
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

7

M anuscript received on M arch 25, 2007.
M anuscript revised on M arch 28, 2007.

A Passive Testing Technique with Minimized On-line Processing
For Fault Management of Network Protocols

Tae-Hyong Kim

Kumoh National Institute of Technology, Gumi, Korea

Summary
Passive testing of a network protocol, the technique of

detecting faults of the protocol implementation by monitoring its
inputs and outputs when it is operating in a real communication
network, has drawn attention lately because it does not interfere
with the protocol development process. This paper proposes an
extended finite state machine (EFSM)-based passive testing
technique with good fault-detecting capability at a minimized
on-line processing cost. Before testing, the proposed technique
expands the given EFSM model to an expanded EFSM (XEFSM)
model and derives its homing tree. During the testing we can find
faults only by tracing that homing tree and the XEFSM with a
given event sequence before and after the homing is
accomplished respectively. In order to evaluate the effectiveness
of the proposed technique we showed a simple example with the
simple connection protocol (SCP) and also developed a passive
testing system for the open shortest path first (OSPF) protocol. In
the experiment with an OSPF implementation having intentional
errors, the proposed technique showed a top-level fault detecting
capability with less on-line processing. Therefore the proposed
technique can be a good solution to real-time passive testing of a
network protocol with rapid packet exchanges.
Key words:
Network fault management, Passive testing, Expansion of an
EFSM

1. Introduction

Development of a reliable protocol implementation is a
major issue in the protocol engineering area and
conformance testing was standardized to check if a
protocol implementation conforms to the standard and the
specification of that protocol [1]. Owing to the formal
description techniques such as the specification and
description language (SDL) [2], a lot of testing techniques
with formal methods have been proposed for conformance
testing [3,4,5]. However there have been few success
stories in industry that such testing methods were used in
the development of a commercial network product. That is
mainly due to the cost of conformance testing because the
prior occupation of market share is crucial to the success
of a product in the network product industry.

 Passive testing has drawn attention lately because it
does not interfere with the protocol development process.
It is performed on a network product operating in a real
communication network only by monitoring the inputs and
outputs of that product. Due to the lack of controllability,
passive testing may not be completed in finite time and
thus it can be used as a fault management technique of a
network. There have been several techniques proposed for
passive testing such as homing approach [6], invariant
approach [7,8] and backward checking approach [9]. The
current techniques usually use the extended finite state
machine (EFSM) as a protocol model and check the
consistency of the captured packets with that model. They
have some common problems to solve. First, EFSM-based
passive testing techniques face high processing complexity
due to semantic analysis of the specification model. If a
passive testing technique does not handle a packet fast
enough, it may fail to perform passive testing in real time
at a heavy network traffic condition. Second, obtaining
greater fault-detecting capability requires more
sophisticated testing techniques in general. That is to say,
there is a trade-off relation between reducing the
processing complexity for real-time passive testing and
increasing fault coverage.
 This paper proposes a passive testing technique trying
to solve that problem by performing complex semantic
analysis of the specification before testing and minimizing
on-line processing work during the passive testing. For
that purpose, the proposed technique performs the
expansion of an EFSM model and generates the homing
tree with fault-patterns before testing.
 This paper is organized as follows. Section 2
introduces basic definitions and notations, and also the
concept of fault patterns. Then the detailed proposed
passive testing technique is explained with an example of
the simple connection protocol (SCP) [9] in section 3.
Section 4 shows an experimental result and evaluation
with a popular routing protocol, the open shortest path first
(OSPF) neighbor state machine [10]. Finally conclusions
are drawn in section 5.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

8

2. Preliminary Work

This section describes the basic definitions and notations
required to explain the proposed technique and also
introduces the concept of fault patterns as a generalization
of invariants [7].

2.1 Basic definitions

As the specification model of a protocol, a normal form
event-based EFSM (NF-EEFSM) is defined as follows.

Definition 1. An NF-EEFSM M is the 5-tuple (S, s0, Σ, v,
T) where S is the finite set of logical states, s0(∈S) is the
initial state, Σ is the finite set of events the element of
which ε(∈Σ) is denoted by σe(p), where σ∈{?,!}, e is a
message name, and p is the finite set of event parameters, v
is the finite set of variables, T is the finite set of transitions,
where the label of a transition t(∈T) is denoted by the
5-tuple (ss, sf, ε, P(v,p), A(v,p)) in which ss and sf are the
start and the final state of t respectively, and P(v,p) and
A(v,p)) are the predicate and the action of t respectively.

