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Summary 
Neural networks (NNs) are able to give solutions to 
complex problems in digital communications due to their 
nonlinear processing, parallel distributed architecture, 
self-organization, capacity of learning and generalization, 
and efficient hardware implementation. 

The pre-distortion being at the center of interest of this 
paper is one of the possible methods to compensate for 
HPA nonlinearities. The principle of pre-distortion is to 
distort the HPA input signal by an additional device called a 
pre-distorter whose characteristics are the inverse of those 
of the amplifier. 

In this paper, we propose a pre-distortion scheme based 
on a feed-forward neural network. Efficient High Power 
Amplifiers (HPA) present non-linearities generating 
amplitude and phase distortions on the HPA output signal; 
the proposed pre-distortion technique will reduce theses 
distortions.  

The performance of the proposed scheme is examined 
through computer simulations for 16-QAM OFDM signals. 
It is confirmed that the proposed pre-distorter with neural 
network consisting with one hidden layer and nine neurons 
gives a good performance improvement of quality of the 
transmission. Specifically, improvements in the reduction 
of the bit error rate (BER) are demonstrated for the 
travelling wave tube (TWT) HPA model. 
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1. Introduction 

The satellite communications field is getting an enormous 
attention in the wake of third generation (3-G) and future 

fourth generation (4-G) mobile communication systems 
challenges [1, 2]. Currently, when the telecommunications 
industries are planning to deploy the 3-G system worldwide 
and researchers are coming up with tons of new ideas for 
the next-generation wireless systems, a load of challenges 
are yet to be fulfilled. These include high data rate 
transmissions, multimedia communications, seamless 
global roaming, quality of service (QoS) management, high 
user capacity, integration and compatibility between 4-G 
components, and so forth. To meet these challenges, 
presently researchers are focusing their attention in the 
satellite domain by considering it an integrated part of the 
so-called information superhighway [2, 3, 4, 5]. As a result, 
a new generation of satellite communication systems is 
being developed to support multimedia and Internet-based 
applications. 
 These satellite systems are developed to provide 
connectivity between remote terrestrial networks, direct 
network access, Internet services using fixed or mobile 
terminals, and high data rate transmissions [1, 6]. In all 
these research and development scenarios, 
non-geostationary satellite networks are considered to 
provide satellite-based mobile multimedia services for 
their low propagation delay and low path loss [1,2, 5, 7, 8]. 

Among the most important challenges of satellite 
mobile communications are spectral and power efficiencies. 
Several researchers are working to make use of spectrally 
efficient modulation schemes, such as M-QAM 
modulations, for satellite transmissions. Power efficiency 
represents the ability of a system to reliably transmit 
information at a lowest practical power level. To reach high 
power efficiency, satellite communication systems are 
equipped with high power amplifiers (HPAs), which, 
unfortunately, cause nonlinear distortions to the transmitted 
signal. The distortions are particularly significant when 
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multilevel modulation schemes are employed, such as 
M-QAM (M > 4) modulations [4, 6, 10]. Because of this 
nonlinear problem, early satellite systems have been 
restricted to simple (and, therefore, spectrally inefficient) 
modulation schemes, such as binary phase shift keying 
(BPSK) modulation, which are less sensitive to the 
nonlinear problem than spectrally efficient modulation 
schemes [6]. 

Given the above facts, this paper proposes a non-linear 
distortion compensation technique for 16-QAM OFDM 
signals. The Pre-distorter is based on a feed-forward neural 
network (FNN); due to the universal approximation 
property of neural networks. Recently, the FNN has been 
applied to modeling non-linear memory less channels such 
as traveling wave tube amplifier (TWTA) and also allow 
efficient approximation of the inverse TWT transfer 
function.  

The remainder of this paper is organized as follows. In 
section 2, we present a description of the proposed system. 
In section 3 and 4 we describe the non-linear model for high 
power amplifier and the pre-distortion scheme respectively. 
Section 6 presents and discusses the simulation results. The 
last section shows the conclusions. 
 
