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Summary 
In this paper, we propose a Hopfield neural network based 
algorithm for efficiently solving the minimum graph bisection 
problem. In the proposed method, the internal dynamics of the 
neuron is modified to permit temporary increases in the energy 
function in order to avoid local minima. The proposed method is 
tested on a large number of random graphs. The simulation 
results show that the proposed algorithm is better than previous 
works for solving the minimum graph bisection problem. 
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1. Introduction 

The minimum graph bisection problem is to divide the 
vertices set  V  of graph ),( EVG =  into two equal-size 
subsets 

0G  and 1G  such that the number of edges 
connecting vertices in 

0G  to vertices in 1G  is minimized. 
The graph bisection problem is an important problem in 
printed circuit board layout and communication networks 
[1] [2]. This problem is NP-complete [3]. Since NP-
complete problems cannot be solved in polynomial time, 
at least at present, approximate algorithms are used to 
approximate the optimal solutions. Several approximate 
algorithms have been proposed [4][5][6] for the minimum 
graph bisection problem. The benchmark algorithm for 
graph bisection is due to Kernighan and Lin [7]. By 
combining parallel hill climbing [8], Kernighan-Lin 
algorithm [7] and seed-growth algorithm [9], Marks et al. 
proposed a new heuristic algorithm called PHC/SG+KL 
[10]. This algorithm is the best existing heuristic for the 
graph bisection problem. However the graph bisection 
problem is an NP-complete problem [1], no tractable 
algorithm is known for solving it. 
For solving such combinatorial optimal problems, the 
Hopfield neural networks [11] also constitute an important 
avenue. These networks contain many simple computing 
elements (or artificial neurons) while cooperatively 
traverse the energy surface defined by )(υE  to find a local 

or global minimum. The simplicity of the neurons makes it 
promising to build them in large numbers to achieve high 
computing speeds by way of massive parallelism. Almost 
every type of combinatorial optimization problems has 
tackled by neural network [12]. In this paper, we introduce 
an improved Hopfield neural network algorithm for 
efficiently solving the minimum graph bisection problem. 
A large number of randomly generated undirected graphs 
are considered in simulations. The proposed algorithm is 
compared with the original Hopfield neural network and 
the best existing heuristic PHC/SG+KL [10]. The 
experimental results show that the proposed algorithm 
produces better solutions than the original Hopfield neural 
network and the PHC/SG+KL [10]. 

2. Problem Formulation 

Let ),( EVG =  be an undirected graph, where V  is the set 
of vertices and E  is the set of edges. The edge from vertex 
i  to vertex j  is represented by Eeij ∈ . Figure 1 shows an 
example of undirected 6-vertex graph. The minimum 
graph bisection problem is to find a partition of V  into 
two nonempty, disjoin sets  

0G  and 1G , such that 

VGG =∪ 10
, Φ=∩ 10 GG , 

10 GG = , and the number of 

edges connecting vertices in 
0G  to vertices in 

1G  (the size 
of cut set, notated cut(

0G ,
1G ) is minimized. 

 

 

Figure 1.  (a) a 6-vertex graph, and (b) a solution of (a). 
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In general, an N-vertex minimum graph bisection problem 
can be mapped onto a Hopfield network with N neurons. 
Usually, the output variable yj for neuron #i have the range 

10 ≤≤ iy  and is a continuous and monotone creasing 
function of the instantaneous input xi to neuron #i. It is 
proved by Hopfield [11] that the network converges to a 
minimum where the output of every neuron is at or near a 
0 or 1. Thus, we can use neuron #i (i=1,…,N) to expresses 
the i-vertex, and the output (yi ≈1 or yi ≈0) of neuron #i 
(i=1,…,N) to expresses that the i-vertex is partitioned into 
the subset 

0G  or 1G , respectively. The constraint condition 
can be expressed by follow: 
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where dij is 1 if edge (i, j) exists in the given graph, 0 
otherwise, and is a symmetric matrix. Thus, the energy 
function of the Hopfield neural network for the minimum 
graph bisection problem is given by : 
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For the Hopfield network, the standard energy function is 
as follow: 