 Note that Σ=ΣI∩ΣO, where ΣI and ΣO are the finite sets
of input and output events respectively such that ?e(p)∉ΣO
and !e(p)∉ΣI. For the implementation of the proposed
technique we normalize P(v,p) and A(v,p) as follows.
P(v,p) is a disjunctive normal form of simple predicates πi
denoted by aiv + bip + ci ~ 0, where ~∈{<, >, ≤, ≥, =, ≠}, ai
and bi are integer matrices whose sizes are 1×|v| and 1×|p|
respectively, and ci is an integer constant. A(v,p) is a set of
linear assignment equations, v ← ajv + bjp + ci, where aj, bj,
and cj are integer matrices whose sizes are |v|×|v|, |v|×|p|,
and |v|×1 respectively. In the specification of a real
network protocol, nonlinear equations may be used in the
predicate or action such as the absolute value function or
the set operations. Such nonlinear equations can be
transformed to the equivalent linear equations by using the
domain propagation technique [11].
 The following assumptions on the NF-EEFSM are also
used to reduce the problem size when handling an
NF-EEFSM.

Assumption 1. An NF-EEFSM is deterministic and
strongly connected [3].

Assumption 2. Each loop within an NF-EEFSM is either
an unconditional loop where each iteration of the loop
generates the same global control state subspace (type 1), a
conditional loop where the number of iterations of the loop
is not bounded above and each iteration of the loop
generates the same global control subspace (type 2), or a
conditional loop where the number of iterations of the loop
is bounded above (type 3).

 In assumption 1, a transition t where there exists a
simple predicate πi in P(v,p) such that ai ≠ 0 and bi = 0 is
called a conditional transition, and an unconditional
transition otherwise. Additionally, a loop if all transitions
constructing that loop are unconditional transitions is
called an unconditional loop, and a conditional loop
otherwise.

2.2 Generalization of invariants: Fault Patterns

The invariant approach [7] checks a captured packet trace
if a part of that trace violates the invariants generated from
the specification model. However, the classification of
invariants, forwards and backward, was done with the
logical considerations on the invariants and thus that
classification is not complete. That is to say, there are
faulty message sequences that cannot be detected easily
with the existing invariant approach. This paper, instead of
such invariants, uses fault patterns for packet traces and
introduces a simple notation for representing fault patterns.

Definition 2. The set of fault patterns of an NF-EEFSM M,
ΦM is defined by ΦM = {φ | φ is a packet trace including
inputs and outputs that cannot be observed from M},
where a fault pattern φ is represented by Ξi(εi) in which Ξ
is the concatenation generator of events such that
Ξi=1…n(εi) = ε1 @ ε2 @ … @ εn where @ is the
concatenation operator.

 In the notation of fault patterns, εi can be represented
as an element of ℘({σiei | σiei ∈ Σ})∩℘({σiei | σiei ∈ Σ})
− {∅}, where ℘(⋅) is the powerset operator, σiei is the
negative event of σiei denoting all events σjej ∈ Σ such that
σj = σi and ej ≠ ei. {σe} and {σe} can be represented as σe
and σe respectively for simplicity.

Example 1. Let the fault pattern set of an NF-EEFSM M,
ΦM = {?a!x, ?a!{y,z}, ?b!x, ?a!z?b!y, ?a!z?b!y, ?c!z?{b,c}
!y}. An observation of any element of ΦM from an
implementation of M indicates the fault of that
implementation at any time. ?a!{y,z} and ?b!x correspond
to backward and forward invariants respectively. ?a!z?b!y
and ?a!z?b!y are clearly differently each other but their
difference may not be represented distinctly with the
invariant classification. In addition, ?c!z?{b,c}!y cannot be
represented by an invariant.