2. System description 
 

 
 

Fig. 1 Block diagram of the transmission system 
 
The serial input bit stream consists of binary data {0,1}uk∈  

that are mapped to the symbol constellation, resulting in a 
complex streamCk .  This complex is applied in serial to 

parallel converted to produce the sequence applied to the 
inverse fast Fourier transform (IFFT) process, which is a 
fast implementation of an inverse discrete Fourier 
transform (IDFT). This signal is extended by a guard 
interval called cyclic prefix (CP).  The nth transmit OFDM 
block is given by: 
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The choice of the frequency spacing 1f
T

Δ =  

guarantees that the sub-carriers are orthogonal over the 
elementary symbol time T  and the total OFDM block 
duration is T T Ts g= + .  Finally, samples of IFFT 

output, s n , are Digital to analog converted and 
transmitted. 
The modulated signal ( )x t  is first pre-distorted and 
nonlinearly amplified and then propagated over an AWGN 
channel corrupted by additive white Gaussian noise.  
           
3. Non linearity models 

Power amplifiers are typically the most power-hungry 
components of RF transceivers. The design of PAs, 
especially for linear, low-voltage operations, remains a 
difficult problem defying an elegant solution. Two type’s 
amplifiers are mostly used in communication: TWT and 
SSPA. TWT is mostly used for high power satellite 
transmitters while SSPA is used in many other applications 
including mobile transmitters because of its small size. 
Several previous papers used saleh’s model to analyze the 
HPA [6,7]. 

The complex output of RF with non-linear distortion 
can be expressed as: 

  
{ }( )( ) ( )

( ) ( ) yu ty
y

j t
z t f u t e

α φ+
⎡ ⎤= ⎣ ⎦     (3) 

where ( )yu t  and ( )y tα  are the modulus and phase of 
the input signal. The measured AM/AM and AM/PM for 
TWT is well presented by saleh’s model [3] as: 
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While SSPA’s AM/AM and AM/PM can be captured 
by[8,9]: 
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Here maxA  is the maximum output amplitude and the 

parameter p controls the smoothness of the transition from 
the linear region to the limiting region [9]. 
Among the models available, here we will concentrate in 
describing the well-known Saleh Model for TWT 
memory-less HPAs, which is in fact the most commonly 
used in the literature and thence will be applied later in our 
Pre-distorter model. 

In the expressions above, we choose to set the signal 
gain term to αA = 2, βA = 1, αφ = 4, βφ = 9. This represents 
a typical TWT model used in satellite communications [13]. 
so that the input saturation voltage 1/s AA β=  and the 
maximum output amplitude 

        [ ]{ }max max ( ) / 2A sA f x t Aα= =         (6) 

The corresponding AM/AM and AM/PM curves so 
scaled are depicted in the following figure. 

 
Fig. 2 The AM/AM and AM/PM characteristics of an HPA 

The non-linear distortion of a TWT amplifier (TWTA) 
depends on the back-off. The input back-off (IBO) for the 
pre-distorted amplifier is defined as 
 

            ,1 0 lo g1 0
,
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       (7) 

where ,Psat i is the saturation input power and ,Pavg i  is 

the average input power of the TWTA. 

The pre-distortion technique connects a pre-distorting 
amplifier in front of the main amplifier. Compared to the 
compressive main amplifier, this additional amplifier has 
the opposite output distortion characteristic, i.e. its 
nonlinearity is expansive, not compressive. These two 
nonlinear distortions cancel each other when summed, 
resulting in a linear and distortion-free output from the main 
RF amplifier. 

 
Fig. 3 Simplified pre-distorter for linearization of HPA 

As in figure 3, the purpose of pre-distortion is to find 
another function 1( , )f ψ− , so that the overall effect of 
signal output will be linear as, 

                  ( ) ( )z t Cx t≈                
(8) 

The theoretical formulation of the pre-distortion is obtained 
by replacing the saturation input amplitude 

1/s AA β= in the expression (4).  This gives  
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Whence we can find an AM/AM inverse transfer function 

[ ]1 .−f  by solving (9) for 1( ( ))u f f u−= . Some 
straightforward algebraic steps lead us to directly obtain: 
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Where it is important to note that this inversion will be valid 
only within the interval { }0 / 2A su Aα≤ ≤ . This defines a 
restriction for the input range of the theoretical AM/AM PD. 
However the invertibility of the complex HPA function will 
not be necessarily restricted to the same limits since they 
account only for the AM/AM invertiblity. 

