
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

40

Manuscript received March 5, 2007

Manuscript revised March 25, 2007

Efficient tree construction for
formal language query processing

 K.B. Madhuri† M. Shashi†† and P.G. Krishna Mohan†††,

†Gayatri Vidya Parishad, College of Engineering, Visakhapatnam, Andhra Pradesh, India
††Andhra University , Visakhapatnam, Andhra Pradesh, India

†††JNT University, Hyderabad, Andhra Pradesh, India

Summary
This paper describes the construction of a tree for a given
database of strings for formal language query processing. A
query can be presented in the form of a Regular Expression (RE)
or a Context-Free Grammar (CFG). A special structure for
representing the query which can be used for efficient searching
is also described. This special structure is a parse tree in the case
of a regular expression and Greibach normal form in the case of
a context-free grammar. The proposed algorithms are a
preprocessing step for search algorithms which bypass the
construction of a separate automaton for a given query.

Key words:
n–ary tree, Regular Expression, Parse Tree, Context-Free
Grammar, Greibach normal form.

1. Introduction

In computing, a regular expression, often called a pattern,
is an expression that describes a set of strings, according
to certain syntax rules. The need to search for regular
expressions arises in many text based applications, such as
document retrieval, text editing and computational biology.
Regular expressions are used by many text editors and
utilities to search and manipulate bodies of text based on
certain patterns. Many programming languages support
regular expressions for string manipulation. For example,
Perl and Tcl have a powerful regular expression engine
built directly into their syntax. The set of utilities
(including the editor ed and the filter grep) provided by
Unix distributions were the first to popularize the concept
of regular expressions.

Context-free grammars are powerful enough to describe
the syntax of most programming languages; in fact, the
syntax of most programming languages is specified using
context-free grammars. On the other hand, context-free
grammars are simple enough to allow the construction of
efficient parsing algorithms which, for a given string,
determine whether and how it can be generated from the
grammar.

Most existing literature for searching a regular expression
are usually done by converting the regular expression into
a deterministic finite automaton [4,16]. The present work
consists of two phases. In first phase, all the elements
present in the database are stored in a tree. The structure of
the tree is similar to n-ary tree where n= |Σ|, the number of
elements of fixed alphabet set. Each node of the tree
except root node corresponds to the elements of alphabet
set Σ. A technique to reduce the height of the tree is also
proposed. In second phase, algorithms for construction of
parse tree in the case of a regular expression and Greibach
normal form in the case of a context-free grammar are
described.

The rest of the paper is organized as follows. In section 2,
we discuss some of the previous work. Section 3 presents
an algorithm for construction of tree for a given set of
strings and the algorithm for reducing the height of the
tree. Section 4 contains the definition of regular
expression and construction of the parse tree for a given
regular expression. Section 5 describes the definition of
context free grammar and conversion of given grammar to
Greibach Normal Form. Section 6 contains comparative
study. Section 7 presents conclusion and future work.

2. Previous Work

Suffix trees are used extensively for different string
processing problems. Linear time algorithms for
constructing efficient suffix trees have been suggested by
Weiner[19], McCreight[14] and Ukkonen[18]. Folga et
al.[9] proposed q-gram matching algorithm which uses a
tree data structure similar to trie to store all q-grams
present in the text. The number of nodes in the tree
increases with the number of unique substrings in the text
and with the tree depth. They proposed a tree redundancy
pruning algorithm to reduce the size of the tree. The
algorithm also uses suffix links for efficient runtime
substring matching. Bedathur et al.[3] described a
buffering strategy, called TOP-Q which improves the
performance of the Ukkonen’s algorithm(which uses

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

41

suffix links) when constructing on-disk suffix trees.
Several O(n2) and O(n log n) algorithms for constructing
suffix trees are described in [11].

Hunt et al.[13] suggested a different strategy where the
authors drop the use of suffix links and use O(n2)
algorithm with a better locality of reference. Suffix arrays
have also been used as an alternative to suffix trees for
specific string matching algorithms [6,8,15]. Burkhardt et
al.[5] proposed QUASAR which uses a suffix array to
retrieve the positions of any given q-grams in the text. The
preprocessing step of QUASAR takes O(n log n) time.