 The negative event representation in fault patterns can
be extended to a sequence of events or parameters in an
event. ?a!x?b!y represents all event sequences that ends
with the event !y and the preceding event sequence of
that !y is not ?a!x?b, namely ?a!x?b!y = {?b!y, !x?b!y, ?a!x
?b!y}. ?a(1)!x(1) and ?a(1)!x(1) represent all output events
that is not x(1) and the output event x whose parameter is
not 1 respectively, following the event ?a.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

9

3. The Proposed Passive Testing Technique

The goal of this paper is to develop a passive testing
technique with good fault-detecting capability and
minimized on-line processing for real-time passive testing
of a network product. To obtain that goal, we first expand
the NF-EEFSM model of a protocol to an equivalent FSM
in order to transfer the complex semantic analysis of that
machine to off-line work before testing. And the most of
homing and pattern matching work is also moved to
off-line world by generating the homing tree of that
expanded NF-EEFSM. If that homing tree is complete, it
can possess the maximal fault-detecting power.

3.1 Overview of the proposed technique

The working flow of the proposed passive testing
technique is illustrated in figure 1.

Fig. 1 Flow diagram of the proposed technique

 First, from the specification of the target protocol, its
NF-EEFSM model is generated. Then that NF-EEFSM is
transformed to an equivalent FSM where all transitions are
unconditional, which is called an expanded NF-EEFSM
(XNF-EEFSM). That expansion will be explained in detail
at subsection 3.2.
 Instead of executing the homing procedure on-line
during the testing, we generate the adaptive homing tree of
that XNF-EEFSM before testing. During the testing, when
the tester captures a packet to or from the target protocol
product, it has only to trace that homing tree with that
packet. That may take much smaller processing time than
the existing on-line processing. How to generate the
homing tree and how to use it for homing and fault
detection will be described in subsection 3.3.
 When the homing is accomplished, the current logical
state of the XNF-EEFSM and the current values of all
control variables are identified. Hence the tester can
validate the correctness of the protocol product only by
tracing that XNF-EEFSM with that information with the
subsequent protocol packets. Note that the proposed
technique has a tracing-level processing complexity during

the testing. The overall procedure of the proposed
technique is represented in algorithm 1.

Algorithm 1. The proposed passive testing technique
• Inputs: the specification of the protocol M0, the event

sequence observed at the target product Ξi(εi) (1≤i≤n)
• Output: either ‘ErrorDetected’ or ‘NoError’
• Variable: the result of homing Result
Step.1: Construct the NF-EEFSM M1 from M0
Step.2: XNF-EEFSM M ←Call Algorithm 2 (M1);
Step.3: Homing tree HM ←Call Algorithm 3 (M);
Step.4: Result←Call Algorithm 4 (HM, Ξi(εi));
 switch (Result)
 case ‘ErrorDetected’: return ‘ErrorDetected’;
 case Homed(i,s):
 for j←1 to n
 σkek ← nextEvent(M, s, εi);
 s ← nextState(M, s, εi);
 if σkek = σj+1ej+1 then continue;
 else return ‘ErrorDetected’; endif
 endfor
 return ‘NoError’;
 endswitch

3.2 Expansion of an NF-EEFSM

The expansion procedure of an NF-EEFSM is based on the
expansion method of an NF-EFSM shown in [3]. First,
some notation and functions are introduced to explain the
expansion algorithm of this paper. Δ denotes the domain
constructed from all control variables in v and Λ denotes
the domain constructed from all parameters in p of the
input events. The subset of Δ allowed at a state will be
called the domain of the state. The term precondition of a
transition ti, denoted Pi, is used to mean the predicate
P(v,p) of ti. The functions RΔ(⋅): P(v,p)→℘(Δ) and RΛ(⋅):
P(v,p)→℘(Λ) transform a predicate in the DNF form to
the subdomains of Δ and Λ that satisfy that predicate
respectively. Their inverse functions RΔ

-1(⋅):℘(Δ)→P(v,p)
and RΛ

-1(⋅):℘(Λ)→P(v,p) generate the predicates in the
DNF form that determine the input subdomains of Δ and Λ.
The term postcondition of a transition ti, denoted by
Qi(⋅):℘(Δ)×℘(Λ)→℘(Δ), is the function that derives the
domain in Δ, according to the action A(v,p) of ti, given two
subdomains of Δ and Λ. The inverse functions QΔi

