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Summary 
Passive testing of a network protocol, the technique of 

detecting faults of the protocol implementation by monitoring its 
inputs and outputs when it is operating in a real communication 
network, has drawn attention lately because it does not interfere 
with the protocol development process. This paper proposes an 
extended finite state machine (EFSM)-based passive testing 
technique with good fault-detecting capability at a minimized 
on-line processing cost. Before testing, the proposed technique 
expands the given EFSM model to an expanded EFSM (XEFSM) 
model and derives its homing tree. During the testing we can find 
faults only by tracing that homing tree and the XEFSM with a 
given event sequence before and after the homing is 
accomplished respectively. In order to evaluate the effectiveness 
of the proposed technique we showed a simple example with the 
simple connection protocol (SCP) and also developed a passive 
testing system for the open shortest path first (OSPF) protocol. In 
the experiment with an OSPF implementation having intentional 
errors, the proposed technique showed a top-level fault detecting 
capability with less on-line processing. Therefore the proposed 
technique can be a good solution to real-time passive testing of a 
network protocol with rapid packet exchanges. 
Key words: 
Network fault management, Passive testing, Expansion of an 
EFSM 
 

1. Introduction 

Development of a reliable protocol implementation is a 
major issue in the protocol engineering area and 
conformance testing was standardized to check if a 
protocol implementation conforms to the standard and the 
specification of that protocol [1]. Owing to the formal 
description techniques such as the specification and 
description language (SDL) [2], a lot of testing techniques 
with formal methods have been proposed for conformance 
testing [3,4,5]. However there have been few success 
stories in industry that such testing methods were used in 
the development of a commercial network product. That is 
mainly due to the cost of conformance testing because the 
prior occupation of market share is crucial to the success 
of a product in the network product industry. 

 Passive testing has drawn attention lately because it 
does not interfere with the protocol development process. 
It is performed on a network product operating in a real 
communication network only by monitoring the inputs and 
outputs of that product. Due to the lack of controllability, 
passive testing may not be completed in finite time and 
thus it can be used as a fault management technique of a 
network. There have been several techniques proposed for 
passive testing such as homing approach [6], invariant 
approach [7,8] and backward checking approach [9]. The 
current techniques usually use the extended finite state 
machine (EFSM) as a protocol model and check the 
consistency of the captured packets with that model. They 
have some common problems to solve. First, EFSM-based 
passive testing techniques face high processing complexity 
due to semantic analysis of the specification model. If a 
passive testing technique does not handle a packet fast 
enough, it may fail to perform passive testing in real time 
at a heavy network traffic condition. Second, obtaining 
greater fault-detecting capability requires more 
sophisticated testing techniques in general. That is to say, 
there is a trade-off relation between reducing the 
processing complexity for real-time passive testing and 
increasing fault coverage. 
 This paper proposes a passive testing technique trying 
to solve that problem by performing complex semantic 
analysis of the specification before testing and minimizing 
on-line processing work during the passive testing. For 
that purpose, the proposed technique performs the 
expansion of an EFSM model and generates the homing 
tree with fault-patterns before testing. 
 This paper is organized as follows. Section 2 
introduces basic definitions and notations, and also the 
concept of fault patterns. Then the detailed proposed 
passive testing technique is explained with an example of 
the simple connection protocol (SCP) [9] in section 3. 
Section 4 shows an experimental result and evaluation 
with a popular routing protocol, the open shortest path first 
(OSPF) neighbor state machine [10]. Finally conclusions 
are drawn in section 5. 
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2. Preliminary Work 
 
This section describes the basic definitions and notations 
required to explain the proposed technique and also 
introduces the concept of fault patterns as a generalization 
of invariants [7]. 
 
2.1 Basic definitions 
 
As the specification model of a protocol, a normal form 
event-based EFSM (NF-EEFSM) is defined as follows. 
 