CyhyywE
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where ijw ),,1,( Nji 　　　L=  is weight of a synaptic 

connection from the j# neuron to the i# one. ih  is external 
input of neuron i#  and is also called threshold. C is 
constant. 
For the minimum graph bisection problem, the resulting 
weight and threshold can now be obtained by equating the 
energy specified by Eq.(4) with the energy as in Eq.(3). 
The weight of the Hopfield network is as follows: 

( )12 −= ijij dw                                                            (5) 

And the threshold is 
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In Eq. (6), the notation ijδ  is 1 if ji = , 0 otherwise. 
It is proved that the state of the Hopfield neural network 
converges to a stable state with the energy taking on lower 
and lower values [11]. It can be viewed as seeking a 
minimum in a mountainous terrain. Thus, we can find the 
solution to the minimum graph bisection problem simply 
by observing the stable state that the Hopfield neural 
network reaches. However, it is usually difficult to find 
optimal solution because the inherent local minimum 
problem of the Hopfield neural network. Furthermore, 

there is no effective method to lead the network to reach 
the global minimum from a local minimum. 

3. An Improved Neuron Dynamics 

Consider the Hopfield neural network with the energy 
function of Eq. (4). The motion equation is composed of 
the partial derivation term of the energy function in the 
gradient descent method. 
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The internal potential ix  of neuron i#  is updated 
according to the following equation: 

t
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The output iy  of neuron i#  is updated from ix  using the 
following non-linear function called the neuron model: 

( )( )Tx
i

iey /11 −+=                                                      (9) 
In Hopfield’s work [11] it was shown that the above 
internal dynamics for a network with symmetric 
connection )( jiij ww =  always lead to a convergence to 

stable states. Unfortunately, because of the difficulties 
posed by local minima, the stable states are often far from 
the optimal solutions [12]. For efficiently solving the 
minimum graph bisection problem, we now propose an 
improved Hopfield neural network algorithm which can 
escape from local minima. In the proposed algorithm, the 
internal dynamic of neuron is modified as follow: 
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where 1=Δt  and ),( tyiiα  is defined as follows: 
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where t is the updating iteration, λ  is a positive constant 
which specify the rate of increase of ),( tyiiα . Evidently, 

),( tyiiα  increases from 0 to 1 in the updating proceeds. 
The modified internal dynamic behavior means that the 
change of the internal potential in neuron i#  is now 
controlled by a new parameter ),( tyiiα  which represents 
the stabilization of neuron i# . When the state of the 
neuron is far from 0 and 1 or the network is in initial stage 
of updating (far from stable state), the stabilization of the 
neuron is very low ( ),( tyiiα  is near 0). Thus, the internal 
potential of neuron ( )1( +txi ) is mainly determined by the 
weight state of other neurons (the second term of Eq. (10)). 
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 As the state of the neuron approaches 0 or 1, the 
stabilization of the neuron will increase. Finally the 
stabilization of the neuron ( ),( tyiiα ) will come close to 1, 
and the internal dynamic behavior of the neuron will tend 
toward the original updating mode, which guarantees that 
the network always converges to a stable state. 
Now we show that the proposed method allows initial 
increases in energy which become less important as 
updating proceeds, until finally the network tends toward a 
steepest descent algorithm. Considering the energy 
function of Eq. (4), the change of energy caused by the 
change in the states of neurons is 
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Adding ( ))()1( tyty ji +  and ( ))()1( tyty ji +−  to the first term 
of Eq. (12), and simplifying, we have: 
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In the asynchronous parallel mode, we can suppose that at 
updating time t , the state of neuron k#  is changed. Thus 
we have 0)1( ≠+Δ tyk  and 0)1( =+Δ tyi  for ki ≠ . 
Thus, Eq. (13) can be reduced to 
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Using kiik ww = , Eq. (14) can be rewritten as 
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Using Eq. (10), Eq. (16) can be rewritten as follows: 
( ) ( ) ( ) ( )[ ]txtytxtyE kkkkk ,11 α−+⋅+Δ−=Δ     (17) 