Aho and Corasick[1] proposed a linear time algorithm
with multiple strings which converts strings into
Deterministic Finite Automaton(DFA). The algorithm
takes linear time to cover the entire length of the string.
Coit et al.[7] presented a fast string matching algorithm
which stores the strings in a tree similar to Aho and
Corasick. Navarro and Ranot[16] described a technique
for compact deterministic finite automaton representation
based on the properties of Glushkov’s NFA construction.
Thompson[17] described an algorithm to search a regular
expression of length m in a text of length n is to convert
the expression into a non-deterministic finite automaton
(NFA) with O(m) nodes. There is a simple algorithm
described by Aho et al.[2] which constructs NFA from a
given regular expression, R that accepts L(R) in O(|r|) time.
Hopcroft and Ullman[12] described an algorithm to
convert NFA to a NFA without ε- transitions (O|r|2) states
and to a DFA(O(2|r|) states in the worst case).

3. Construction of a tree for a given database

The tree structure provides a general framework for a
systematic study of stream data. Trees are computationally
efficient for storage, addition, and searching for sets of
strings. A database can be efficiently represented using a
tree. We construct a tree which is similar to n-ary tree
where n=|∑| , the no. of elements of fixed alphabet.

3.1 Node Structure

Each node of the tree has the following fields.

i) Information Field:
This field contains information in the form
of characters.

ii) Pointers to the child nodes:

The pointers that hold the addresses of child
nodes (the no of children is at max is n).

iii) Flag :
 Flag is used to recognize whether the
particular string obtained by concatenating the
strings from the root up to the current node in
the left to right sequence is present as an
element in the database or not. The flag of a
node is 1 if and only if the string upto the
corresponding node is contained in the
database. The node structure is given in Fig 1.

 Fig.1. Node Structure

 3.2 Construction of a tree

Let us consider an input alphabet ∑ = {x, y} and the
database strings ‘xy’ and ‘yx’ are taken. The construction
of the tree begins by creating a root node. Then the strings
are added one after the other. The pictorial representation
of initial tree is given in fig 2. The algorithm for
construction of a tree is given in fig. 3.

null x-ptr y-ptr 0

 Fig. 2: Construction of initial tree for the strings “xy” and “yx”

struct node /* Structure of node */
{ char *info;
 struct item **child;
 int *flag;
}

 Information child 1-
ptr

child 2-
ptr

….. child
n-ptr

 flag

x null y-ptr 0 y x-ptr null 0

y null null 1 x null null 1

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

42

Procedure build_tree(char data[],struct item *p)
#define NOT_A_SYMBOL -10
//Data is the database string
//*p is the Tree Pointer
{
 for all the characters in the string data
 {
 k=position of current character in the alphabet, if character
 is not present in the alphabet then store
 NOT_A_SYMBOL;
 if(k==NOT_A_SYMBOL)
 Print current character is not in the alphabet and return

 if(p->child[k]==null)
 {
 p->child[k]=create new node;
 p=p->child[k];
 Allocate memory to information field
 p->info[0]=data[i]; /* Data[i] is the ith character
 in the string data */
 Allocate memory to boolean field
 p->flag[0]=0;
 Initialize the child node addresses of node p to
 null
 }
 else
 p=p->child[k];
 }
 p->flag[0]=1;
}

Fig. 3 : Algorithm for construction of a tree

3.3 The algorithm for reducing the height of the tree

The maximum height of the tree will be the length of the
longest string contained in the database. Outdegree of a
node means the number of child nodes coming from that
particular node. If the outdegree of a parent node is 1 then
the child node can be merged to parent node. The process
of merging is as follows: The child node’s information
field is appended with the current node’s information field.
The child node’s flag is appended with the current node’s
flag. The child pointers of the current node are replaced
with the child pointers of the current node’s child node.
By reducing the height of the database tree the number of
function calls for searching the database tree is reduced in
case of database containing long strings.