-1
(⋅):℘(Δ)→℘(Δ) and QΛi

-1(⋅):℘(Δ)→℘(Λ) derive the
domains in Δ and Λ respectively, according to the inverse
action A-1(v,p) of ti, given a subdomain of Δ. d(⋅):S→℘(Δ)
is the function generating the domain of a state in Δ, and
ss(⋅):T→S and sf(⋅):T→S are the starting state and final
state functions of a transition respectively. The expansion
algorithm of an NF-EEFSM is as follow under the
assumption that all the postcondition functions and their
inverse functions can be evaluated symbolically in any
domain considered.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

10

Algorithm 2. The expansion of an NF-EEFSM
• Input: an NF-EEFSM M1
• Output: the equivalent XNF-EEFSM M
Step.1: Partition the domain of a state s in M1 that has at

least two conditional transitions originating from it as
follows: Let the conditional transitions t1, t2, …, tn, (n≥2)
originating from state s have preconditions P1, P2, …, Pn
respectively. Each subdomain, {δs

X| X⊆{1, …, n}∧X≠∅}
is given by δs

X = RΔ((∧i∈XPi)∧(∧i∉X¬Pi)). If the final
non-empty disjoint subdomains are δs

1, …, δs
m (m≤2n-1),

split the state s to s1, …, sm whose domains are δs
1, …,

δs
m respectively. If this is the first iteration, repeat this

step for all the states from which there are outgoing
conditional transitions. After the first iteration, priority is
given to states that are not within any type 3 loop, if
there exist such states; otherwise, the state to be split is
selected among states that are within type 3 loops.

Step2: Rearrange transitions related to the split states. If a
state s is split into n(≥2) states, s1, …, sn, remove each
transition t going from or to the state s. Then, for each
removed transition ta going from the state s to a state
sf(≠s), make n temporary transitions going from si
(1≤i≤n) to sf whose labels are the same as that of the
removed transition. For each removed transition tb going
to the state s from a state ss(≠s), make n temporary
transitions going from ss to si (1≤i≤n) whose labels are
the same as that of the removed transition. For each
removed transition tc going from and to the same state s,
make n2 temporary transitions going from each si (1≤i≤n)
to each sj (1≤j≤n) whose labels are the same as that of
the removed transition.

Step 3: For each temporary transition ti, make it permanent
or discard it depending on the following cases:
• Case A. If d(ss(ti))∩RΔ(Pi)=∅ or Qi(d(ss(ti)),RΛ(Pi))
∩d(sf(ti))=∅, discard ti.
• Case B. If d(ss(ti))⊆RΔ(Pi) and Qi(d(ss(ti)),RΛ(Pi))
⊆d(sf(ti)), make ti unconditional.
• Case C. If d(ss(ti))⊆RΔ(Pi) and Qi(d(ss(ti)),RΛ(Pi))
�d(sf(ti)) and Qi(d(ss(ti)),RΛ(Pi))∩d(sf(ti))≠∅: if d(ss(ti))
⊆RΔ(Pi’) then make ti unconditional; otherwise, make ti
conditional with the predicate Pi’, where Pi’ = d(ss(ti))
∩Qi

-1(d(sf(ti))).
Step 4: If a transition ti which was determined to be

permanent at step 3 has the event σiei carrying a
parameter pi(∈p) such that R’Λ(pi)(Λ where R’Λ(pi) is the
domain of pi which can be allowed in Λ, update the
predicate of ti to RΛ

-1(R’Λ(pi)).
Step 5: If the initial state is split, determine which the new

initial state is now among those split states. Remove all
states that cannot be reached from the initial state. If
there are no conditional transitions, terminate; otherwise,
return to step 1.

3.3 The homing tree for fast fault checking

The proposed technique uses a homing tree customized for
performing both homing and fault detection. That homing
tree is based on a tree representing an adaptive homing
sequence [12] and has additional fault detection
information. The algorithm to generate the homing tree
from an XNF-EEFSM is as follows.

Algorithm 3. Generation of the homing tree
• Input: an XNF-EEFSM M
• Output: the homing tree HM of M
• Variables: the logical state set for a node of the homing

tree St (the initial value: S), the node set of the homing
tree candidate for the extension CS (the initial value: S),
an extended event set �

Step.1: For each event εi = σiei (∈Σ) in M, and transitions tj
(1≤j≤n) which have that same event εi carrying
parameter pj, partition Λ to subdomains δs

i,k (1≤k≤mi)
such that δs

i,k = ((∩j∈X R’Λ(pj) ∩ (∩i∉X R’Λ(pj)C), X⊆{1,
…, n} and X≠∅, where R’Λ(pj)C = Λ − R’Λ(pj). Then, for
each split subdomain δs

i,k, add the event σiei(δs
i,k) to �.