Considering the case ( ) ( )1+> txtx kk , according to the 
characteristic of the sigmoid function, we have 

( ) 01 <+Δ tyk                                                            (18) 
Moreover ( ) ( )1+> txtx kk , if ( )tykk ,α  is sufficiently 
small, it is possible that 

( ) ( ) ( )txtytx kkkk ⋅>+ ,1 α                                   (19) 

Using Eq. (18) and (19), we can know from Eq. (17) that 
when ( )tykk ,α  is small, 0>ΔE  is possible in the case of 

( ) ( )1+> txtx kk . The possibility of an increase of energy 
becomes smaller as ( )tykk ,α  increases until finally the 
network tends toward a steepest descent algorithm. Thus 
we can say that the proposed method which uses Eq. (10) 
and (11) provides a mechanism for escaping from local 
minima and converging to a good stable state by 
introducing a stabilization factor ( )tykk ,α  for neurons. 

4. Simulation results 

The proposed algorithm for the minimum graph 
bisection problem was experimented on PC Station to a 
large number of randomly generated graphs defined in 
terms of two parameters, N  and ρ . The parameter N  
specifies the number of vertices in the graph, the 
parameter ρ , 10 << ρ , specifies the probability that any 
given pair of vertices constitute an edge. In simulations, 
N  and ρ  is defined as follows: 

•  Vertices (N) : 80, 100, 150, 200, 250, 300. 
•  Probability ( ρ ): 0.05, 0.15, 0.25. 
In Eq. (11), λ  is introduced to control the increase 

speed of stabilization of neuron ( ),( tyiiα ). Furthermore, 
because when ),( tyiiα  approaches 1 the network will tend 
to convergence to a stable state, we can see that λ  also 
control the convergence speed of the network. The smaller 
is the constants, the faster the network convergences to a 
stable state. For practical purpose we chose these 
constants that are as small as possible. This offers the most 
convergence. But too smaller values will cause the 
network fall into local minima easily. We found λ  around 
15 worked very well in the minimum graph bisection 
problem. Besides, the temperature parameter T  in the 
sigmoid function was set to 2.5. 

In order to give some evidence that the proposed 
algorithm behaves very well in practice, we directly 
compared the performance of the proposed algorithm with 
the original Hopfield network and the heuristic algorithm 
PHC/SG+KL [10]. For each of instances, 100 simulation 
runs were performed. Information on the test graphs as 
well as all results found by the proposed algorithm and 
other algorithms were summarized in Table 1. From the 
table, we can see that the proposed method was not only 
much better than the original Hopfield network but also 
superior to the best existing heuristic algorithm in terms of 
the solution quality. 
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Table 1: Computational results 

Vertices Probabirity Edges Hopfield network PHC/SG+K
L Proposed algorithm 

80 0.05 158 34 26 26 
80 0.15 474 164 151 151 
80 0.25 790 305 292 292 

100 0.05 247 63 51 50 
100 0.15 742 266 247 247 
100 0.25 1235 494 473 473 
150 0.05 558 159 139 139 
150 0.15 1676 651 605 605 
150 0.25 2790 1165 1113 1113 
200 0.05 995 326 274 274 
200 0.15 2985 1178 1128 1128 
200 0.25 4975 2113 2044 2045 
250 0.05 1556 522 464 463 
250 0.15 4668 1939 1823 1820 
250 0.25 7778 3406 3272 3271 
300 0.05 2242 786 711 712 
300 0.15 6727 2849 2683 2681 
300 0.25 11212 4937 4795 4790 

 

5. Conclusions 

We have proposed an efficient algorithm for solve the 
minimum graph bisection problem, and showed its 
effectiveness by simulation experiments. The proposed 
algorithm is based on an improved Hopfield neural 
network in which the internal dynamics is modified to 
permit temporary increases in the energy function in order 
to help the network escape from local minima and increase 
the exchange of information between neurons. In order to 
verify the proposed algorithm we tested it with a large 
number of randomly generated examples. The proposed 
algorithm was compared with original Hopfield network 
and the best existing heuristic algorithm. The simulations 
results showed that the proposed method could provide 
better solutions than the previous works.  
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