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Summary 
This paper describes the construction of a tree for a given 
database of strings for formal language query processing. A 
query can be presented in the form of a Regular Expression (RE) 
or a Context-Free Grammar (CFG). A special structure for 
representing the query which can be used for efficient searching 
is also described.  This special structure is a parse tree in the case 
of a regular expression and Greibach normal form in the case of 
a context-free grammar. The proposed algorithms are a 
preprocessing step for search algorithms which bypass the 
construction of a separate automaton for a given query. 
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1. Introduction 

In computing, a regular expression, often called a pattern, 
is an expression that describes a set of strings, according 
to certain syntax rules. The need to search for regular 
expressions arises in many text based applications, such as 
document retrieval, text editing and computational biology.  
Regular expressions are used by many text editors and 
utilities to search and manipulate bodies of text based on 
certain patterns. Many programming languages support 
regular expressions for string manipulation. For example, 
Perl and Tcl have a powerful regular expression engine 
built directly into their syntax. The set of utilities 
(including the editor ed and the filter grep) provided by 
Unix distributions were the first to popularize the concept 
of regular expressions. 

Context-free grammars are powerful enough to describe 
the syntax of most programming languages; in fact, the 
syntax of most programming languages is specified using 
context-free grammars. On the other hand, context-free 
grammars are simple enough to allow the construction of 
efficient parsing algorithms which, for a given string, 
determine whether and how it can be generated from the 
grammar. 

 

 

Most existing literature for searching a regular expression 
are usually done by converting the regular expression into 
a deterministic finite automaton [4,16]. The present work 
consists of two phases. In first phase, all the elements 
present in the database are stored in a tree. The structure of 
the tree is similar to n-ary tree where n= |Σ|, the number of 
elements of fixed alphabet set. Each node of the tree 
except root node corresponds to the elements of alphabet 
set Σ. A technique to reduce the height of the tree is also 
proposed. In second phase, algorithms for construction of 
parse tree in the case of a regular expression and Greibach 
normal form in the case of a context-free grammar are 
described. 

The rest of the paper is organized as follows. In section 2, 
we discuss some of the previous work. Section 3 presents 
an algorithm for construction of tree for a given set of 
strings and the algorithm for reducing the height of the 
tree. Section 4 contains the definition of regular 
expression and construction of the parse tree for a given 
regular expression. Section 5 describes the definition of 
context free grammar and conversion of given grammar to 
Greibach Normal Form. Section 6 contains comparative 
study. Section 7 presents conclusion and future work.  

2. Previous Work 

Suffix trees are used extensively for different string 
processing problems. Linear time algorithms for 
constructing efficient suffix trees have been suggested by 
Weiner[19], McCreight[14] and Ukkonen[18]. Folga et 
al.[9]  proposed q-gram matching algorithm which uses a 
tree data structure similar to trie to store all q-grams 
present in the text. The number of nodes in the tree 
increases with the number of unique substrings in the text 
and with the tree depth. They proposed a tree redundancy 
pruning algorithm to reduce the size of the tree. The 
algorithm also uses suffix links for efficient runtime 
substring matching. Bedathur et al.[3] described a 
buffering strategy, called TOP-Q which improves the 
performance of the Ukkonen’s algorithm(which uses 
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suffix links) when constructing on-disk suffix trees. 
Several O(n2) and O(n log n) algorithms for constructing 
suffix trees are described in [11]. 

Hunt et al.[13] suggested a different strategy where the 
authors drop the use of suffix links and use O(n2) 
algorithm with a better locality of reference. Suffix arrays 
have also been used as an alternative to suffix trees for 
specific string matching algorithms [6,8,15]. Burkhardt et 
al.[5] proposed QUASAR which uses a suffix array to 
retrieve the positions of any given q-grams in the text. The 
preprocessing step of QUASAR takes O(n log n) time. 

