
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

155

Manuscript received March 5, 2007

Manuscript revised March 25, 2007

Significance of Write References on Nonvolatile Buffer Cache and its
Implication on Hit Ratio and the Optimal MIN Replacement

Algorithm

Sam H. Noh Inhwan Doh Jungkyu Park

School of Computer and Information Engineering
Hongik University, Seoul, Korea

Summary
Performance studies of buffer caches have generally been done
with write references ignored. In this study, we show that once
we consider write references in buffer caches that include
nonvolatile memory, the traditional hit ratio performance
measure is no longer an accurate representation, and that the disk
access ratio should be used. We also show that in regards to this
measure, the MIN replacement algorithm is either non-optimal or
non-applicable.
Key words:
Operating Systems, Buffer Cache, Replacement Algorithm,
Nonvolatile memory

1. Introduction

In considering performance of buffer cache management
in traditional systems, the majority of previous works have
not distinguished read and write references even though
the two have distinct effects. As nonvolatile memory
becomes prevalent, buffer caches that have nonvolatile
features will be easily available. We present results that
show that for systems where nonvolatile memory is used
as the buffer cache, distinguishing read and write
references can considerably influence the performance
observed by the user. In this regard, we make two
contributions in this paper. First, we show that when we
consider caches with nonvolatile memory the hit ratio
performance measure traditionally used to represent buffer
management performance may be misleading; we
advocate that the actual number of disk accesses should be
accurately reflected in the performance measure of interest.
Second, we show that once we accurately reflect the
number of disk accesses, the MIN cache replacement
algorithm [3] is no longer optimal and may not even be
directly applicable to caches that employ nonvolatile
memory.

1.1 Nonvolatile RAM

Battery supported nonvolatile RAM (NVRAM) has been
in use for years, and numerous studies on making use of

battery supported NVRAM and their effects have been
reported [1,2]. Today, however, we are fast approaching
an era where NVRAM will exist in a different form
making it much more prevalent. NVRAM is being
fabricated as semiconductors that do not require any
external power source. FeRAM (Ferro-electro RAM),
MRAM (Magnetic RAM), and PRAM (Phase-change
RAM) are some of the more commonly talked about
NVRAM [12].. They are being developed by major
semiconductor companies such as Texas Instruments, IBM,
Samsung, Fujitsu, Motorola, etc., and 1-2Mb chips are
already being sold [13].

Table 1: Comparison of characteristics of volatile and nonvolatile RAM

 DRAM SRAM FeRAM MRAM PRAM

Non
Volatility No No Yes Yes Yes

Read
speed ～100ns ～50ns ～100ns ～100ns ～100ns

Write
speed ～100ns ～50ns ～100ns ～100ns ～500ns

Retention Volatile Volatile 10 years 10 years 10 years

Cost/bit Low High High High Low

Characteristics of some of these new battery-less NVRAM
compared with traditional volatile RAM are summarized
in Table 1. Performance-wise they are similar to DRAM,
while being able to retain information without power for
approximately 10 years. The cost of these chips is still
high. Some of the chips currently available in the market
are fully compatible with SRAM, meaning that installing
them to everyday computer systems should not be a
difficult task (though not to be done by a layman as if
installing a new program) [13]. As semiconductor
technology continues to make progress we will soon see
NVRAM become an everyday component of our
commodity computers.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

156

1.2 Related Works

The key advantage of using NVRAM is in enhancing
write performance as with NVRAM writes need not incur
the hefty price of a disk access. In this regard, we can
summarize previous research on enhancing system
performance using NVRAM into two categories as
follows.

One direction of research is in using NVRAM as an
extension of storage and thus, maintaining metadata in this
part of storage. Miller et al. introduces the HeRMES file
system that makes use of MRAM to store metadata, while
storing file data in disk [8]. Another file system,
MRAMFS, uses a similar approach as HeRMES, but it
utilizes compression on inodes in order to save NVRAM
space as the authors assume that NVRAM is a scarce
resource [5]. Conquest is another file system developed
with NVRAM in mind [10]. Conquest considers storing
not only metadata, but also small sized files while leaving
large files on disk.

