios by tuning the parameters of the model. We 
believe that our model can be used as a basis for extensions by 
including other factors which may affect virus propagation (e.g. 
network link speed) having, at the same time, a straightforward 
theoretical analysis with the aid of Wormald's theorem. 
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