Definition 1. An NF-EEFSM M is the 5-tuple (S, s0, Σ, v, 
T) where S is the finite set of logical states, s0(∈S) is the 
initial state, Σ is the finite set of events the element of 
which ε(∈Σ) is denoted by σe(p), where σ∈{?,!}, e is a 
message name, and p is the finite set of event parameters, v 
is the finite set of variables, T is the finite set of transitions, 
where the label of a transition t(∈T) is denoted by the 
5-tuple (ss, sf, ε, P(v,p), A(v,p)) in which ss and sf are the 
start and the final state of t respectively, and P(v,p) and 
A(v,p)) are the predicate and the action of t respectively. 
 
 Note that Σ=ΣI∩ΣO, where ΣI and ΣO are the finite sets 
of input and output events respectively such that ?e(p)∉ΣO 
and !e(p)∉ΣI. For the implementation of the proposed 
technique we normalize P(v,p) and A(v,p) as follows. 
P(v,p) is a disjunctive normal form of simple predicates πi 
denoted by aiv + bip + ci ~ 0, where ~∈{<, >, ≤, ≥, =, ≠}, ai 
and bi are integer matrices whose sizes are 1×|v| and 1×|p| 
respectively, and ci is an integer constant. A(v,p) is a set of 
linear assignment equations, v ← ajv + bjp + ci, where aj, bj, 
and cj are integer matrices whose sizes are |v|×|v|, |v|×|p|, 
and |v|×1 respectively. In the specification of a real 
network protocol, nonlinear equations may be used in the 
predicate or action such as the absolute value function or 
the set operations. Such nonlinear equations can be 
transformed to the equivalent linear equations by using the 
domain propagation technique [11]. 
 The following assumptions on the NF-EEFSM are also 
used to reduce the problem size when handling an 
NF-EEFSM. 
 
Assumption 1. An NF-EEFSM is deterministic and 
strongly connected [3]. 
 
Assumption 2. Each loop within an NF-EEFSM is either 
an unconditional loop where each iteration of the loop 
generates the same global control state subspace (type 1), a 
conditional loop where the number of iterations of the loop 
is not bounded above and each iteration of the loop 
generates the same global control subspace (type 2), or a 
conditional loop where the number of iterations of the loop 
is bounded above (type 3). 

 In assumption 1, a transition t where there exists a 
simple predicate πi in P(v,p) such that ai ≠ 0 and bi = 0 is 
called a conditional transition, and an unconditional 
transition otherwise. Additionally, a loop if all transitions 
constructing that loop are unconditional transitions is 
called an unconditional loop, and a conditional loop 
otherwise. 
 
2.2 Generalization of invariants: Fault Patterns 
 
The invariant approach [7] checks a captured packet trace 
if a part of that trace violates the invariants generated from 
the specification model. However, the classification of 
invariants, forwards and backward, was done with the 
logical considerations on the invariants and thus that 
classification is not complete. That is to say, there are 
faulty message sequences that cannot be detected easily 
with the existing invariant approach. This paper, instead of 
such invariants, uses fault patterns for packet traces and 
introduces a simple notation for representing fault patterns. 
 
Definition 2. The set of fault patterns of an NF-EEFSM M, 
ΦM is defined by ΦM = {φ | φ is a packet trace including 
inputs and outputs that cannot be observed from M}, 
where a fault pattern φ is represented by Ξi(εi) in which Ξ 
is the concatenation generator of events such that 
Ξi=1…n(εi) = ε1 @ ε2 @ … @ εn where @ is the 
concatenation operator.  
 
 In the notation of fault patterns, εi can be represented 
as an element of ℘({σiei | σiei ∈ Σ})∩℘({σiei | σiei ∈ Σ}) 
− {∅}, where ℘(⋅) is the powerset operator, σiei is the 
negative event of σiei denoting all events σjej ∈ Σ such that 
σj = σi and ej ≠ ei. {σe} and {σe} can be represented as σe 
and σe respectively for simplicity. 
 