In the previous example (fig. 2) the outdegree of nodes at
level 1 is one so they can be combined along with the
child nodes so as to yield the tree with decreased height as
in fig. 5. The algorithm for reducing the height of a tree is
given in fig. 4.

Fig. 4: Algorithm for reducing the height of the tree

null x-ptr y-ptr 0

Fig. 5: Tree for the strings “xy” and “yx” after reducing the height

void decrease_db_tree(struct item *p)
 // Input : tree from algorithm (fig. 3)
 // Output : tree after reducing its height
 // *p is the current pointer in the tree
{
 outdegree=1
 While (outdegree==1)
 {
 outdegree=0
 for all the child node addresses find the number of child
 node pointers that do not have NULL and store that
 value in outdegree
 if(outdegree==1)
 {
 merge child node to the parent node
 // append its information field
 // append its flag
 /* update the child node addresses of the parent with
 that of child */
 }
 else if (outdegree > 1)
 {
 for all the child node pointers that are not NULL
 call decrease_db_tree(p→child[i])
 }
 else return ;
 }
 }

xy null null 01 yx null null 01

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

43

4. Regular Expressions

4.1 Definition of Regular Expression

Regular expressions can be expressed in terms of formal
language theory. Regular expressions consist of constants
and operators that denote sets of strings and operations
over these sets, respectively. Given a finite alphabet Σ, the
following constants are defined:

• (empty set) Ø denoting the set Ø

• (empty string) ε denoting the set {ε}

• (literal character) a in Σ denoting the set {a} and
the following operations:

• (concatenation) RS denoting the set { αβ | α in R
and β in S }. For example {"ab", "c"}{"d", "ef"}
= {"abd", "abef", "cd", "cef"}.

• (alternation) R|S denoting the set union of R and
S.

• (Kleene star) R* denoting the smallest superset of
R that contains ε and is closed under string
concatenation. This is the set of all strings that
can be made by concatenating zero or more
strings in R.

For example, {"ab", "c"}* = {ε, "ab", "c", "abab", "abc",
"cab", "cc", "ababab", ... }.

The above constants and operators form Kleene algebra.

Examples

 a|b* denotes {ε, a, b, bb, bbb, ...}

(a|b)* denotes the set of all strings consisting of
any number of a and b symbols, including the
empty string b*(a|b*)* the same

ab*(c|ε) denotes the set of strings starting with a,
then zero or more bs and finally optionally a c.

(aa|ab(bb)*ba)*(b|ab(bb)*a)(a(bb)*a|(b|a(bb)*ba)(a
a|ab(bb)*ba)*(b|ab(bb)*a))* denotes the set of all
strings which contain an even number of ‘a’ s and
an odd number of ‘b’ s.

4.2 Construction of Parse Tree
Regular Expression is taken as input and binary

parse tree is constructed. It is of the following form shown
in the fig 6.

 Fig. 6. Parse tree representation of regular expression

The operators + (Union) and . (Concatenation) will have
two children and * (Kleene Star) will have one left child
only. The algorithm for construction of a parse tree for a
given regular expression is given in fig. 7.

Struct parse_tree_node /* Parse Tree node structure */
{
 Char *dat;
 Struct parse_tree_node *left;
 Struct parse_tree_node *right;
}

Input : Regular Expression is taken
Output: Parse Tree Representation of Regular Expression
 Algorithm:
Step 1 : Scan the RE from left to right and check whether all
 the symbols present in the RE match with the symbols
 of fixed alphabet.
Step 2 : Scan the RE from left to right and check whether the
 brackets are matched or not
Step 3: If it is no in any of the above two cases then it means
 user entered wrong RE and go to Step 5 Else Go to
 Step 4
Step 4 : Initialize a global variable top=0
 Create a global array ‘a’ to store the nodes of parse
 tree
 Scan the entire RE from left to right

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

44

Fig. 7: Algorithm for construction of a parse tree for a given regular

expression

5 Context-Free Grammar (CFG)

5.1 Definition of CFG

Just as any formal grammar, a Context-Free Grammar G
can be defined as a 4-tuple:

G = (Vt,Vn,P,S) where

• Vt is a finite set of terminals

• Vn is a finite set of non-terminals

• P is a finite set of production rules

• S is an element of Vn, the distinguished starting
non-terminal.