The ideal AM/PM PD characteristic reated to the 
AM/AM theoretical inverse given in (10) is much simpler 
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to obtain but not as trivial as taking (4) and inverting its 
sign. 
Thus, letting [ ].ψ  denote the AM/PM characteristic of 
the PD block, we have: 
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−
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Wherein the AM/PM correction requires that: 

       1( ) −⎡ ⎤⎡ ⎤= − ⎣ ⎦⎢ ⎥⎣ ⎦
u f uxxψ φ                (13) 

Is a general expression for the AM/PM pre-distortion 
function [ ].ψ  that compensates for the amplitude to 

phase distortion [ ].φ  introduced by an HPA whose 

AM/AM nonlinear characteristic [ ].f  has an exact 

inverse counterpart [ ]1 .−f . Thence, with these conditions 
fulfilled for the example of figure 3, it is true that: 

 ( )( ) ( ) ( )( )
≈

-1j + (u + f ux x x-1z = f f u e xx
α ψ φ

  (14) 

The corresponding AM/AM and AM/PM transfer 
characteristics of pre-distorter, valid for the normalized 
Saleh’s HPA model in the interval{ }0 1, , is shown in the 
following figure. 

 

Fig. 4 AM/AM et AM/PM theoretical pre-distortion 
characteristics for the Saleh model 

 
4. Neural Network pre-distortion scheme 

The basic idea proposed is to identify the TWT 
inverse transfer function with a feed-forward neural 
network. Therefore, by using this structure, we aim at 
obtaining direct estimation of the amplitude and phase 
nonlinearities. 

The following figure shows the detailed scheme of 
pre-distortion system. 

5.1. Training and generalization 

 
Fig. 5 Block diagram for training of the PD with TWTA 

Training: where NN1 aims to identify the TWTA inverse 
transfer function, the error sent to “learning algorithm” bloc 
that reacts on coefficients of NN1. 
Generalization: coefficients of the NN1 are recopied on the 
NN2 that achieves the pre-distortion. 

5.2. Neural networks structure 
The multi-layer [7] feed forward neural network (MLNN), 
called also multi-layer perceptron (MLP), is one of the 
most popular neural network architectures used in digital 
communications. Its basic unit, the neuron (Fig. 6), is 
composed of a linear combiner and an activation function. 
The neuron receives inputs from other processors. The 
linear combiner output is the weighted sum of the inputs 
plus a bias term. The activation function gives then the 
neuron output: 
 

( )z g d=  
where     

1

N
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where zj is the jth input value of the neuron, wj the 
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corresponding synaptic weight, and b the bias term. {wj} 
and {b} form the free parameters of the neuron.  

 
Fig. 6. The neuron 

 
A multi-layer neural net (see Fig. 7) is composed of 
neurons connected to each other.  

 
Fig. 7. A multi-layer neural network: The network has two 
layers, two input signals, one hidden Layers, 2 neurons in 
the output layer, and 2 output signals. (Indexes R and I refer 
to the real and imaginary parts, respectively) 
 

The input information is processed from the input layer 
to the output layer. The network inputs are the inputs of 
the first layer. The outputs of the neurons in one layer form 
the inputs to the next layer. The network outputs are the 
outputs of the output layer. The layer index is denoted by 
i . liz  is the output of neuron i of layer l . ljiw  is the 

weight that links the output  i ljz −  to neuron i of layer 

l . N(l) is the number of neurons in layer l . With these 
notations, the output liz of neuron (l, i) is given by: 
 
                 ( )li liz g d=                         (15) 
where 

            
( 1)

1
1
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li lji l j li
j

d w z b
−
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5.3. Learning algorithm 

The neural network is used to identify the TWTA 
inverse transfer function using supervised learning. At 
each iteration, a pair of TWTA input - TWTA output 
signals is presented to the neural network. We use a 
Levenberg Marquardt (LM) algorithm [10] to train the 
NN. 
In the LM method, the change ( )Δ in the weights ( )w  
is obtained by solving 

                   
1
2

EαΔ = − ∇                    (17) 

where E  is the mean-squared network error 
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aN is the number of examples, ( )ky z is the network 

output corresponding to the example kz , and ky is the 
desired output for that example. 
The elements of the α matrix are given by 
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1 1
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where Ns is the number of outputs of the network and 

ijδ  is the learning rate. 
Starting from initial random weights, both α and 
∇E are evaluated, and solving (17), a correction for the 
values of the weights is obtained ( )( 1) ( )+ = +Δw n w n . 
This is known as an LM learning cycle. Each iteration of 
this cycle reduces the error until the desired goal is 
achieved or a minimum is found. The λ variable in (19) 
is a parameter that is adjusted at each cycle, according to 
the error evolution. If it is very small the α matrix 
becomes an approximation to the Hessian, and the method 
is the inverse-Hessian method. If 1λ , the method 
becomes analogous to steepest descent. 
It can be easily seen from (17) that, if m is the number of 

weight, we have to calculate and store the 2m elements 
of the α matrix at each iteration and find its inverse, 

which needs about 
3m operations to be performed. This 

fact makes the LM method very expensive both in memory 
and number of operations required when the network to be 
trained has a significant number of adaptive weights.  