Example 1. Let the fault pattern set of an NF-EEFSM M, 
ΦM = {?a!x, ?a!{y,z}, ?b!x, ?a!z?b!y, ?a!z?b!y, ?c!z?{b,c} 
!y}. An observation of any element of ΦM from an 
implementation of M indicates the fault of that 
implementation at any time. ?a!{y,z} and ?b!x correspond 
to backward and forward invariants respectively. ?a!z?b!y 
and ?a!z?b!y are clearly differently each other but their 
difference may not be represented distinctly with the 
invariant classification. In addition, ?c!z?{b,c}!y cannot be 
represented by an invariant. 
 
 The negative event representation in fault patterns can 
be extended to a sequence of events or parameters in an 
event. ?a!x?b!y represents all event sequences that ends 
with the event !y and the preceding event sequence of 
that !y is not ?a!x?b, namely ?a!x?b!y = {?b!y, !x?b!y, ?a!x 
?b!y}. ?a(1)!x(1) and ?a(1)!x(1) represent all output events 
that is not x(1) and the output event x whose parameter is 
not 1 respectively, following the event ?a. 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007 
 

 

9

3. The Proposed Passive Testing Technique 
 
The goal of this paper is to develop a passive testing 
technique with good fault-detecting capability and 
minimized on-line processing for real-time passive testing 
of a network product. To obtain that goal, we first expand 
the NF-EEFSM model of a protocol to an equivalent FSM 
in order to transfer the complex semantic analysis of that 
machine to off-line work before testing. And the most of 
homing and pattern matching work is also moved to 
off-line world by generating the homing tree of that 
expanded NF-EEFSM. If that homing tree is complete, it 
can possess the maximal fault-detecting power. 
 
3.1 Overview of the proposed technique 
 
The working flow of the proposed passive testing 
technique is illustrated in figure 1.  
 

 
Fig. 1  Flow diagram of the proposed technique 

 
 First, from the specification of the target protocol, its 
NF-EEFSM model is generated. Then that NF-EEFSM is 
transformed to an equivalent FSM where all transitions are 
unconditional, which is called an expanded NF-EEFSM 
(XNF-EEFSM). That expansion will be explained in detail 
at subsection 3.2.  
 Instead of executing the homing procedure on-line 
during the testing, we generate the adaptive homing tree of 
that XNF-EEFSM before testing. During the testing, when 
the tester captures a packet to or from the target protocol 
product, it has only to trace that homing tree with that 
packet. That may take much smaller processing time than 
the existing on-line processing. How to generate the 
homing tree and how to use it for homing and fault 
detection will be described in subsection 3.3.  
 When the homing is accomplished, the current logical 
state of the XNF-EEFSM and the current values of all 
control variables are identified. Hence the tester can 
validate the correctness of the protocol product only by 
tracing that XNF-EEFSM with that information with the 
subsequent protocol packets. Note that the proposed 
technique has a tracing-level processing complexity during 

the testing. The overall procedure of the proposed 
technique is represented in algorithm 1. 
 
Algorithm 1. The proposed passive testing technique 
• Inputs: the specification of the protocol M0, the event 

sequence observed at the target product Ξi(εi) (1≤i≤n) 
• Output: either ‘ErrorDetected’ or ‘NoError’ 
• Variable: the result of homing Result 
Step.1: Construct the NF-EEFSM M1 from M0 
Step.2: XNF-EEFSM M ←Call Algorithm 2 (M1); 
Step.3: Homing tree HM ←Call Algorithm 3 (M); 
Step.4: Result←Call Algorithm 4 (HM, Ξi(εi)); 
 switch (Result) 
   case ‘ErrorDetected’: return ‘ErrorDetected’; 
   case Homed(i,s): 
     for j←1 to n 
       σkek ← nextEvent(M, s, εi); 
       s ← nextState(M, s, εi); 
       if σkek = σj+1ej+1 then continue; 
       else return ‘ErrorDetected’; endif 
     endfor 
     return ‘NoError’; 
 endswitch 
 