• elements of P are of the form

A language L is said to be a Context-Free Language
(CFL) if and only if there is a Context-Free Grammar G
such that L=L(G). More precisely, it is a language whose
words, sentences and phrases are made of symbols and
words from a Context-Free Grammar.

Example

The grammar G = ({S}, {a, b}, S, P), with productions

 S → aSa,
 S → bSb,
 S → є,

 is context-free. A typical derivation in this grammar is

 S => aSa =>aaSaa => aabSbaa => aabbaa

This makes it clear that the Language obtained from the
above grammar is of the following form

 L(G) = {wwR : w ε {a, b}* }.

5.2 Steps for conversion of given context-free
grammar into Greibach normal form

Conversion of given grammar into Greibach normal form
is done by the following steps

Step1 : Elimination of Useless symbols
 Step2 : Elimination of null productions
 Step3 : Elimination of Unit Productions
 Step4 : Conversion to Chomsky like normal form
 Step5 : Conversion to Greibach normal form

 If current character is not ‘)’
 If current character is ‘(’
 Store ‘(’ in temporary string
 else if current character is an alphabet
 Store the part of RE from current
 character till it encounters an operator in
 some temporary string
 else if current character is an operator
 Store the operator in temporary string
 end if
 call insert()
 else
 call delete()
 end if
end
Step 5: Stop

void insert()
{
 node1=create a new node of parse tree
 node1->dat=Allocate memory equal to the size of
 temporary string obtained from the main algorithm
 node1->left=NULL;
 node1->right=NULL;
 a[top++]= node1;
}
void delete1()
{ node2=a[top-1];
 node2->left=a[top-2];
 node2->right=NULL;
 top=top-3;
 a[top++]=node2;
}
void delete()
{
 if (operator which is stored in temporary string is '*') then
 delete1();
else if(operator which is stored in temporary string is’+’or ‘.’)
then
 { node2=a[top-2];
 node2->left= a[top-3];
 node2->right=a[top-1];
 top=top-4;
 a[top++]=node2;
 }

 end if

}

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

45

5.2.1 Elimination of Useless symbols

Let G=(Vn, Vt, P, S) be a Grammar. A symbol X is useful
if there is a derivation S α Xβ w for some α, β and
w, where w is in Vt

* . Otherwise X is uselessness. There
are two aspects to usefulness. First some terminal string
must be derived from X and second, X must occur in some
string derivable from S. These two conditions are not,
however, sufficient to guarantee that X is useful, since X
may occur only in sentential forms that contain a non
terminal form which no terminal string can be derived.
The algorithm for elimination of useless symbols is
described in fig. 8 which is described in [11].

oldv =Ø
newv={A| A w for some w in Vt

* }

while (oldv != newv)
 {
 oldv= newv
 newv=oldvỤ{A| A β for some β in (Vt Ụ oldv) * }
 }
 Vn’ = newv

Fig. 8 : Algorithm for Elimination of useless symbols

Example
 Consider G = ({S, A, B}, {a,b}, P, S) with
productions

S A,
A aA | ε,
B bA,

The non terminal B is useless and so is the production B

 bA. Although B can derive a terminal string, there is no
way we can achieve S xBy.

5.2.2. Elimination of null productions

One kind of production that is sometimes undesirable is
one in which the right side is the empty string.

Any production of a context free grammar of the form
A ε is called a null production.

Any non-terminal A for which the derivation A ε is
possible is called nullable.

The algorithm for elimination of null productions is
described in fig. 9.

Fig. 9 : Algorithm for Elimination of null productions

5.2.3 Elimination of Unit Productions

Definition : Any production of a context free grammar of
the form A B, where A,B Є Vn is called a Unit
Production.

To eliminate the unit productions we proceed as follows
Given a CFG G = (Vn, Vt,P,S), construct CFG G1 = (Vn,
Vt, P’,S): The algorithm for elimination of unit
productions is explained in fig. 10.