Step.2: Get a node ν in CS and assign the label of that node
to St. For each event εi in � of a given type, input and
output by turns, create a leaf li originating from ν, attach
the label εi on li, and create an unlabeled node νi at the
open end of li.

Step.3: Put the label on each node νi generated at step 2 as
follows. For the leaf li terminating at νi, if its label event
εi can occur at some states in the label state set St of the
originating node ν according to M, the set of possible
present states Sf(⊆S, ≠∅) after executing that event εi
become the label of node νi. If the event εi cannot occur
at any state in St, attach the label ‘Error’ on node νi. If the
label of node νi appears for the first time and the number
of states in Sf is greater than 2, add νi to CS.

Step.4: Remove the node ν from CS. If CS is empty,
terminate; otherwise, go to step 2.

 Extension of the events to the scope of parameters
enables the fault detection for a packet trace with faulty
parameters. Terminal leaves of the homing tree are of one
type among the followings: the homed node whose label
has single state (type 1), the error node with the label
‘Error’ (type 2), and the recurrent node with the same label
as an existing node (type 3). When we trace the homing
tree with a captured packet trace, if the tracing stops at a
terminal node, we can see the result directly from its label.
Note that fault patterns can be obtained from each error
node of the homing tree. The final fault patterns can be
derived by rearranging fault patterns with consideration of
their inclusion relations. The algorithm for homing and
error detection with the homing tree is as follows.

Algorithm 4. Error detection with the homing tree

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

11

• Inputs: a homing tree HM, an event sequence Ξi(εi)
(1≤i≤n)

• Output: either ‘ErrorDetected’ or Homed(traceLocation,
currentState)

• Variable: the variable to store the location of a node in
the homing tree nj (the initial value: the head of HM)

begin
 i←0, j←1; /* initialization */
 TOP: do

i← i +1; /* get the next event */
nj+1←trace(HM, nj, εi);
j← j +1; /* move to the next node */

while (nj is not a terminal node);
switch (label(nj))

 case state s: return Homed(i,s);
 case ‘Error’: return ‘ErrorDetected’;
 otherwise:
 nj+1←search(HM, label(nj));
 goto TOP; /* repeat the tracing */
endswitch

end

 In algorithm 4, the function trace(HM, nj, εi) derives
the next node of nj by tracing the homing tree HM with the
event εi, and with the function search(HM, label(nj)) we
obtain the exiting node which has the same label as the
node nj in HM.

3.4 An example: simple connection protocol (SCP)

In order to demonstrate the working of the proposed
technique, the SCP is used which has been often used as an
example in the literature on the passive testing [9]. The
SCP makes a the quality of service (QoS) configuration
request for the connection to the lower layer upon the
request of the upper layer and informs the upper layer of
the acceptance result of that request from the lower layer.
Figure 2 shows the NF-EEFSM of the SCP which has 8
states and 13 transitions. Note that six transitions have
nonempty predicates but only two are conditions among
them.
 By algorithm 2, the XNF-EEFSM of the SCP was
generated from that NF-EEFSM as shown in Figure 3,
where the transition labels which have not been updated
were omitted for simplicity. It has 12 states and 17
transitions. Then, the homing tree of the SCP was
generated from that XNF-EEFSM by algorithm 3, which is
shown in Figure 4. It has 11 terminal nodes which include
8 homed nodes and 3 error nodes. Therefore, the homing is
accomplished by tracing 2.125 packets on average in case
of the SCP. From the homing tree, two fault patterns were
obtained as follows: (1) ?refuse !{CONcnf, connect} (2) ?
refuse !connect ?{accept, refuse}.