3.2 Expansion of an NF-EEFSM 
 
The expansion procedure of an NF-EEFSM is based on the 
expansion method of an NF-EFSM shown in [3]. First, 
some notation and functions are introduced to explain the 
expansion algorithm of this paper. Δ denotes the domain 
constructed from all control variables in v and Λ denotes 
the domain constructed from all parameters in p of the 
input events. The subset of Δ allowed at a state will be 
called the domain of the state. The term precondition of a 
transition ti, denoted Pi, is used to mean the predicate 
P(v,p) of ti. The functions RΔ(⋅): P(v,p)→℘(Δ) and RΛ(⋅): 
P(v,p)→℘(Λ) transform a predicate in the DNF form to 
the subdomains of Δ and Λ that satisfy that predicate 
respectively. Their inverse functions RΔ

-1(⋅):℘(Δ)→P(v,p) 
and RΛ

-1(⋅):℘(Λ)→P(v,p) generate the predicates in the 
DNF form that determine the input subdomains of Δ and Λ. 
The term postcondition of a transition ti, denoted by 
Qi(⋅):℘(Δ)×℘(Λ)→℘(Δ), is the function that derives the 
domain in Δ, according to the action A(v,p) of ti, given two 
subdomains of Δ and Λ. The inverse functions QΔi

-1 
(⋅):℘(Δ)→℘(Δ) and QΛi

-1(⋅):℘(Δ)→℘(Λ) derive the 
domains in Δ and Λ respectively, according to the inverse 
action A-1(v,p) of ti, given a subdomain of Δ. d(⋅):S→℘(Δ) 
is the function generating the domain of a state in Δ, and 
ss(⋅):T→S and sf(⋅):T→S are the starting state and final 
state functions of a transition respectively. The expansion 
algorithm of an NF-EEFSM is as follow under the 
assumption that all the postcondition functions and their 
inverse functions can be evaluated symbolically in any 
domain considered. 
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Algorithm 2. The expansion of an NF-EEFSM 
• Input: an NF-EEFSM M1 
• Output: the equivalent XNF-EEFSM M 
Step.1: Partition the domain of a state s in M1 that has at 

least two conditional transitions originating from it as 
follows: Let the conditional transitions t1, t2, …, tn, (n≥2) 
originating from state s have preconditions P1, P2, …, Pn 
respectively. Each subdomain, {δs

X| X⊆{1, …, n}∧X≠∅} 
is given by δs

X = RΔ((∧i∈XPi)∧(∧i∉X¬Pi)). If the final 
non-empty disjoint subdomains are δs

1, …, δs
m (m≤2n-1),  

split the state s to s1, …, sm whose domains are δs
1, …, 

δs
m respectively. If this is the first iteration, repeat this 

step for all the states from which there are outgoing 
conditional transitions. After the first iteration, priority is 
given to states that are not within any type 3 loop, if 
there exist such states; otherwise, the state to be split is 
selected among states that are within type 3 loops. 

Step2: Rearrange transitions related to the split states. If a 
state s is split into n(≥2) states, s1, …, sn, remove each 
transition t going from or to the state s. Then, for each 
removed transition ta going from the state s to a state 
sf(≠s), make n temporary transitions going from si 
(1≤i≤n) to sf whose labels are the same as that of the 
removed transition. For each removed transition tb going 
to the state s from a state ss(≠s), make n temporary 
transitions going from ss to si (1≤i≤n) whose labels are 
the same as that of the removed transition. For each 
removed transition tc going from and to the same state s, 
make n2 temporary transitions going from each si (1≤i≤n) 
to each sj (1≤j≤n) whose labels are the same as that of 
the removed transition. 

Step 3: For each temporary transition ti, make it permanent 
or discard it depending on the following cases: 
• Case A. If d(ss(ti))∩RΔ(Pi)=∅ or Qi(d(ss(ti)),RΛ(Pi)) 
∩d(sf(ti))=∅, discard ti. 
• Case B. If d(ss(ti))⊆RΔ(Pi) and Qi(d(ss(ti)),RΛ(Pi)) 
⊆d(sf(ti)), make ti unconditional. 
• Case C. If d(ss(ti))⊆RΔ(Pi) and Qi(d(ss(ti)),RΛ(Pi)) 
�d(sf(ti)) and Qi(d(ss(ti)),RΛ(Pi))∩d(sf(ti))≠∅: if d(ss(ti)) 
⊆RΔ(Pi’) then make ti unconditional; otherwise, make ti 
conditional with the predicate Pi’, where Pi’ = d(ss(ti)) 
∩Qi