Fig. 10 : Algorithm for Elimination of Unit productions

5.2.4 Conversion to Chomsky Like normal form

Given grammar is said to be in Chomsky normal

1. Include all nonunit productions of P into a new set
 of productions P’
2. Suppose that A B, for A,B in Vn
3. Add to P’all the productions of the form
 A α , where B α is a non unit production of B

The set Vn of all nullable non-terminals of G is found,
using the following steps:

Step 1: For all productions A ε, put A into Vn
Step 2: Repeat the following step until no further non-
terminals are added to Vn

 For all productions
 B A1A2A3…An
 Where A1, A2,…An are in Vn, put B into Vn.

Once there set Vn has been found, we are ready to
construct P’. To do so, we look at all the productions in P
of the form A x1x2…xm, where m>=1,

where each xi Є (Vn U Vt). For each such production of P,
we put into P’ that production as well as all those
generated by replacing nullable variables with ε in all
possible combinations. For example, if xi and xj are both
nullable, there will be one production in P’ with both xi
replaced with ε, one in which xj is replaced with ε, and
one in which both xi and xj are replaced with ε. There is
one exception: if all xi‘s are nullable, the production A
ε is not put into P’.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

46

form(CNF) if for every production in the grammar is as
follows:

A → BC
 or
A → a

Where, ‘A’, ‘B’ & ’C’ are any non terminals and ‘a’ is any
terminal.

However, by converting to CNF, the numbers of
productions are increased leading to performance
degradation.

So, we have made a minor change here and converted the
grammar into the following form:

A → X
 or
A → a

Where, ‘A’ is any non terminal, ‘a’ is any terminal and
‘X’ is a sequence of non-terminals. The algorithm for
conversion to Chomsky Like normal form is given in fig.
11.

 Fig. 11 : Conversion to CNF equivalent

Example

Given grammar with productions

S CDa,
C aab,
D Cc,

Equivalent grammar to Chomsky Like normal form is

S CDBa ,
C BaBaBb,
D CBc,
Ba a,
Bb b,
Bc c.

5.2.5 Conversion to Greibach normal form

In Greibach normal form [10], we put restrictions not on
the length of the right sides of the production, but on the
productions in which terminals and nonterminals appear.

Definition : A context-free grammar is said to be in
Greibach normal form if all the productions have the form

A→ aX,

Where a Є Vt and X Є Vn*

The algorithm described below (fig. 12) converts a
grammar presented as a list of production rules into its
Greibach normal form.

Step1: Eliminate all useless symbols, null productions and
 unit productions
Step2: Convert the grammar into Chomsky like normal
 form.
Step3: Rename all the non terminals as follows
 If S,A,B……are non terminals, then they are
 renamed as A1,A2,A3…..respectively.
Step4: If a production such that the subscript of non
 terminal on left hand side is greater than or equal
 to the subscript of first non terminal on RHS is
 present then apply Lemma1 or Lemma2
 respectively.
 Refer Fig. 13 for Lemma1 and Fig. 14 for Lemma2.

Fig. 12 : Conversion to Greibach normal form

Fig. 13: Lemma 1

Construct a new set of productions P’ from P as follows
1. All the productions in P of the form A→a and
 A→X are included
2. Consider A→x1 x2 x3 x4 x ……..xn where each xi
 may be a terminal or non terminal. If xi is a
 terminal then add a new production C → xi
 to P’ and C to Vn’. Replace xi with C in all
 productions.
3. Repeat the for all remaining productions.

Let, G={Vn,Vt,P,S} be CFG.
Let, A→BX be a production in P where X be a set of non
terminals and B→β1 | β 2, | β 3……| β s be the set of all B
productions. Where β i can have the following forms

(i) Sequence of non terminals
(ii) A terminal

Define P1 = (P – {A→Bγ}) U { A→γ βi | 1 <= i <= s}
Then G1 ={ Vn, Vt,P1,S} is a context free grammar equivalent to
G.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

47

Let, G={ Vn, Vt,P,S} be given CFG.
Let, A→AX1 | AX2 | AX3 | AX4,……, | AXn
Where Xn is the set of non terminals and A→a1 | a2 | a3 | a4 |
……| am be the remaining productions. Where ai, 1 <= i <= m is a
terminal.