Aho and Corasick[1] proposed a linear time algorithm 
with multiple strings which converts strings into 
Deterministic Finite Automaton(DFA). The algorithm 
takes linear time to cover the entire length of the string. 
Coit et al.[7] presented a fast string matching algorithm 
which stores the strings in a tree similar to Aho and 
Corasick. Navarro and Ranot[16] described a technique 
for compact deterministic finite automaton representation 
based on the properties of Glushkov’s NFA construction. 
Thompson[17] described an algorithm to search a regular 
expression of length m in a text of length n is to convert 
the expression into a non-deterministic finite automaton 
(NFA) with O(m) nodes. There is a simple algorithm 
described by Aho et al.[2] which constructs NFA from a 
given regular expression, R that accepts L(R) in O(|r|) time.  
Hopcroft and Ullman[12] described an algorithm to 
convert NFA to a NFA without ε- transitions (O|r|2) states 
and to a DFA(O(2|r| ) states in the worst case). 

3. Construction of a tree for a given database  

The tree structure provides a general framework for a 
systematic study of stream data. Trees are computationally 
efficient for storage, addition, and searching for sets of 
strings. A database can be efficiently represented using a 
tree. We construct a tree which is similar to n-ary tree 
where n=|∑| , the no. of elements of fixed alphabet. 

 
3.1 Node Structure 
 
Each node of the tree has the following fields.  
 

i) Information Field:  
This field contains information  in the form 
of characters.  
 

ii) Pointers to the child nodes: 

The pointers that hold the addresses of child 
nodes (the no of children is at max is n).  

iii) Flag : 
 Flag is used to recognize whether the 
particular string obtained by concatenating the 
strings from the root up to the current node in 
the left to right sequence is present as an 
element in the database or not. The flag of a 
node is 1 if and only if the string upto the 
corresponding node is contained in the 
database. The node structure is given in Fig 1. 

 
 
 
 
 
 

                       
 
 
 

                       Fig.1. Node Structure 
 
 3.2 Construction of a tree 
 
Let us consider an input alphabet ∑ = {x, y} and the 
database strings ‘xy’ and ‘yx’ are taken. The construction 
of the tree begins by creating a root node. Then the strings 
are added one after the other. The pictorial representation 
of initial tree is given in fig 2. The algorithm for 
construction of a tree is given in fig. 3. 
 
 
 
 

null x-ptr y-ptr 0 

  
 
  

 
 

 
 

     Fig. 2:  Construction of initial tree for the strings “xy” and “yx” 
 
 

struct node  /* Structure of node */ 
{ char *info; 
 struct item **child; 
 int *flag; 
} 

  Information child  1-
ptr 

child  2-
ptr 

….. child  
n-ptr 

  flag

x null y-ptr 0 y x-ptr null 0

y null null 1 x null null 1



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007 
 

 

42 

 

Procedure build_tree(char data[],struct item *p) 
#define NOT_A_SYMBOL -10 
//Data is the database string 
//*p is the Tree Pointer 
{ 
       for all the characters in the string data 
     { 
       k=position of current character in the alphabet, if character     
       is not present in the alphabet then store   
       NOT_A_SYMBOL; 
         if(k==NOT_A_SYMBOL) 
         Print current character is not in the alphabet and return 
          
            if(p->child[k]==null) 
  {  
                     p->child[k]=create new node; 
   p=p->child[k]; 
   Allocate memory to information field 
                      p->info[0]=data[i];    /* Data[i] is the ith character   
                                                          in the string data */  
                      Allocate memory to boolean field 
                      p->flag[0]=0; 
                      Initialize the child node addresses of node p to  
                     null 
  } 
           else 
  p=p->child[k]; 
      } 
 p->flag[0]=1; 
} 

Fig. 3 : Algorithm for construction of a tree 

3.3 The algorithm for reducing the height of the tree 
 

The maximum height of the tree will be the length of the 
longest string contained in the database. Outdegree of a 
node means the number of child nodes coming from that 
particular node. If the outdegree of a parent node is 1 then 
the child node can be merged to parent node. The process 
of merging is as follows:  The child node’s information 
field is appended with the current node’s information field. 
The child node’s flag is appended with the current node’s 
flag. The child pointers of the current node are replaced 
with the child pointers of the current node’s child node.  
By reducing the height of the database tree the number of 
function calls for searching the database tree is reduced in 
case of database containing long strings.    
 