t1=(s1, s2, ?CONreq(qos), {}, {TryCount:=0, ReqQos:=qos, FinQos:=0})
t2=(s2, s1, !NONsupport(ReqQos), {ReqQos>1}, {})
t3=(s2, s3, !connect(ReqQos), {ReqQos<=1}, {})
t4=(s3, s4, ?refuse, {}, {})
t5=(s4, s3, !connect(ReqQos), {TryCount!=2}, {TryCount:=TryCount+1})
t6=(s4, s1, !CONcnf(-), {TryCount=2}, {})
t7=(s3, s5, ?accept(qos), {qos<=ReqQos}, {FinQos:=qos})
t8=(s3, s5, ?accept(qos), {qos>ReqQos}, {FinQos:=ReqQos})
t9=(s5, s6, !CONcnf(+,FinQos), {}, {})
t10= (s6, s7, ?Data, {}, {}), t11=(s7, s6, !data(FinQos), {}, {}),
t12= (s6, s8, ?Reset, {}, {}), t13= (s8, s1, !abort, {}, {}),

Fig. 2 The NF-EEFSM model of the SCP

t40=(s30, s40, ?refuse, {}, {}), t41=(s31, s41, ?refuse, {}, {}), t42=(s32, s42, ?refuse, {}, {})
t50=(s40, s31, !connect(ReqQos), {}, {TryCount:=TryCount+1})
t51=(s41, s32, !connect(ReqQos), {}, {TryCount:=TryCount+1})
t70=(s30, s5, ?accept(qos), {qos<=ReqQos}, {FinQos:=qos})
t71=(s31, s5, ?accept(qos), {qos<=ReqQos}, {FinQos:=qos})
t72=(s32, s5, ?accept(qos), {qos<=ReqQos}, {FinQos:=qos})
t80=(s30, s5, ?accept(qos), {qos>ReqQos}, {FinQos:=ReqQos})
t81=(s31, s5, ?accept(qos), {qos>ReqQos}, {FinQos:=ReqQos})
t82=(s32, s5, ?accept(qos), {qos>ReqQos}, {FinQos:=ReqQos})

Fig. 3 The XNF-EEFSM of the SCP

Fig. 4 The homing tree of the SCP XNF-EEFSM

 In order to estimate the fault detecting capability of
the proposed technique, we performed a simple passive
testing on the SCP with the event sequence
“?CONreq(1) !connect(1) ?refuse !CONcnf(-)” which has

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

12

been used for that purpose in [6]. Given the event
‘?CONreq(1)’, the homing is accomplished and the current
state is identified as s2 in the proposed technique. Now we
have only to trace the XNF-EEFSM of the SCP from s2.
The next event ‘!connect(1)’ is allowed in that
XNF-EEFSM and the current state is updated to s30. Then
the next event ‘?refuse’ is also allowed and s40 is now the
current state. The final event ‘!CONcnf(-)’ is not allowed
at s40 and we can detect a fault. Neither the existing
homing approach nor the original invariant approach can
detect a fault with this event sequence [6]. The backward
checking and the constrained invariant checking
approaches can detect a fault but they may require
considerable amount of on-line processing.

4. Experimental Results

For the validation of efficacy of the proposed passive
testing technique, we applied it to a real routing protocol,
the OSPF protocol in a real network environment. In this
experiment, we construct a testing system and
environment with the proposed technique, which will be
explained with the result and evaluation in this section.

4.1 The OSPF neighbor state machine

We used the OSPF neighbor state machine that maintains
connections between two neighboring OSPF routers and
exchanges link state information [10]. First we construct
the NF-EEFSM model of the OSPF neighbor state
machine. The OSPF often uses set operators for checking
the routing information it receives. Instead of an
expression with a set operator, several equivalent linear
expressions with a finite array are used in the NF-EEFSM.
Figure 5 shows the simplified NF-EEFSM of the OSPF
neighbor state machine. The complete NF-EEFSM has 8
logical states and 90 transitions.

Fig. 5 The simplified NF-EEFSM of the OSPF neighbor state machine

 There are 60 transitions with nonempty predicates but
only 16 transitions are conditional in that NF-EEFSM. We
transformed it to the equivalent XNF-EEFSM with
algorithm 2. The XNF-EEFSM of the OSPF neighbor state

machine has 21 states and 245 transitions. Then, its
homing tree was generated by algorithm 3. The homing
tree of the OSPF XNF-EEFSM has 117 terminal nodes
including 88 homed nodes and 29 error nodes.
Accordingly the homing of the OSPF XNF-EEFSM can be
accomplished after tracing 3.625 packets on average. From
that homing tree, we also obtained 21 fault patterns.

4.2 Testing system and environment

The structure of the passive tester for the OSPF protocol
we implemented with the proposed technique is depicted
in Figure 6.

