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Summary 
Performance studies of buffer caches have generally been done 
with write references ignored. In this study, we show that once 
we consider write references in buffer caches that include 
nonvolatile memory, the traditional hit ratio performance 
measure is no longer an accurate representation, and that the disk 
access ratio should be used. We also show that in regards to this 
measure, the MIN replacement algorithm is either non-optimal or 
non-applicable. 
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1. Introduction 

In considering performance of buffer cache management 
in traditional systems, the majority of previous works have 
not distinguished read and write references even though 
the two have distinct effects. As nonvolatile memory 
becomes prevalent, buffer caches that have nonvolatile 
features will be easily available. We present results that 
show that for systems where nonvolatile memory is used 
as the buffer cache, distinguishing read and write 
references can considerably influence the performance 
observed by the user. In this regard, we make two 
contributions in this paper. First, we show that when we 
consider caches with nonvolatile memory the hit ratio 
performance measure traditionally used to represent buffer 
management performance may be misleading; we 
advocate that the actual number of disk accesses should be 
accurately reflected in the performance measure of interest. 
Second, we show that once we accurately reflect the 
number of disk accesses, the MIN cache replacement 
algorithm [3] is no longer optimal and may not even be 
directly applicable to caches that employ nonvolatile 
memory. 

1.1 Nonvolatile RAM 

Battery supported nonvolatile RAM (NVRAM) has been 
in use for years, and numerous studies on making use of 

battery supported NVRAM and their effects have been 
reported [1,2]. Today, however, we are fast approaching 
an era where NVRAM will exist in a different form 
making it much more prevalent. NVRAM is being 
fabricated as semiconductors that do not require any 
external power source. FeRAM (Ferro-electro RAM), 
MRAM (Magnetic RAM), and PRAM (Phase-change 
RAM) are some of the more commonly talked about 
NVRAM [12].. They are being developed by major 
semiconductor companies such as Texas Instruments, IBM, 
Samsung, Fujitsu, Motorola, etc., and 1-2Mb chips are 
already being sold [13]. 

Table 1: Comparison of characteristics of volatile and nonvolatile RAM 

 

 DRAM SRAM FeRAM MRAM PRAM

Non 
Volatility No No Yes Yes Yes 

Read 
speed ～100ns ～50ns ～100ns ～100ns ～100ns

Write 
speed ～100ns ～50ns ～100ns ～100ns ～500ns

Retention Volatile Volatile 10 years 10 years 10 years

Cost/bit Low High High High Low 

 
Characteristics of some of these new battery-less NVRAM 
compared with traditional volatile RAM are summarized 
in Table 1. Performance-wise they are similar to DRAM, 
while being able to retain information without power for 
approximately 10 years. The cost of these chips is still 
high. Some of the chips currently available in the market 
are fully compatible with SRAM, meaning that installing 
them to everyday computer systems should not be a 
difficult task (though not to be done by a layman as if 
installing a new program) [13]. As semiconductor 
technology continues to make progress we will soon see 
NVRAM become an everyday component of our 
commodity computers. 
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1.2 Related Works 

The key advantage of using NVRAM is in enhancing 
write performance as with NVRAM writes need not incur 
the hefty price of a disk access. In this regard, we can 
summarize previous research on enhancing system 
performance using NVRAM into two categories as 
follows. 

One direction of research is in using NVRAM as an 
extension of storage and thus, maintaining metadata in this 
part of storage. Miller et al. introduces the HeRMES file 
system that makes use of MRAM to store metadata, while 
storing file data in disk [8]. Another file system, 
MRAMFS, uses a similar approach as HeRMES, but it 
utilizes compression on inodes in order to save NVRAM 
space as the authors assume that NVRAM is a scarce 
resource [5]. Conquest is another file system developed 
with NVRAM in mind [10]. Conquest considers storing 
not only metadata, but also small sized files while leaving 
large files on disk. 

The other direction of research with NVRAM considers 
buffer caching. Since real systems generally tend to use 
the write-back policy for writes due to performance 
reasons, there is always a window of time in which 
consistency of the file system may be compromised. By 
making writes to NVRAM, this window of consistency 
loss can be removed, and consistency can be maintained in 
full without compromising performance. It was shown by 
Baker et al. that write traffic can be reduced significantly 
in a distributed file system with the help of NVRAM [2]. 
For management of the buffer space, they compare the 
LRU and random replacement algorithms and show that 
the two schemes show little difference in reducing write 
traffic to disk. Haining and Long propose and study 
algorithms for NVRAM write buffer management; 
specifically, LRU, shortest access time first (STF), and 
largest segment per track (LST) [7]. They not only 
consider the issue of replacement, but also consider the 
issue of staging, that is, when to clean the dirty blocks in 
cache. They report that in most cases LRU is most 
effective. Akyurek and Salem perform an extensive 
simulation study on managing NVRAM buffers [1].. They 
propose and categorize policies based on the actions taken 
upon a read miss and on write allocation. Recently, Gill 
and Modha studied the use of nonvolatile cache in storage 
devices, specifically a RAID-based storage device [6]. 
They propose a cache management scheme that effectively 
combines the temporal and spatial locality characteristics 
of the workload. 