5.4. Constitution of learning base  
To constitute a learning base to Neural Network, a 

simulation of an OFDM system with a TWT amplifier is 
required. For every OFDM symbol simulated, the pair of 
TWTA input – TWTA output symbols is stored in the base. 
TWTA output will be provided as an input of the neural 
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network in training phase, TWTA input will be given like 
goal of NN. So the network will learn the inverse function 
of non-linearities. 

Several parameters are important for the generation of 
the training basis. At first, features of the OFDM 
modulation: indeed parameters as the number of carriers, 
the binary coding to symbol and the model of the amplifier 
are able all to modify behavior of the no-linearity, and 
therefore the function that must achieve the network of 
neurons. In presentations of results, these parameters will 
be indicated systematically.     

5. Discussion of Results 

This architecture has been tested successfully on a 
64-carrier OFDM system. To train the network, a learning 
base has been created using MATLAB. The OFDM system 
simulated uses 64 carriers, a 16-QAM modulation, and a 
channel with Additive White Gaussian Noise (AWGN). 
The Signal to Noise Ratio (SNR) used is Eb/N0=13dB. 
20000 OFDM symbols are used as learning base, and 20000 
others are used as validation set. Then the trained neural 
network is simulated in a complete OFDM system, using 
MATLAB.  The Bit Error Rate (BER) is used to measure 
the system performance. 

The OFDM followed by a pre-distorter was first trained 
the parameters of the pre-distorter were estimated using 

200Na =  samples of amplitude (.)A  16QAM 

modulation.  
The neural pre-distorter consists of two input and two 

output (R and I). Different architectures have been tested, 
with first of all a hidden layer of 2 neurons, then while 
increasing the number of neurons progressively, before 
testing a network with two hidden layers, also while 
increasing the number of neurons progressively on the two 
layers. Functions of hidden layer activation are tangents 
hyperbolic, and those of output layers are linear.  

The Fig. 8 shows the performance of each pre-distorter 
on OFDM systems at OBO = 5.31dB. The OBO can be 
defined as  

 

            max
10[ ] 10log

avg

POBO dB
P

=           (17) 

 
where maxP and avgP  represent the maximum output 

power and average signal power at the HPA output. 
PD(2,x,2) represents a neural network with a hidden layer 
of x neurons, PD(2,x-y,2) neural network with two hidden 
layers of x and y neurons. 

 
Fig. 8. Bit Error Rate of the OFDM system with pre-distorter 
vs. SNR: a QAM16 modulation is used on 64 carriers and 
OBO=5.31dB. 

All neural pre-distorter arrive to reduce the BER in 
relation to the one without any pre-distorter. The one that 
gets the best performances is the PD(2,9,2). Fig. 9 shows 
the training curve versus iteration number for 16-QAM 
OFDM symbols and a TWT amplifier with an 
OBO=5.31dB. The feed-forward neural pre-distorter was 
configured as PD(2,9,2), the algorithm of training (here a 
Levenberg Marquardt), only 200 training iterations and the 
MSE was 1.32201e-007, resulting an accurate estimation of 
the coefficients for the neural pre-distorter. 

 
Fig. 9: MSE vs Iterations number for 16QAM 

OFDM-PD(2,9,2) 
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Fig. 10 show constellations for signals received either with 
or without a pre-distorter in the transmitter for an OFDM 
system on 64-carrires at SNR = 13dB.  
 

 
(a) 

 
(b) 

Fig. 10: Constellation of received signals with/without 
pre-distorter: 16 QAM OFDM, 64 carriers, SNR = 13dB.  
(a) HPA only, (b) with neural network Pre-distorter. 

 
6 Conclusions 
 

In this paper, we have proposed an adaptive 
pre-distortion technique based on feed forward neural 
networks. This structure was applied to 16 QAM OFDM 
transmission over non-linear TWT amplifier. The 
Levenberg Marquard algorithm has been used to update the 
neural network weights.  

From simulation results, it is confirmed that the proposed 
pre-distorter with neural network consisting with one 
hidden layer and nine neurons gives a good performance 
improvement of quality of the transmission compared to 
16QAM OFDM without a pre-distortion scheme.  
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