The other direction of research with NVRAM considers
buffer caching. Since real systems generally tend to use
the write-back policy for writes due to performance
reasons, there is always a window of time in which
consistency of the file system may be compromised. By
making writes to NVRAM, this window of consistency
loss can be removed, and consistency can be maintained in
full without compromising performance. It was shown by
Baker et al. that write traffic can be reduced significantly
in a distributed file system with the help of NVRAM [2].
For management of the buffer space, they compare the
LRU and random replacement algorithms and show that
the two schemes show little difference in reducing write
traffic to disk. Haining and Long propose and study
algorithms for NVRAM write buffer management;
specifically, LRU, shortest access time first (STF), and
largest segment per track (LST) [7]. They not only
consider the issue of replacement, but also consider the
issue of staging, that is, when to clean the dirty blocks in
cache. They report that in most cases LRU is most
effective. Akyurek and Salem perform an extensive
simulation study on managing NVRAM buffers [1].. They
propose and categorize policies based on the actions taken
upon a read miss and on write allocation. Recently, Gill
and Modha studied the use of nonvolatile cache in storage
devices, specifically a RAID-based storage device [6].
They propose a cache management scheme that effectively
combines the temporal and spatial locality characteristics
of the workload.

1.3 Remainder of the Paper

The rest of the paper is organized as follows. The next
section discusses the effects of NVRAM on the
performance measure seen by users. We show that the
generally accepted hit ratio measure is inadequate to
accurately represent performance and that a new
performance measure, the disk access ratio, should be used.
In Section 3, we discuss the implications of the disk access
ratio and caches with NVRAM on the optimal MIN
replacement algorithm. Finally, we summarize and
conclude in Section 4.

2. Hit Ratio, Miss Ratio, and Disk Access
Ratio

Traditionally, the hit ratio has been used as a performance
measure to compare various buffer cache management
algorithms. This measure is based on the assumption that
each miss will incur a single disk access. Correctly
representing disk access is important as this is what
directly affects the user perceived performance. In this
section, we show that this measure is inadequate when
considering systems that make use of buffer caches that
incorporate NVRAM.

Hereafter, we assume that the buffer cache comprises a
volatile part and a nonvolatile part. The volatile part uses
traditional volatile RAM. In our discussions, we refer to
this portion of the buffer cache as volatile space. The
nonvolatile part uses NVRAM, and will be referred to as
nonvolatile space. To take full advantage of NVRAM, we
assume that all writes are made to nonvolatile space, that
is, all dirty blocks reside in nonvolatile space to ensure
that writes are permanent and safe. This does not preclude
the fact that a clean block may reside in nonvolatile space
as well.

Traditionally, in the field of cache management, the hit
ratio, as introduced in conventional textbooks [4,9], is
used as a measure to evaluate the effectiveness of memory
access in the memory hierarchy. In traditional cache
replacement algorithm discussions, one generally says that
a reference is a hit in the cache, if the block it is
referencing is found in the cache. A miss, on the other
hand, is a situation where a block is not found in the cache.
For a read request, a miss would mean that the disk will
have to be accessed as the missing block needs to be
brought into the cache. However, if the request is a write,
a disk access may or may not happen. For the write to be
safe and permanent, the write-through policy must be
employed making disk access necessary. However, in real
life, policies such as write-back or write-behind are used
due to performance reasons, risking loss of data.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

157

With the advent of nonvolatile space in the buffer cache,
we need to look more carefully into whether the hit ratio is
an accurate performance measure. For a read request, the
notion of a hit remains unchanged; if the block is found in
the cache it is a hit, otherwise it is a miss, and a miss
incurs a disk access.

Now consider a write request. With the assumption that
writes all happen on nonvolatile space, a write miss may
not incur a disk access even with the write-through policy
if the block to be replaced by the miss is a clean block in
nonvolatile space. Thus, the negative connotation of a
miss may be a misrepresentation as a miss may not incur a
disk access.

Let us now consider a write hit. Take the situation in
Figure 1(a) where a write reference to Block 10 is made,
and Block 10 is found in volatile space. This request is a
hit in the traditional sense. However, since all dirty blocks
must reside in nonvolatile space, we need to move the
newly written block to nonvolatile space. Thus, we may
have to evict a victim block from nonvolatile space, and if
this block is dirty it must be written to disk, as shown in
the example in Figure 1(a). Hence, a disk access may be
incurred even on a write hit. This results in a hit
misrepresenting a positive performance effect where, in
fact, it actually incurs a negative performance effect, that
is, a disk access.

Then, a measure that better represents the real world for
buffer cache management performance may be the miss
ratio, which we define as the ratio of the number of
references that incur a disk access to the total number of
references. (Note that this definition is different from the
conventional definition where the miss ratio is simply (1-
hit ratio) [9].) Then, in the Figure 1(a) example, the
reference that was considered a hit is still a hit in terms of
its availability in the buffer cache, yet will be counted as a
miss. Consequently, a disk access occurs when a miss
occurs, and hence, the miss ratio represents the ratio of
references that will actually incur a disk access. Hence, the
miss ratio may be a more accurate measure to use to
represent nonvolatile buffer cache management
performance.