1.3 Remainder of the Paper 

The rest of the paper is organized as follows. The next 
section discusses the effects of NVRAM on the 
performance measure seen by users. We show that the 
generally accepted hit ratio measure is inadequate to 
accurately represent performance and that a new 
performance measure, the disk access ratio, should be used. 
In Section 3, we discuss the implications of the disk access 
ratio and caches with NVRAM on the optimal MIN 
replacement algorithm. Finally, we summarize and 
conclude in Section 4. 

2. Hit Ratio, Miss Ratio, and Disk Access 
Ratio 

Traditionally, the hit ratio has been used as a performance 
measure to compare various buffer cache management 
algorithms. This measure is based on the assumption that 
each miss will incur a single disk access. Correctly 
representing disk access is important as this is what 
directly affects the user perceived performance. In this 
section, we show that this measure is inadequate when 
considering systems that make use of buffer caches that 
incorporate NVRAM. 

Hereafter, we assume that the buffer cache comprises a 
volatile part and a nonvolatile part. The volatile part uses 
traditional volatile RAM. In our discussions, we refer to 
this portion of the buffer cache as volatile space. The 
nonvolatile part uses NVRAM, and will be referred to as 
nonvolatile space. To take full advantage of NVRAM, we 
assume that all writes are made to nonvolatile space, that 
is, all dirty blocks reside in nonvolatile space to ensure 
that writes are permanent and safe. This does not preclude 
the fact that a clean block may reside in nonvolatile space 
as well. 

Traditionally, in the field of cache management, the hit 
ratio, as introduced in conventional textbooks [4,9], is 
used as a measure to evaluate the effectiveness of memory 
access in the memory hierarchy. In traditional cache 
replacement algorithm discussions, one generally says that 
a reference is a hit in the cache, if the block it is 
referencing is found in the cache. A miss, on the other 
hand, is a situation where a block is not found in the cache. 
For a read request, a miss would mean that the disk will 
have to be accessed as the missing block needs to be 
brought into the cache. However, if the request is a write, 
a disk access may or may not happen. For the write to be 
safe and permanent, the write-through policy must be 
employed making disk access necessary. However, in real 
life, policies such as write-back or write-behind are used 
due to performance reasons, risking loss of data. 
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With the advent of nonvolatile space in the buffer cache, 
we need to look more carefully into whether the hit ratio is 
an accurate performance measure. For a read request, the 
notion of a hit remains unchanged; if the block is found in 
the cache it is a hit, otherwise it is a miss, and a miss 
incurs a disk access. 

Now consider a write request. With the assumption that 
writes all happen on nonvolatile space, a write miss may 
not incur a disk access even with the write-through policy 
if the block to be replaced by the miss is a clean block in 
nonvolatile space. Thus, the negative connotation of a 
miss may be a misrepresentation as a miss may not incur a 
disk access. 

Let us now consider a write hit. Take the situation in 
Figure 1(a) where a write reference to Block 10 is made, 
and Block 10 is found in volatile space. This request is a 
hit in the traditional sense. However, since all dirty blocks 
must reside in nonvolatile space, we need to move the 
newly written block to nonvolatile space. Thus, we may 
have to evict a victim block from nonvolatile space, and if 
this block is dirty it must be written to disk, as shown in 
the example in Figure 1(a). Hence, a disk access may be 
incurred even on a write hit. This results in a hit 
misrepresenting a positive performance effect where, in 
fact, it actually incurs a negative performance effect, that 
is, a disk access. 

Then, a measure that better represents the real world for 
buffer cache management performance may be the miss 
ratio, which we define as the ratio of the number of 
references that incur a disk access to the total number of 
references. (Note that this definition is different from the 
conventional definition where the miss ratio is simply (1- 
hit ratio) [9].) Then, in the Figure 1(a) example, the 
reference that was considered a hit is still a hit in terms of 
its availability in the buffer cache, yet will be counted as a 
miss. Consequently, a disk access occurs when a miss 
occurs, and hence, the miss ratio represents the ratio of 
references that will actually incur a disk access. Hence, the 
miss ratio may be a more accurate measure to use to 
represent nonvolatile buffer cache management 
performance. 