Let G′={ Vn U {Z},Vt,P′,S} be the CFG formed by adding the
variable Z to Vn and replacing all A-productions by the following
productions.
1. A → ai
 A → ai Z
 For 1 ≤ i ≤ m
2. Z → Xi
 Z → Xi Z
 For 1 ≤ i ≤ n
 Then L(G’) = L(G)

Fig. 14: Lemma 2

6. Comparative Study

 In our search algorithms query string is
presented in the form of regular expression and context
free grammars. If the query is a regular expression the
main problems with the traditional approaches are
described below. There is a simple algorithm described by
Aho et al.[2] which constructs a NFA from a given regular
expression that accepts L(R) in O(|r|) time. Hopcroft and
Ullman [12] described an algorithm to convert NFA to a
NFA without epsilon transitions (O|r|2) states and to a
DFA(O(2|r|) states in the worst case).Thus if DFA is
followed both the construction time and number of states
may become exponential in the size of Regular Expression.
In our proposed algorithm we bypass the construction of
DFA there by eliminating the above mentioned problem
and we have constructed the parse tree whose height will
increase if we give a regular expression of large size.

7. Conclusion and future work

In this paper a tree is constructed similar to n-ary tree
where n = |Σ|, the number of elements of fixed alphabet for
a formal language query processing. An algorithm is
described to reduce the height of the tree. A query can be
presented in the form of a Regular Expression (RE) or a
Context-Free Grammar (CFG). A binary parse tree is
constructed if query is presented in the form of a regular
expression and Greibach normal form is described in the
case of a context-free grammar. In future work, we are
developing search algorithms that use these
representations. The algorithms bypass construction of a
separate automaton for a given query.

Acknowledgments

The Authors are thankful to Dr. D. Ravi, Ph.D (IISc,
Bangalore), Professor in Computer Science & Engineering,
Gayatri Vidya Parishad College of Engineering for his
valuable guidance and constant support in completing this
work. The assistance of G.Phanindra, K.V.V.N.Ravi
Shankar and P.Deepak Sreenivas in the implementation of
algorithms was appreciated.

References

[1] A.V. Aho and M.J. Corasick, “Efficient String

Matching: An Aid to Biblographic Search”,
Communications of the ACM, vol. 18, no. 6, pp. 333-
340, 1975.

[2] A.V. Aho, J.E. Hopcraft and J.D. Ullman, “The
Design and Analysis of Computer Algorithms”,
Addison-Wesley, Reading, Mass., 1974.

[3] S.J. Bedathur and J.R. Harista, “Engineering a Fast
Online Persistent Suffix Tree Construction”, ICDE,
pp. 720-731, 2004.

[4] R.A. Baeza-Yates, “Fast Text Searching for Regular
Expression or Automaton Searching on Tries”,
Journal of the ACM, vol.43, no. 6, pp. 915-936, 1996.

[5] S. Burkhardt, A. Crauser, P. Ferragina, H. Lenhof, E.
Rivals and M. Vingron, “q-gram based database
searching using a suffix array(QUASAR)”, Proc. of
the Third Ann. Int’l Conf. on Research in
Computational Molecular Biology, pp. 77-83, 1999.

[6] L.L. Cheng, D.W.L. Cheung and S.M. Yiu,
“Approximate String Matching in DNA Sequences”,
Proc. of the Eighth International Conference on
Database Systems for Advanced Applications, pp.
303-310, 2003.

[7] J. Coit, S. Staniford and J. McAlerney, “Towards
Faster String Matching for Intrusion Detection or
Exceeding the speed of Snort”, Proc. DARPA
Information Survivability Conf. and
Exposition(DISCEX II ’02), vol. 1, pp. 367-373, 2001.

[8] A. Crauser and P. Ferragina, “A Theoretical and
 Experimental Study on the Construction of Suffix

Arrays in External Memory”, Algorithmica, 32(1):1-
35, 2002.