-1(d(sf(ti))). 
Step 4: If a transition ti which was determined to be 

permanent at step 3 has the event σiei carrying a 
parameter pi(∈p) such that R’Λ(pi)(Λ where R’Λ(pi) is the 
domain of pi which can be allowed in Λ, update the 
predicate of ti to RΛ

-1(R’Λ(pi)). 
Step 5: If the initial state is split, determine which the new 

initial state is now among those split states. Remove all 
states that cannot be reached from the initial state. If 
there are no conditional transitions, terminate; otherwise, 
return to step 1. 

 
3.3 The homing tree for fast fault checking 

 
The proposed technique uses a homing tree customized for 
performing both homing and fault detection. That homing 
tree is based on a tree representing an adaptive homing 
sequence [12] and has additional fault detection 
information. The algorithm to generate the homing tree 
from an XNF-EEFSM is as follows. 
 
Algorithm 3. Generation of the homing tree 
• Input: an XNF-EEFSM M 
• Output: the homing tree HM of M 
• Variables: the logical state set for a node of the homing 

tree St (the initial value: S), the node set of the homing 
tree candidate for the extension CS (the initial value: S), 
an extended event set � 

Step.1: For each event εi = σiei (∈Σ) in M, and transitions tj 
(1≤j≤n) which have that same event εi carrying 
parameter pj, partition Λ to subdomains δs

i,k (1≤k≤mi) 
such that δs

i,k = ((∩j∈X R’Λ(pj) ∩ (∩i∉X R’Λ(pj)C), X⊆{1, 
…, n} and X≠∅, where R’Λ(pj)C = Λ − R’Λ(pj). Then, for 
each split subdomain δs

i,k, add the event σiei(δs
i,k) to �. 

Step.2: Get a node ν in CS and assign the label of that node 
to St. For each event εi in � of a given type, input and 
output by turns, create a leaf li originating from ν, attach 
the label εi on li, and create an unlabeled node νi at the 
open end of li. 

Step.3: Put the label on each node νi generated at step 2 as 
follows. For the leaf li terminating at νi, if its label event 
εi can occur at some states in the label state set St of the 
originating node ν according to M, the set of possible 
present states Sf(⊆S, ≠∅) after executing that event εi 
become the label of node νi. If the event εi cannot occur 
at any state in St, attach the label ‘Error’ on node νi. If the 
label of node νi appears for the first time and the number 
of states in Sf is greater than 2, add νi to CS. 

Step.4: Remove the node ν from CS. If CS is empty, 
terminate; otherwise, go to step 2. 

 
 Extension of the events to the scope of parameters 
enables the fault detection for a packet trace with faulty 
parameters. Terminal leaves of the homing tree are of one 
type among the followings: the homed node whose label 
has single state (type 1), the error node with the label 
‘Error’ (type 2), and the recurrent node with the same label 
as an existing node (type 3). When we trace the homing 
tree with a captured packet trace, if the tracing stops at a 
terminal node, we can see the result directly from its label.   
Note that fault patterns can be obtained from each error 
node of the homing tree. The final fault patterns can be 
derived by rearranging fault patterns with consideration of 
their inclusion relations. The algorithm for homing and 
error detection with the homing tree is as follows. 
 