Fig. 6 The structure of the implemented passive tester

 The passive tester was implemented in a laptop
computer with Linux OS. The libpcap library [13] and the
open-source tool tetherial [14] were used in our passive
testing tool so as to capture and decode protocol packets
from the network. Packets arrived at the Ethernet adapter
of the tester are copied to the internal buffer by the libpcap
libaray and OSPF packets are picked up by the filters of
the tethereal tool. From OSPF packets, the corresponding
events are created and given to the proposed algorithm
which was programmed. The proposed algorithm part has
the OSPF information required for our passive testing such
as the OSPF XNF-EEFSM and its homing tree. Given an
event, it runs the algorithms and sends the result to the
tethereal. We can see the information of the processing can
be seen with the output part based on the tethereal. If an
error is detected, the tester displays that error and
initializes itself for resuming the testing.
 Figure 7 shows the environment for our experiments.
We constructed a experimental network with two OSPF
routers, our passive tester, and an OSPF software router,
the target product, based on the open-source router
emulator Zebra [15]. In order to produce intentional errors
we slightly modified the message output part of the Zebra
ospfd tool. With that modification, two types of errors, the

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

13

message type error and the message parameter error, are
generated randomly at a given rate. That error generation
information is saved in a file for later checking.

Fig. 7 The experiment environment for passive testing

4.3 The result and evaluation

In our experiments, the tester detected all single errors of
the target product which were generated intentionally
except a few cases. In case of a series of errors, the
subsequent errors after the first one may not be detected.
Figure 8 shows a part of testing log file which displays
error detection message by the tester.

Fig. 8 A screenshot of error detection by the tester

 The tester did not detect a few errors and sometimes it
reports errors wrongly for the correct packet. We found
that that problem is due to the imperfect capture capability
of the libpcap library. It may miss a packet if the packet
exchange is very fast. According to [16], the libpcap
library shows unsatisfactory capturing power when a
packet rate is high and the packet size is small. The
PF_RING socket may be used to reduce this problem [16].
 Now we evaluate the competence of the proposed
technique by comparison with the existing techniques in
several aspects. As for the fault coverage, since the
proposed technique uses a kind of homing approach, it can

detect every faults of the target product after it
accomplishes the homing. Even before homing, it can
detect the event parameter inconsistency with the homing
tree extended to the parameter domain. Hence it has better
fault detecting capability than the original homing
approach. We guess it has the same fault coverage as the
backward checking approach which performs an
exhaustive check to find a fault. The constrained invariant
checking approach also has very good fault coverage but
that depends on the invariants it derives, which may not be
complete. The most distinctive merit of the proposed
technique is that it has lower on-line processing cost than
the existing techniques. It has the trace-level processing
complexity with the homing tree and the XNF-EEFSM of
the target protocol. Therefore it is suitable for real-time
passive testing in a heavy network traffic situation. The
cost it should pay for such advantages is a large amount of
off-line processing before testing. However that can be
automated and does not affect the passive testing itself.
Table 1 summarizes the comparison between the passive
testing techniques.

Table 1 Comparison between the passive testing techniques

 Homing Invariant
original*

Invariant
constrained*

Backward
checking Proposed

Fault
coverage good moderate very good very good very good

On-line
cost high moderate high very high low

Off-line
cost low high very high low very high

* Depends on the number of invariants used

5. Conclusions

Passive testing is very useful for fault management of a
network product which has not been tested sufficiently
during the development process. Moreover it does not
interfere with the target product in a network because it
tests the product only by observing packets going to and
from that product. There have been several studies to
obtain a good passive testing technique with high fault
detecting capability. Such a technique, however, may
require a lot of processing work during the testing, which
may affect real-time passive testing at a heavy network
traffic condition.
 This paper proposed a passive testing technique based
on an EFSM model with minimized on-line processing. It
moves a considerable amount of on-line processing work
to the off-line world. First, it transforms the NF-EFSM
model of the target protocol to the equivalent XNF-
EEFSM which is a kind of FSM where all transitions are
executable at each state without complex semantic analysis.
Then it also derives the homing tree of that XNF-EEFSM
before testing. During the testing, we can perform homing
and fault detection only by tracing that tree with a given
event sequence. After the homing is accomplished, we

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

14

have only to trace the XNF-EEFSM with that event
sequence for the fault management of the target product.
An example with the SCP and an experiment with the
OSPF neighbor state machine show that the proposed
technique has as good fault coverage as the backward
checking or the constrained invariant checking approaches
which performs a thorough check for fault detection. As
the proposed technique has lower on-line processing cost
than the existing techniques, it can be a good solution to
real-time passive testing of a network protocol product
with rapid packet exchanges.
 We are planning to apply the proposed technique to
other popular network protocol such as TCP [17] and to
make a precise comparison with the existing approaches.
We are also interested in handling the false error detection
due to missed packets and locating the faults for fault
correction.