[9] P. Folga and W. Lee, “q-Gram Matching Using Tree
 Models”, IEEE Trans. Knowledge and Data Engg.
 Vol. 18, No. 4, pp. 433-447, 2006.
[10] S.A. Greibach, “A New Normal-Form Theorem for

Context-Free Phrase Structure Grammars”, JACM,
Vol. 12, No. 1, pp. 42-52, 1965.

[11] D. Gusfield, “Algorithms on Strings, Trees and
 Sequences - Computer Science and Computational

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

48

 Biology”, Cambridge University Press, 1997.

[12] J.E. Hopcroft and J.D. Ullman, “Introduction to
 Automata Theory, Languages and Computation”,
 Addison-Wesley, Reading Mass., 1979.
[13] E. Hunt, M.P. Atkinson and R.W. Irving, “A
 Database Index to Large Biological sequences”, The
 VLDB J. 7(3), pp. 139-148, 2001.
[14] E.M. McCreight, “A Space-Economical Suffix Tree
 Construction Algorithm”, J.ACM, vol. 23, no. 2, pp.
 262-272, 1976.
[15] G. Navarro, R.A. Baeza-Yates and J. Tarhio,
 “Indexing Methods for Approximate String
 Matching”, IEEE Data Engineering Bulletin,
 24(4):19-27, 2001.
[16] G. Navarro and M. Raffinot, “Compact DFA
 Representation for Fast Regular Expression Search”,
 Algorithm Engineering, pp. 1-12, 2001.
[17] K. Thomson, “Regular Expression Search Algorithm”,

communications of the ACM, 11(6): pp. 419-422,
1968.

[18] E. Ukkonen, “On-Line Construction of Suffix

Trees”,
 Algorithmica, vol. 14(3), pp. 249-260, 1995.
[19] P. Weiner, “Linear Pattern Matching Algorithms”,
 Proc. of the 14th Annual Symposium on Foundations
 of Computer Science, IEEE Computer Society, pp. 1-

11, 1973.

K.B.Madhuri received the M.Sc degree
in Applied Mathematics from Sri
Venkateswara University in 1992 and
also she got M.Tech. degree in
Computer Science and Technology from
Andhra University in 1999. She is
pursing Ph.D from Jawaharlal Nehru
Technological University. Presently She
is working as Associate Professor in

Computer Science and Engineering at Gayatri Vidya Parishad,
College of Engineering, Visakhapatnam, Andhra Pradesh, India.
Her research interests include Data Mining and Pattern
Recognition. She is an associate member of Institute of
Engineers(India).

M.Shashi received her B.E. Degree in
Electrical and Electronics and M.E.
Degree in Computer Engineering with
distinction from Andhra University. She
received Ph.D in 1994 from Andhra
University and got the best Ph.D thesis
award. She is a professor in Computer
Science and Systems Engineering at

Andhra University, Andhra Pradesh, India. She received AICTE
career award as young teacher in 1996. She is a co-author of the
Indian Edition of text book on “Data Structures and Program
Design in C” from Pearson Education Ltd. She published
technical papers in National and International Journals. Her
research interests include Data Mining, Artificial intelligence,
Pattern Recognition and Machine Learning. She is a life member
of ISTE, CSI and a fellow member of Institute of
Engineers(India).

P.G.Krishna Mohan received the
B.Tech Degree in Electronics and
Communication Engineering and M.E.
Degree in Communication Systems
from IIT, Roorkee. He received Ph.D
from IISc, Bangalore. His Research
interests include Signal Processing and
Communications. He has 19 papers
published to his credit in various

National/International Conferences and Journals. He had been
invited to give Lectures (Kalman Filtering and its Applications)
at NSTL during September 1999. At Present he is a Member of
Board of Studies(BOS), JNTU in the discipline of ECE .He is
also the Chairman BOS of ECE Department in Autonomous
JNTU College of Engineering, Hyderabad. He has completed 3
sponsored projects aided by MHRD & AICTE. He has 28 years
of Research and Teaching and research experience. He is a
Fellow member of IE (India) and IETE and a Life Member of
ISTE.