Even so, the miss ratio may still not be accurate enough.
Consider Figure 1(b) where a read request to Block 20
incurs a miss. Normally, a read miss will incur one disk
access to fetch the referenced block. However, if the
victim block to be evicted is a dirty block in nonvolatile
space an extra disk access occurs to write back the dirty
block. That is, two block accesses result from a single
miss. The accumulation of these extra disk accesses can
have a significant effect on buffer management
performance. Hence, we propose that the disk access ratio,
which we define as the ratio of the number of disk

accesses incurred by all references to the total number of
references, should be used to accurately reflect the
performance of nonvolatile buffer cache management.

Fig. 1 Actions taken when (a) a write hit occurs in volatile space and (b)
when a read miss incurs a dirty block eviction.

Table 2: Performance numbers showing the difference in value for
various performance measures.

Cache
Size

Nonvolatile
Space

(1 – Hit
Ratio)

Miss
Ratio

Disk Access
Ratio

10% 27.25% 23.89% 30.61%
20% 27.04% 23.63% 30.45%
30% 26.92% 23.45% 30.39%
40% 26.82% 23.30% 30.35%

32MB

50% 26.74% 23.14% 30.34%
10% 24.02% 21.42% 26.61%
20% 23.73% 21.04% 26.42%
30% 23.56% 20.78% 26.34%
40% 23.43% 20.56% 26.30%

64MB

50% 23.32% 20.35% 26.29%
10% 20.87% 18.95% 22.79%
20% 20.54% 18.49% 22.60%
30% 20.34% 18.15% 22.53%
40% 20.20% 17.90% 22.51%

128MB

50% 20.07% 17.63% 22.51%
10% 17.66% 16.37% 18.95%
20% 17.23% 15.76% 18.70%
30% 16.92% 15.25% 18.60%
40% 16.71% 14.85% 18.56%

256MB

50% 16.54% 14.52% 18.55%

Request: Write to Block 10 – Hit in volatile space

10

Volatile Space Nonvolatile Space

10

Disk Victim Block

(Copy to Disk)

(Copy to Nonvolatile space)

(a)

Request: Read to Block 20 - Miss

Volatile Space Nonvolatile Space

20

Disk Victim Block

(Copy to Disk)

(Copy from Disk)

(b)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

158

Consider Table 2 that compares the three performance
measures discussed above. The first column is (1-hit ratio),
the traditional definition of miss ratio, the second column
shows our definition of miss ratio, that is, the ratio of
references that incurs a disk access, and finally, the last
column shows the disk access ratio, that is, the ratio of the
actual number of disk references to the total number of
references. All measures were obtained running a
replacement algorithm based on the optimal MIN
algorithm [3]. The difference between this MIN-based
algorithm and the MIN algorithm is that since all dirty
blocks need to be in nonvolatile space, when a dirty block
is moved to nonvolatile space, the victim is selected using
the MIN algorithm from among only those blocks in
nonvolatile space. For other references that do not move
dirty blocks to nonvolatile space, the MIN algorithm is
employed. The point here is not to introduce a new
algorithm, but to show the significance of the measure
used to represent performance even when the exact same
algorithm is used.

The numbers shown in Table 2 were obtained by
simulating a buffer cache running the TPC-C trace [11].
The total request size of this trace is 99.4GB with 84.65%
of the requests being read requests and the remaining
15.35% of the requests being write requests. The size of
the cache simulated range from 32MBs to 256MBs with a
block size of 8KBs. For each of the buffer cache size, we
assume that part of the cache is nonvolatile space. The
specific size of the nonvolatile space is represented in
percentage size of the total cache size. For example, for a
32MB cache with 50% nonvolatile space, 16MB of the
cache is volatile space, while 16MB of the cache is
nonvolatile space.

Observe from Table 2 that the miss ratio is lower than (1 –
hit ratio). The reason for this is that many of the misses
counted in (1- hit ratio) does not incur a disk access as a
write miss may replace a clean block in nonvolatile space.
In that sense, (1-hit ratio) is underestimating the
performance of buffer management compared to the miss
ratio. However, a comparison of the miss ratio with the
disk access ratio shows that the miss ratio is
overestimating performance by quite a large margin,
specifically, by 2.5 to 7.2 percentage points, for the range
of experiments we conducted.