Even so, the miss ratio may still not be accurate enough. 
Consider Figure 1(b) where a read request to Block 20 
incurs a miss. Normally, a read miss will incur one disk 
access to fetch the referenced block. However, if the 
victim block to be evicted is a dirty block in nonvolatile 
space an extra disk access occurs to write back the dirty 
block. That is, two block accesses result from a single 
miss. The accumulation of these extra disk accesses can 
have a significant effect on buffer management 
performance. Hence, we propose that the disk access ratio, 
which we define as the ratio of the number of disk 

accesses incurred by all references to the total number of 
references, should be used to accurately reflect the 
performance of nonvolatile buffer cache management. 

 

 

Fig. 1 Actions taken when (a) a write hit occurs in volatile space and (b) 
when a read miss incurs a dirty block eviction. 

Table 2: Performance numbers showing the difference in value for 
various performance measures. 

Cache 
Size 

Nonvolatile 
Space 

(1 – Hit 
Ratio) 

Miss 
Ratio 

Disk Access 
Ratio 

10% 27.25% 23.89% 30.61% 
20% 27.04% 23.63% 30.45% 
30% 26.92% 23.45% 30.39% 
40% 26.82% 23.30% 30.35% 

32MB

50% 26.74% 23.14% 30.34% 
10% 24.02% 21.42% 26.61% 
20% 23.73% 21.04% 26.42% 
30% 23.56% 20.78% 26.34% 
40% 23.43% 20.56% 26.30% 

64MB

50% 23.32% 20.35% 26.29% 
10% 20.87% 18.95% 22.79% 
20% 20.54% 18.49% 22.60% 
30% 20.34% 18.15% 22.53% 
40% 20.20% 17.90% 22.51% 

128MB

50% 20.07% 17.63% 22.51% 
10% 17.66% 16.37% 18.95% 
20% 17.23% 15.76% 18.70% 
30% 16.92% 15.25% 18.60% 
40% 16.71% 14.85% 18.56% 

256MB

50% 16.54% 14.52% 18.55% 
 

Request: Write to Block 10 – Hit in volatile space 

10

Volatile Space Nonvolatile Space
 

10 

Disk  Victim Block 

(Copy to Disk) 

(Copy to Nonvolatile space) 

(a) 

Request: Read to Block 20 - Miss 

Volatile Space Nonvolatile Space 

20 

Disk  Victim Block 

(Copy to Disk) 

(Copy from Disk) 

(b) 
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Consider Table 2 that compares the three performance 
measures discussed above. The first column is (1-hit ratio), 
the traditional definition of miss ratio, the second column 
shows our definition of miss ratio, that is, the ratio of 
references that incurs a disk access, and finally, the last 
column shows the disk access ratio, that is, the ratio of the 
actual number of disk references to the total number of 
references. All measures were obtained running a 
replacement algorithm based on the optimal MIN 
algorithm [3]. The difference between this MIN-based 
algorithm and the MIN algorithm is that since all dirty 
blocks need to be in nonvolatile space, when a dirty block 
is moved to nonvolatile space, the victim is selected using 
the MIN algorithm from among only those blocks in 
nonvolatile space. For other references that do not move 
dirty blocks to nonvolatile space, the MIN algorithm is 
employed. The point here is not to introduce a new 
algorithm, but to show the significance of the measure 
used to represent performance even when the exact same 
algorithm is used. 

The numbers shown in Table 2 were obtained by 
simulating a buffer cache running the TPC-C trace [11]. 
The total request size of this trace is 99.4GB with 84.65% 
of the requests being read requests and the remaining 
15.35% of the requests being write requests. The size of 
the cache simulated range from 32MBs to 256MBs with a 
block size of 8KBs. For each of the buffer cache size, we 
assume that part of the cache is nonvolatile space. The 
specific size of the nonvolatile space is represented in 
percentage size of the total cache size. For example, for a 
32MB cache with 50% nonvolatile space, 16MB of the 
cache is volatile space, while 16MB of the cache is 
nonvolatile space. 

Observe from Table 2 that the miss ratio is lower than (1 – 
hit ratio). The reason for this is that many of the misses 
counted in (1- hit ratio) does not incur a disk access as a 
write miss may replace a clean block in nonvolatile space. 
In that sense, (1-hit ratio) is underestimating the 
performance of buffer management compared to the miss 
ratio. However, a comparison of the miss ratio with the 
disk access ratio shows that the miss ratio is 
overestimating performance by quite a large margin, 
specifically, by 2.5 to 7.2 percentage points, for the range 
of experiments we conducted.  