Algorithm 4. Error detection with the homing tree 
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• Inputs: a homing tree HM, an event sequence Ξi(εi) 
(1≤i≤n) 

• Output: either ‘ErrorDetected’ or Homed(traceLocation, 
currentState) 

• Variable: the variable to store the location of a node in 
the homing tree nj (the initial value: the head of HM) 

begin 
  i←0, j←1; /* initialization */ 
  TOP: do  

i← i +1; /* get the next event */ 
nj+1←trace(HM, nj, εi); 
j← j +1; /* move to the next node */ 

while (nj is not a terminal node); 
switch (label(nj)) 

   case state s: return Homed(i,s); 
    case ‘Error’: return ‘ErrorDetected’; 
    otherwise: 
      nj+1←search(HM, label(nj)); 
      goto TOP; /* repeat the tracing */ 
endswitch 

end 
 
 In algorithm 4, the function trace(HM, nj, εi) derives 
the next node of nj by tracing the homing tree HM with the 
event εi, and with the function search(HM, label(nj)) we 
obtain the exiting node which has the same label as the 
node nj in HM. 
 
3.4 An example: simple connection protocol (SCP) 
 
In order to demonstrate the working of the proposed 
technique, the SCP is used which has been often used as an 
example in the literature on the passive testing [9]. The 
SCP makes a the quality of service (QoS) configuration 
request for the connection to the lower layer upon the 
request of the upper layer and informs the upper layer of 
the acceptance result of that request from the lower layer. 
Figure 2 shows the NF-EEFSM of the SCP which has 8 
states and 13 transitions. Note that six transitions have 
nonempty predicates but only two are conditions among 
them. 
 By algorithm 2, the XNF-EEFSM of the SCP was 
generated from that NF-EEFSM as shown in Figure 3, 
where the transition labels which have not been updated 
were omitted for simplicity. It has 12 states and 17 
transitions. Then, the homing tree of the SCP was 
generated from that XNF-EEFSM by algorithm 3, which is 
shown in Figure 4. It has 11 terminal nodes which include 
8 homed nodes and 3 error nodes. Therefore, the homing is 
accomplished by tracing 2.125 packets on average in case 
of the SCP. From the homing tree, two fault patterns were 
obtained as follows: (1) ?refuse !{CONcnf, connect} (2) ? 
refuse !connect ?{accept, refuse}. 
 

t1=(s1, s2, ?CONreq(qos), {}, {TryCount:=0, ReqQos:=qos, FinQos:=0})
t2=(s2, s1, !NONsupport(ReqQos), {ReqQos>1}, {})
t3=(s2, s3, !connect(ReqQos), {ReqQos<=1}, {})
t4=(s3, s4, ?refuse, {}, {})
t5=(s4, s3, !connect(ReqQos), {TryCount!=2}, {TryCount:=TryCount+1})
t6=(s4, s1, !CONcnf(-), {TryCount=2}, {})
t7=(s3, s5, ?accept(qos), {qos<=ReqQos}, {FinQos:=qos})
t8=(s3, s5, ?accept(qos), {qos>ReqQos}, {FinQos:=ReqQos})
t9=(s5, s6, !CONcnf(+,FinQos), {}, {})
t10= (s6, s7, ?Data, {}, {}), t11=(s7, s6, !data(FinQos), {}, {}),
t12= (s6, s8, ?Reset, {}, {}), t13= (s8, s1, !abort, {}, {}),  

Fig. 2 The NF-EEFSM model of the SCP 
 

t40=(s30, s40, ?refuse, {}, {}), t41=(s31, s41, ?refuse, {}, {}), t42=(s32, s42, ?refuse, {}, {})
t50=(s40, s31, !connect(ReqQos), {}, {TryCount:=TryCount+1})
t51=(s41, s32, !connect(ReqQos), {}, {TryCount:=TryCount+1})
t70=(s30, s5, ?accept(qos), {qos<=ReqQos}, {FinQos:=qos})
t71=(s31, s5, ?accept(qos), {qos<=ReqQos}, {FinQos:=qos})
t72=(s32, s5, ?accept(qos), {qos<=ReqQos}, {FinQos:=qos})
t80=(s30, s5, ?accept(qos), {qos>ReqQos}, {FinQos:=ReqQos})
t81=(s31, s5, ?accept(qos), {qos>ReqQos}, {FinQos:=ReqQos})
t82=(s32, s5, ?accept(qos), {qos>ReqQos}, {FinQos:=ReqQos})  