Acknowledgment

This work was supported by the Korea Research
Foundation Grant Funded by the Korean Government
(MOEHRD) (D00568).

References
[1] ISO, "OSI Conformance Testing Methodology and

Framework", IS-9646, 1991
[2] ITU, "Specification and Description Language", ITU-T

Recommendation Z.100, 2000
[3] Hierons, R. M., Kim, T.-H., and Ural, H., "On the Testability

of SDL Specifications", Computer Networks, To Appear, 2004
[4] Hierons, R. M., and Ural, H., "UIO Sequence Based

Checking Sequences For Distributed Test Architectures",
Information and Software Technology, Vol.45, 2003,
pp.793-803

[5] M. Uyar, M. Fecko, A. Duale, P. Amer, A, Sethi, "Experience
in Developing and Testing Network Protocol Software Using
FDTs", Information and Software Technology, Vol.45, 2003,
pp.815-835

[6] D. Lee, D. Chen, R. Hao, R.E. Miller, J. Wu, X. Yin, "A
Formal Approach for Passive Testing of Protocol Data
Portions", Proceedings of the 10th IEEE International
Conference on Network Protocols (ICNP 2002), 2002.

[7] A. Cavalli, C. Gervy, S. Prokopenko, "New Approaches for
Passive Testing Using an Extended Finite State Machine

Specification", Information and Software Technology, Vol.45,
2003, pp.837-852

[8] Behrouz Tork Ladani, Baptiste Alcalde, Ana R. Cavalli,
"Passive Testing - A Constrained Invariant Checking
Approach", TESTCOM 2005, Lecture Note in Computer
Sciences, Vol.3502, pp.9-22, 2005.

[9] B. Alcalde, A. Cavalli, D. Chen, D. Khnu, D. Lee, "Network
Protocol System Passive Testing for Fault Management: A
Backward Checking Approach", FORTE 2004, Lecture Note in
Computer Sciences, Vol.3235, pp.150-166, 2004.

[10] IETF Network Working Group, "OSPF version 2", RFC
2328, Internet Society, 1998.

[11] J. Dick, A. Faive, "Automating the generation and
sequencing of test cases from model-based specifications",
Proc. of the first International Symposium on Formal Methods
in Europe (FME'93), Odense, Denmark, April 19-23, 1993,
pp.268-284.

[12] Zvi Kohavi, "Switching and Finite Automata Theory", 2nd
Edition, McGraw-Hill, Inc., 1978.

[13] Libpcap project, libpcap library, Ver. 0.8.1,
http://www.tcpdump.org, 2003.

[14] Ethereal project, tethereal, Ver.0.9.14,
http://www.ethereal.com, 2004.

[15] IP Infusion Inc., GNU Zerba, Ver.0.94, http://www.zebra.org,
2004.

[16] Luca Deri, "Improving Passive packet Capture: Beyond
Device Polling", http://citeseer.ist.psu.edu/ 695645.html, 2004.

[17] Information Sciences Inst., Univ. of Southern California,
Transmission Control Protocol, RFC 793, 1981.

Tae-Hyong Kim received the
B.S. and M.S. degrees, from Yonsei
University in 1992 and 1995,
respectively, and a Ph.D. degree in
electrical and electronic engineering
from the same university in 2001. He
was a postdoctoral fellow at the School
of Information Technology and
Engineering (SITE) at the University

of Ottawa from 2001 to 2002. He is currently an assistant
professor in the School of Computer and Software Engineering
(SCSE) at the Kumoh National Institute of Technology (KIT) in
Korea. His current research interests include software and
protocol specification, verification and testing techniques,
communication protocols, and next generation mobile networks.
He is a member of the SDL Forum Society.