3. Implications of nonvolatile space on the
MIN algorithm

In the previous section, we showed that the disk access
ratio is a more accurate performance indicator for cache
management. In traditional buffer cache management, the

MIN replacement algorithm is considered the benchmark
with which newly proposed algorithms are compared. This
is because the MIN algorithm, even though infeasible in
real life, is the proven optimal replacement algorithm in
terms of the hit ratio. In this section, we discuss the
implications of buffer caches that contain nonvolatile
space on the optimal MIN algorithm. We consider two
separate cases. In the first case where the buffer cache
consists of only nonvolatile space, we show that MIN is
not optimal in terms of the disk access ratio. Secondly,
when nonvolatile space and volatile space coexist in the
buffer cache, we show that MIN may not be applied
directly. Though we do not prove the non-optimality of
MIN in this situation, we conjecture that MIN is no longer
optimal.

3.1 Non-Optimality of MIN in regards to the disk
access ratio

Consider a buffer cache with only nonvolatile space.
There are no alterations to the read and write operations.
All operations are serviced just like in the traditional
buffer cache. The only difference is that now, all writes
are safe. Since the buffer cache is limited, eventually
cache replacement will occur, and if the MIN algorithm is
employed, the block that will be referenced furthest in the
future will be selected and evicted. If this block happens to
be dirty, it will have to be written to disk, incurring a disk
access. In the following, we give a counterexample that
shows that the MIN algorithm is no longer optimal in
terms of the disk access ratio.

 (a) MIN replacement algorithm (arrows indicate disk access)

(b) Replace most recently used block (arrows indicate disk access)

B

A

C

B

A

D

C

B

A

D

C

B

E

D

C

B

E

D

C

B

E

Aw Bw Cw Dr

R D

C

B

EW
R

Er Dw

hit
Cr
hit

Br
hit

D

C

B

A

Ar

R

A

A

B

A

C

B

A

D

C

B

A

E

C

B

A

D

C

B

A

D

C

B

A

Aw Bw Cw Dr

R D

C

B

A

R

Er Dw

hit

Cr
hit

Br
hit
Ar

D

C

B

A

Reference String : Aw Bw Cw Dr Er Dw Cr Br

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

159

Fig. 2 Depiction of disk access as (a) the MIN replacement algorithm and
(b) the most recently used block replacement algorithm are used.

Consider Figure 2. The reference string is as given with
the ‘r’ and ‘w’ subscripts referring to read and write
requests. Initially, all blocks in the buffer are clean and
empty. After the first three references, blocks A, B, C are
dirty, depicted by the shadings. Upon a read request on
block D, a miss occurs and a corresponding disk access
occurs. Figure 2(a) shows the rest of the changes and disk
accesses (represented by the arrows) when employing the
MIN replacement algorithm. Note that on a read request
for block E, two disk accesses are invoked, one to write
dirty block A, which is the block to be referenced furthest
in the future, and another to read block E. Figure 2(b)
shows the results when replacing the block that is most
recently used. We see from the two figures that after the 9
references, the MIN algorithm incurs 4 disk accesses
resulting in a disk access ratio of 0.44, while the disk
access ratio is 0.22 in the later case. Hence, we conclude
from this counterexample that the MIN algorithm is no
longer the optimal algorithm in terms of the disk access
ratio.

3.2 Non-Applicability of MIN

Let us now consider the situation where the buffer cache is
composed of both volatile and nonvolatile space. We show
that the MIN algorithm is no longer directly applicable
given the assumption that all writes must be safe. This can
be shown with a simple example as follows. Take the
situation where a write miss has occurred and a block has
to be replaced. With the MIN algorithm, the block that is
to be referenced furthest down the future would be
selected. Let us say that this block is a block in volatile
space. As writing to this block will not be safe, we cannot
replace this block with the incoming dirty block. A block
in nonvolatile space, which is no longer the block that will
be referenced furthest down the future, will have to be
replaced. Hence, MIN is not applicable in this situation.
We may choose to employ the MIN algorithm locally in
each of the volatile and nonvolatile space. However,
whether this is optimal or not is an open question.

4. Conclusion

Performance studies of buffer caches, to date, have
generally been done with write references ignored. In this
study, we argue that with the introduction of new
nonvolatile memory technology, this is not a wise choice.
We show that when we consider write references in buffer
caches with nonvolatile RAM (NVRAM), the traditional
hit ratio performance measure is no longer an accurate

representation. We advocate that representing the actual
number of disk accesses is necessary to accurately
represent performance, and hence, propose that the disk
access ratio, defined as the ratio of the number of disk
accesses incurred by all references to the total number of
references, be used. Actual measurement numbers are used
to show that considerable differences may exist among the
representations. We also show that once buffer caches that
contain NVRAM and the disk access ratio performance
measure is used, the MIN replacement algorithm, which is
optimal in terms of the hit ratio in traditional cache
management, is no longer optimal and that the MIN
algorithm may not be directly applicable in certain cache
environments.