Fig. 3 The XNF-EEFSM of the SCP 
 

 
Fig. 4 The homing tree of the SCP XNF-EEFSM 

 In order to estimate the fault detecting capability of 
the proposed technique, we performed a simple passive 
testing on the SCP with the event sequence 
“?CONreq(1) !connect(1) ?refuse !CONcnf(-)” which has 
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been used for that purpose in [6]. Given the event 
‘?CONreq(1)’, the homing is accomplished and the current 
state is identified as s2 in the proposed technique. Now we 
have only to trace the XNF-EEFSM of the SCP from s2. 
The next event ‘!connect(1)’ is allowed in that 
XNF-EEFSM and the current state is updated to s30. Then 
the next event ‘?refuse’ is also allowed and s40 is now the 
current state. The final event ‘!CONcnf(-)’ is not allowed 
at s40 and we can detect a fault. Neither the existing 
homing approach nor the original invariant approach can 
detect a fault with this event sequence [6]. The backward 
checking and the constrained invariant checking 
approaches can detect a fault but they may require 
considerable amount of on-line processing. 
 
4. Experimental Results 
 
For the validation of efficacy of the proposed passive 
testing technique, we applied it to a real routing protocol, 
the OSPF protocol in a real network environment. In this 
experiment, we construct a testing system and 
environment with the proposed technique, which will be 
explained with the result and evaluation in this section. 
 
4.1 The OSPF neighbor state machine 
 
We used the OSPF neighbor state machine that maintains 
connections between two neighboring OSPF routers and 
exchanges link state information [10]. First we construct 
the NF-EEFSM model of the OSPF neighbor state 
machine. The OSPF often uses set operators for checking 
the routing information it receives. Instead of an 
expression with a set operator, several equivalent linear 
expressions with a finite array are used in the NF-EEFSM. 
Figure 5 shows the simplified NF-EEFSM of the OSPF 
neighbor state machine. The complete NF-EEFSM has 8 
logical states and 90 transitions. 
 

 
Fig. 5 The simplified NF-EEFSM of the OSPF neighbor state machine 

 There are 60 transitions with nonempty predicates but 
only 16 transitions are conditional in that NF-EEFSM. We 
transformed it to the equivalent XNF-EEFSM with 
algorithm 2. The XNF-EEFSM of the OSPF neighbor state 

machine has 21 states and 245 transitions. Then, its 
homing tree was generated by algorithm 3. The homing 
tree of the OSPF XNF-EEFSM has 117 terminal nodes 
including 88 homed nodes and 29 error nodes. 
Accordingly the homing of the OSPF XNF-EEFSM can be 
accomplished after tracing 3.625 packets on average. From 
that homing tree, we also obtained 21 fault patterns. 
 
4.2 Testing system and environment 
 
The structure of the passive tester for the OSPF protocol 
we implemented with the proposed technique is depicted 
in Figure 6. 
 

 
Fig. 6 The structure of the implemented passive tester 

 
 The passive tester was implemented in a laptop 
computer with Linux OS. The libpcap library [13] and the 
open-source tool tetherial [14] were used in our passive 
testing tool so as to capture and decode protocol packets 
from the network. Packets arrived at the Ethernet adapter 
of the tester are copied to the internal buffer by the libpcap 
libaray and OSPF packets are picked up by the filters of 
the tethereal tool. From OSPF packets, the corresponding 
events are created and given to the proposed algorithm 
which was programmed. The proposed algorithm part has 
the OSPF information required for our passive testing such 
as the OSPF XNF-EEFSM and its homing tree. Given an 
event, it runs the algorithms and sends the result to the 
tethereal. We can see the information of the processing can 
be seen with the output part based on the tethereal. If an 
error is detected, the tester displays that error and 
initializes itself for resuming the testing. 
 Figure 7 shows the environment for our experiments. 
We constructed a experimental network with two OSPF 
routers, our passive tester, and an OSPF software router, 
the target product, based on the open-source router 
emulator Zebra [15]. In order to produce intentional errors 
we slightly modified the message output part of the Zebra 
ospfd tool. With that modification, two types of errors, the 
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message type error and the message parameter error, are 
generated randomly at a given rate. That error generation 
information is saved in a file for later checking. 
 