In the previous example (fig. 2) the outdegree of nodes at 
level 1 is one so they can be combined along with the 
child nodes so as to yield the tree with decreased height as 
in fig. 5. The algorithm for reducing the height of a tree is 
given in fig. 4. 
 

 

 
Fig. 4: Algorithm for reducing the height of the tree 

 
 
 
 

 

null x-ptr y-ptr 0 

  
 
  

 
 
 
 

Fig. 5: Tree for the strings “xy” and “yx” after reducing the height 
 

 
 
 
 
 
 

void decrease_db_tree(struct item *p) 
 // Input : tree from algorithm (fig. 3) 
 // Output :  tree after reducing its height 
 // *p is the current pointer in the tree 
{ 
     outdegree=1  
     While (outdegree==1) 
      { 
         outdegree=0 
         for all the child node addresses find the number of child  
         node pointers that do not have   NULL  and store that  
         value in outdegree 
         if(outdegree==1)  
         { 
      merge child node to the parent node  
              // append its information field 
             // append its flag 
             /* update the child node addresses of the parent with  
                that of child */ 
          } 
         else if (outdegree > 1) 
          { 
             for all the child node pointers that are not NULL 
               call  decrease_db_tree(p→child[i] )   
           } 
                  else return ; 
    } 
 } 
 

xy null null 01 yx null null 01
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4. Regular Expressions 

4.1 Definition of Regular Expression 

Regular expressions can be expressed in terms of formal 
language theory. Regular expressions consist of constants 
and operators that denote sets of strings and operations 
over these sets, respectively. Given a finite alphabet Σ, the 
following constants are defined: 

• (empty set) Ø denoting the set Ø 

• (empty string) ε denoting the set {ε} 

• (literal character) a in Σ denoting the set {a} and 
the following operations: 

• (concatenation) RS denoting the set { αβ | α in R 
and β in S }. For example {"ab", "c"}{"d", "ef"} 
= {"abd", "abef", "cd", "cef"}. 

• (alternation) R|S denoting the set union of R and 
S. 

• (Kleene star) R* denoting the smallest superset of 
R that contains ε and is closed under string 
concatenation. This is the set of all strings that 
can be made by concatenating zero or more 
strings in R. 

For example, {"ab", "c"}* = {ε, "ab", "c", "abab", "abc", 
"cab", "cc", "ababab", ... }. 

The above constants and operators form Kleene algebra. 

Examples 

        a|b* denotes {ε, a, b, bb, bbb, ...}  

(a|b)* denotes the set of all strings consisting of 
any number of a and b symbols, including the 
empty string b*(a|b*)* the same 

ab*(c|ε) denotes the set of strings starting with a, 
then zero or more bs and finally optionally a c. 

(aa|ab(bb)*ba)*(b|ab(bb)*a)(a(bb)*a|(b|a(bb)*ba)(a
a|ab(bb)*ba)*(b|ab(bb)*a))* denotes the set of all 
strings which contain an even number of ‘a’ s and 
an odd number of ‘b’ s. 

 
 
 

4.2 Construction of Parse Tree 
Regular Expression is taken as input and binary 

parse tree is constructed. It is of the following form shown 
in the fig 6. 

 
  Fig. 6. Parse tree representation of regular expression 

 

The operators + (Union) and . (Concatenation) will have 
two children and * (Kleene Star) will have one left child 
only. The algorithm for construction of a parse tree for a 
given regular expression is given in fig. 7. 