Though studies in using NVRAM have been conducted,
this area of research is still quite young. Through this
study, we have left some questions open. What is the
optimal algorithm when the buffer cache has only
nonvolatile space? What about when both volatile and
nonvolatile space exists in the cache? What is the best
ratio of volatile and nonvolatile space for maximum
performance? We are in the process of examining some of
these and many other new problems that arise with the
addition of nonvolatile memory in our computer system.

Acknowledgments

This work was supported in part by grant No. R01-2004-
000-10188-0 from the Basic Research Program of the
Korea Science & Engineering Foundation.

References
[1] S. Akyurek and K. Salem, “Management of Partially Safe
Buffers,” IEEE Transactions on Computers, Vol. 44 No. 3 pp.
394-407, 1995.
[2] M. Baker, S. Asami, E. Deprit, J. Ousterhout, and M.
Seltzer, “Non-volatile memory for fast, reliable file systems,” in
Proc. of the 5th International Conference on Architectural
Support for Programming Languages and Operating Systems, pp.
10--22, October 1992.
[3] L. Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 5(2):78–101, 1966.
[4] C. Crowley. Operating Systems: A Design-Oriented
Approach.. IRWIN, 1997.
[5] N. K. Edel, D. Tuteja, E. L. Miller, and S. A. Brandt,
“MRAMFS: a compressing file system for non-volatile RAM,”
in Proc. of the 12th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOT 2004), pp.596-603, October 2004.
[6] B. S. Gill and D. S. Modha, “WOW: Wise Ordering for
Writes—Combining Spatial and Temporal Locality in Non-
volatile Caches,” in Proc. of the 4th USENIX Conference of File
and Storage Technologies (FAST 2005), December 2005.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

160

[7] T. R. Haining and D. D. E. Long, “Management policies for
non-volatile write caches,” in Proc. of the IEEE International
Performance, Computing and Communications Conference, pp.
321–328, Feb. 1999.
[8] E. L. Miller, S. A. Brandt, and D. D. E. Long, “HeRMES:
High Performance Reliable MRAM-Enabled Storage,” in Proc.
of the 8th IEEE Workshop on Hot Topics in Operating Systems,
pp. 83-87, 2001.
[9] D. A. Patterson and J. L. Hennessey. Computer
Organization and Design. Morgan Kaufmann, Third Edition,
2005.
[10] A. A. Wang, P. Reiher, G. J. Popek, and G. H. Kuenning,
“Conquest: better performance through a disk/persistent-RAM
hybrid file system,” in Proc. of the 2002 USENIX Annual
Conference, June 2002.
[11] Y. Zhou, Z. Chen, and K. Li. “Second-Level Buffer Cache
Management,” IEEE Transactions on Parallel and Distributed
Systems, Vol. 15, No. 7, pp.505-519, July, 2004.
[12] http://www.memorystrategies.com/report/EmergingMemori
es.htm, Emerging Memories: Applications, Device and
Technology.
[13] http://www.ramtron.com/doc/Products/overview.asp

Sam H. Noh received the BS
degree in computer engineering from
the Seoul National University, Korea
in 1986, and the PhD degree from
the Department of Computer Science,
University of Maryland at College
Park in 1993. He held a visiting
faculty position at the George
Washington University from 1993 to
1994 before joining Hong-Ik
University in Seoul Korea, where he
is now a Professor in the School of

Information and Computer Engineering. From August 2001 to
August 2002, he was also a Visiting Associate Professor to
UMIACS (University of Maryland Institute of Advanced
Computer Studies). His current research interests include
operating system issues on embedded/computer systems and
robotics. Dr. Noh is a member of the IEEE Computer Society
and the ACM.

Inhwan Doh received the MS
degree in computer engineering
from the Hongik University, Korea
in 2006. He is currently a Ph.D
student at Hongik University.. His
research interests include operating
system issues on
embedded/computer systems and
robotics.

Jungkyu Park received the MS
degree in computer engineering
from Hongik University, Korea in
2003. He is currently a Ph.D student
at Hongik University. His research
interests include mobile robot
localization and mapping and
embedded /computer system.