 
Fig. 7 The experiment environment for passive testing 

 
4.3 The result and evaluation 
 
In our experiments, the tester detected all single errors of 
the target product which were generated intentionally 
except a few cases. In case of a series of errors, the 
subsequent errors after the first one may not be detected. 
Figure 8 shows a part of testing log file which displays 
error detection message by the tester. 
 

 
Fig. 8 A screenshot of error detection by the tester 

 
 The tester did not detect a few errors and sometimes it 
reports errors wrongly for the correct packet. We found 
that that problem is due to the imperfect capture capability 
of the libpcap library. It may miss a packet if the packet 
exchange is very fast. According to [16], the libpcap 
library shows unsatisfactory capturing power when a 
packet rate is high and the packet size is small. The 
PF_RING socket may be used to reduce this problem [16]. 
 Now we evaluate the competence of the proposed 
technique by comparison with the existing techniques in 
several aspects. As for the fault coverage, since the 
proposed technique uses a kind of homing approach, it can 

detect every faults of the target product after it 
accomplishes the homing. Even before homing, it can 
detect the event parameter inconsistency with the homing 
tree extended to the parameter domain. Hence it has better 
fault detecting capability than the original homing 
approach. We guess it has the same fault coverage as the 
backward checking approach which performs an 
exhaustive check to find a fault. The constrained invariant 
checking approach also has very good fault coverage but 
that depends on the invariants it derives, which may not be 
complete. The most distinctive merit of the proposed 
technique is that it has lower on-line processing cost than 
the existing techniques. It has the trace-level processing 
complexity with the homing tree and the XNF-EEFSM of 
the target protocol. Therefore it is suitable for real-time 
passive testing in a heavy network traffic situation. The 
cost it should pay for such advantages is a large amount of 
off-line processing before testing. However that can be 
automated and does not affect the passive testing itself. 
Table 1 summarizes the comparison between the passive 
testing techniques. 
 

Table 1 Comparison between the passive testing techniques 

 Homing Invariant 
original*

Invariant 
constrained* 

Backward 
checking Proposed

Fault 
coverage good moderate very good very good very good

On-line 
cost high moderate high very high low 

Off-line 
cost low high very high low very high

* Depends on the number of invariants used 
 
5. Conclusions 
 
Passive testing is very useful for fault management of a 
network product which has not been tested sufficiently 
during the development process. Moreover it does not 
interfere with the target product in a network because it 
tests the product only by observing packets going to and 
from that product. There have been several studies to 
obtain a good passive testing technique with high fault 
detecting capability. Such a technique, however, may 
require a lot of processing work during the testing, which 
may affect real-time passive testing at a heavy network 
traffic condition. 
 This paper proposed a passive testing technique based 
on an EFSM model with minimized on-line processing. It 
moves a considerable amount of on-line processing work 
to the off-line world. First, it transforms the NF-EFSM 
model of the target protocol to the equivalent XNF- 
EEFSM which is a kind of FSM where all transitions are 
executable at each state without complex semantic analysis. 
Then it also derives the homing tree of that XNF-EEFSM 
before testing. During the testing, we can perform homing 
and fault detection only by tracing that tree with a given 
event sequence. After the homing is accomplished, we 
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have only to trace the XNF-EEFSM with that event 
sequence for the fault management of the target product. 
An example with the SCP and an experiment with the 
OSPF neighbor state machine show that the proposed 
technique has as good fault coverage as the backward 
checking or the constrained invariant checking approaches 
which performs a thorough check for fault detection. As 
the proposed technique has lower on-line processing cost 
than the existing techniques, it can be a good solution to 
real-time passive testing of a network protocol product 
with rapid packet exchanges. 
 We are planning to apply the proposed technique to 
other popular network protocol such as TCP [17] and to 
make a precise comparison with the existing approaches. 
We are also interested in handling the false error detection 
due to missed packets and locating the faults for fault 
correction. 
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