  

Struct parse_tree_node  /* Parse Tree node structure */ 
{ 
    Char *dat; 
    Struct parse_tree_node *left; 
    Struct parse_tree_node *right; 
} 
 
Input : Regular Expression is taken 
Output: Parse Tree Representation of Regular Expression 
             Algorithm: 
Step 1 : Scan the RE from left to right and check whether all   
             the symbols present in the RE match with the symbols  
             of fixed alphabet. 
Step 2 : Scan the RE from left to right and check whether the  
             brackets are matched or not 
Step 3:  If it is no in any of the  above two cases then it means  
             user entered wrong RE and  go to Step 5   Else Go to   
             Step 4 
Step 4 :  Initialize a global variable top=0 
              Create a global array ‘a’ to store the nodes of parse 
              tree 
               Scan the entire RE from left to right   
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Fig. 7: Algorithm for construction of a parse tree for a given regular 

expression 

 

 

 

5 Context-Free Grammar (CFG) 

5.1 Definition of CFG  

Just as any formal grammar, a Context-Free Grammar G 
can be defined as a 4-tuple: 

G = (Vt,Vn,P,S) where 

• Vt is a finite set of terminals 

• Vn is a finite set of non-terminals 

• P is a finite set of production rules 

• S is an element of Vn, the distinguished starting 
non-terminal. 

• elements of P are of the form 

 
A language L is said to be a Context-Free Language 
(CFL) if and only if there is a Context-Free Grammar G 
such that L=L(G). More precisely, it is a language whose 
words, sentences and phrases are made of symbols and 
words from a Context-Free Grammar.  

Example 

The grammar G = ({S}, {a, b}, S, P), with productions 

  S → aSa, 
  S → bSb, 
  S → є, 

  is context-free. A typical derivation in this grammar is 

 S => aSa =>aaSaa => aabSbaa => aabbaa 

This makes it clear that the Language obtained from the 
above grammar is of the following form  

  L(G) = {wwR : w ε {a, b}* }. 

5.2 Steps for conversion of given context-free 
grammar into Greibach normal form 

Conversion of given grammar into Greibach normal form 
is done by the following steps 

Step1 : Elimination of Useless symbols 
    Step2 : Elimination of null productions 
    Step3 : Elimination of Unit Productions 
     Step4 : Conversion to Chomsky like normal form 
     Step5 : Conversion to Greibach normal form 

            If current character is not  ‘)’  
                      If current character is ‘(’ 
                                Store ‘(’ in temporary string 
                       else if current character is an alphabet 
                                Store the part of RE from current  
                                character till it encounters an operator in  
                                some temporary string 
                       else if current character is an operator 
                                Store the operator in temporary string 
                       end if  
                       call insert() 
             else 
                      call delete() 
             end if 
end 
Step 5: Stop 
 
void insert() 
{  
  node1=create a new node of parse tree  
  node1->dat=Allocate memory equal to the size of   
                temporary string obtained from  the main algorithm 
  node1->left=NULL; 
  node1->right=NULL; 
  a[top++]= node1;  
} 
void delete1() 
{ node2=a[top-1]; 
 node2->left=a[top-2]; 
 node2->right=NULL; 
 top=top-3; 
 a[top++]=node2; 
} 
void delete() 
{   
 if (operator which is stored in temporary string is '*') then  
  delete1(); 
else if(operator which is stored in temporary string is’+’or ‘.’) 
then 
 { node2=a[top-2]; 
  node2->left= a[top-3]; 
  node2->right=a[top-1]; 
  top=top-4; 
  a[top++]=node2; 
 } 

 end if 

} 
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5.2.1 Elimination of Useless symbols 
 
Let G=(Vn, Vt, P, S) be a Grammar. A symbol X is useful 
if there is a derivation S α Xβ w for some α, β and 
w, where w is in Vt

* . Otherwise X is uselessness. There 
are two aspects to usefulness. First some terminal string 
must be derived from X and second, X must occur in some 
string derivable from S. These two conditions are not, 
however, sufficient to guarantee that X is useful, since X 
may occur only in sentential forms that contain a non 
terminal form which no terminal string can be derived. 
The algorithm for elimination of useless symbols is 
described in fig. 8 which is described in [11]. 
 
oldv =Ø 
newv={A| A  w for some w in Vt

* } 

while (oldv != newv) 
  { 
    oldv= newv 
    newv=oldvỤ{A| A  β for some β  in (Vt Ụ oldv) *  } 
 } 
 Vn’ = newv  

 
Fig. 8 : Algorithm for Elimination of useless symbols 

 
Example 
  Consider G = ({S, A, B}, {a,b}, P, S) with 
productions  
    

S  A, 
A  aA | ε, 
B  bA, 

 
The non terminal B is useless and so is the production B 

 bA. Although B can derive a terminal string, there is no 
way we can achieve S xBy. 
 
 
5.2.2. Elimination of null productions 
 
One kind of production that is sometimes undesirable is 
one in which the right side is the empty string. 
 
Any production of  a context free grammar of the form  
A  ε  is called a null production. 
 
Any non-terminal A for which the derivation A  ε  is 
possible is called nullable. 
 
The algorithm for elimination of null productions is 
described in fig. 9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9 : Algorithm for Elimination of null productions 

 
5.2.3 Elimination of Unit Productions 

 
Definition : Any production of a context free grammar of 
the form A  B, where A,B Є Vn is called a Unit 
Production. 
 
To eliminate the unit productions we proceed as follows 
Given a CFG G = (Vn, Vt,P,S), construct CFG G1 = (Vn, 
Vt, P’,S): The algorithm for elimination of unit 
productions is explained in fig. 10. 

 
Fig. 10 : Algorithm for Elimination of Unit productions 

 
5.2.4 Conversion to Chomsky Like normal form   

 
Given grammar is said to be in Chomsky normal 

 
1. Include all nonunit productions of P into a new set  
    of productions P’ 
2. Suppose that  A B, for A,B in Vn 
3. Add to P’all the productions of the form 
    A α , where B α is a non unit production of B 

The set Vn of all nullable non-terminals of G is found, 
using the following steps: 
 
Step  1: For all productions A  ε, put A into Vn 
Step 2: Repeat the following step until no further non-
terminals are added to Vn 

 
 For all productions  
   B  A1A2A3…An 
 Where A1, A2,…An are in Vn, put B into Vn. 

 
Once there set Vn has been found, we are ready to 
construct P’. To do so, we look at all the productions in P 
of the form  A  x1x2…xm, where  m>=1, 
 
where each xi Є (Vn U Vt). For each such production of P, 
we put into P’ that production as well as all those 
generated by replacing nullable variables with ε in all 
possible combinations. For example, if xi and xj are both 
nullable, there will be one production in P’ with both xi 
replaced with ε, one in which xj is replaced with ε, and 
one in which both xi and xj are replaced with ε. There is 
one exception: if all xi‘s are nullable, the production A  
ε is not put into P’. 
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form(CNF) if for every production in the grammar is as 
follows: 

A → BC 
    or 
A → a 
 

Where, ‘A’, ‘B’ & ’C’ are any non terminals and ‘a’ is any 
terminal. 

 
However, by converting to CNF, the numbers of 
productions are increased leading to performance 
degradation. 

 
So, we have made a minor change here and converted the 
grammar into the following form: 

 
A → X 
     or 
A →  a 

 
Where, ‘A’ is any non terminal, ‘a’ is any terminal and 
‘X’ is a sequence of non-terminals. The algorithm for 
conversion to Chomsky Like normal form is given in fig. 
11. 

 
          Fig. 11 : Conversion to CNF equivalent 

Example 
 
Given grammar with productions 
 

S  CDa, 
C  aab, 
D  Cc, 

 
Equivalent grammar to Chomsky Like normal form is  

 
S    CDBa , 
C   BaBaBb, 
D   CBc, 
Ba  a, 
Bb  b, 
Bc  c. 

 
5.2.5 Conversion to Greibach normal form   
           
In Greibach normal form [10], we put restrictions not on 
the length of the right sides of the production, but on the 
productions in which terminals and nonterminals appear.       

 
Definition : A context-free grammar is said to be in 
Greibach normal form if all the productions have the form  

   
A→ aX, 

Where a Є Vt and X Є Vn* 
 

The algorithm described below (fig. 12) converts a 
grammar presented as a list of production rules into its 
Greibach normal form. 

 
Step1: Eliminate all useless symbols, null productions and    
            unit productions 
Step2: Convert the grammar into Chomsky like normal  
            form. 
Step3: Rename all the non terminals as follows 
            If S,A,B……are non terminals, then they are  
            renamed as A1,A2,A3…..respectively.  
Step4: If a production such that the subscript of non  
            terminal on left hand side is greater than or equal    
            to the subscript of first non terminal on RHS is  
            present then apply Lemma1 or Lemma2  
            respectively. 
    Refer Fig. 13 for Lemma1 and Fig. 14 for Lemma2. 

 
Fig. 12 : Conversion to Greibach normal form 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13: Lemma 1 
 

Construct a new set of productions P’ from P as follows  
1. All the productions in P of the form A→a and   
        A→X  are included  
2. Consider A→x1 x2 x3 x4 x ……..xn where each xi  
        may be a terminal or non terminal. If  xi is a   
        terminal then add a new production C → xi  
        to P’ and C to Vn’. Replace xi  with C in all     
        productions. 
3.     Repeat the for all remaining productions. 

Let, G={Vn,Vt,P,S} be CFG.  
Let, A→BX be a production in P where X be a set of non 
terminals and B→β1 | β 2, | β 3……| β s be the set of all B 
productions. Where β i  can have the following forms 

(i) Sequence of non terminals 
(ii) A terminal 

Define P1 = (P – {A→Bγ}) U { A→γ βi | 1  <= i <= s} 
Then G1 ={ Vn, Vt,P1,S} is a context free grammar equivalent to 
G. 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007 
 

 

47

 

Let, G={ Vn, Vt,P,S} be given CFG.   
Let, A→AX1 |  AX2 |  AX3 |  AX4,……, |  AXn 
Where Xn is the set of non terminals and A→a1 | a2 |  a3 |  a4 | 
……|  am be the remaining productions. Where ai, 1 <= i <= m is a 
terminal. 
 
Let G′={ Vn U {Z},Vt,P′,S} be the CFG formed by adding the 
variable Z to Vn and replacing all A-productions by the following  
productions. 
1. A → ai 
        A → ai Z 
       For 1 ≤ i ≤ m 
2. Z → Xi 
        Z → Xi Z 
 For 1 ≤ i ≤ n 
 Then L(G’) = L(G) 

 
Fig. 14: Lemma 2 

 

6. Comparative Study 

               In our search algorithms query string is 
presented in the form of  regular expression and context 
free grammars. If the query is a regular expression the 
main problems with the traditional approaches are 
described below. There is a simple algorithm described by 
Aho et al.[2] which constructs a NFA from a given regular 
expression that accepts L(R) in O(|r|) time. Hopcroft and 
Ullman [12] described an algorithm to convert NFA to a 
NFA without epsilon transitions (O|r|2) states and to a 
DFA(O(2|r| ) states in the worst case).Thus if DFA is 
followed both the construction time and number of states 
may become exponential in the size of Regular Expression. 
In our proposed algorithm we bypass the construction of 
DFA there by eliminating the above mentioned problem 
and we have constructed the parse tree whose height will 
increase if we give a regular expression of large size. 

 
7. Conclusion and future work 
 
In this paper a tree is constructed similar to n-ary tree 
where n = |Σ|, the number of elements of fixed alphabet for 
a formal language query processing. An algorithm is 
described to reduce the height of the tree. A query can be 
presented in the form of a Regular Expression (RE) or a 
Context-Free Grammar (CFG). A binary parse tree is 
constructed if query is presented in the form of a regular 
expression and  Greibach normal form is described in the 
case of a context-free grammar. In  future work, we are 
developing search algorithms that use these 
representations. The algorithms bypass construction of a 
separate automaton for a given query.  
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