3. Implications of nonvolatile space on the 
MIN algorithm 

In the previous section, we showed that the disk access 
ratio is a more accurate performance indicator for cache 
management. In traditional buffer cache management, the 

MIN replacement algorithm is considered the benchmark 
with which newly proposed algorithms are compared. This 
is because the MIN algorithm, even though infeasible in 
real life, is the proven optimal replacement algorithm in 
terms of the hit ratio. In this section, we discuss the 
implications of buffer caches that contain nonvolatile 
space on the optimal MIN algorithm. We consider two 
separate cases. In the first case where the buffer cache 
consists of only nonvolatile space, we show that MIN is 
not optimal in terms of the disk access ratio.  Secondly, 
when nonvolatile space and volatile space coexist in the 
buffer cache, we show that MIN may not be applied 
directly. Though we do not prove the non-optimality of 
MIN in this situation, we conjecture that MIN is no longer 
optimal. 

3.1 Non-Optimality of MIN in regards to the disk 
access ratio 

Consider a buffer cache with only nonvolatile space. 
There are no alterations to the read and write operations. 
All operations are serviced just like in the traditional 
buffer cache. The only difference is that now, all writes 
are safe. Since the buffer cache is limited, eventually 
cache replacement will occur, and if the MIN algorithm is 
employed, the block that will be referenced furthest in the 
future will be selected and evicted. If this block happens to 
be dirty, it will have to be written to disk, incurring a disk 
access. In the following, we give a counterexample that 
shows that the MIN algorithm is no longer optimal in 
terms of the disk access ratio. 

 

 

 (a) MIN replacement algorithm (arrows indicate disk access) 

 

(b) Replace most recently used block (arrows indicate disk access) 
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Fig. 2 Depiction of disk access as (a) the MIN replacement algorithm and 
(b) the most recently used block replacement algorithm are used. 

Consider Figure 2. The reference string is as given with 
the ‘r’ and ‘w’ subscripts referring to read and write 
requests. Initially, all blocks in the buffer are clean and 
empty. After the first three references, blocks A, B, C are 
dirty, depicted by the shadings. Upon a read request on 
block D, a miss occurs and a corresponding disk access 
occurs. Figure 2(a) shows the rest of the changes and disk 
accesses (represented by the arrows) when employing the 
MIN replacement algorithm. Note that on a read request 
for block E, two disk accesses are invoked, one to write 
dirty block A, which is the block to be referenced furthest 
in the future, and another to read block E. Figure 2(b) 
shows the results when replacing the block that is most 
recently used. We see from the two figures that after the 9 
references, the MIN algorithm incurs 4 disk accesses 
resulting in a disk access ratio of 0.44, while the disk 
access ratio is 0.22 in the later case. Hence, we conclude 
from this counterexample that the MIN algorithm is no 
longer the optimal algorithm in terms of the disk access 
ratio. 

3.2 Non-Applicability of MIN 

Let us now consider the situation where the buffer cache is 
composed of both volatile and nonvolatile space. We show 
that the MIN algorithm is no longer directly applicable 
given the assumption that all writes must be safe. This can 
be shown with a simple example as follows. Take the 
situation where a write miss has occurred and a block has 
to be replaced. With the MIN algorithm, the block that is 
to be referenced furthest down the future would be 
selected. Let us say that this block is a block in volatile 
space. As writing to this block will not be safe, we cannot 
replace this block with the incoming dirty block. A block 
in nonvolatile space, which is no longer the block that will 
be referenced furthest down the future, will have to be 
replaced. Hence, MIN is not applicable in this situation. 
We may choose to employ the MIN algorithm locally in 
each of the volatile and nonvolatile space. However, 
whether this is optimal or not is an open question. 

4. Conclusion 

Performance studies of buffer caches, to date, have 
generally been done with write references ignored. In this 
study, we argue that with the introduction of new 
nonvolatile memory technology, this is not a wise choice. 
We show that when we consider write references in buffer 
caches with nonvolatile RAM (NVRAM), the traditional 
hit ratio performance measure is no longer an accurate 

representation. We advocate that representing the actual 
number of disk accesses is necessary to accurately 
represent performance, and hence, propose that the disk 
access ratio, defined as the ratio of the number of disk 
accesses incurred by all references to the total number of 
references, be used. Actual measurement numbers are used 
to show that considerable differences may exist among the 
representations. We also show that once buffer caches that 
contain NVRAM and the disk access ratio performance 
measure is used, the MIN replacement algorithm, which is 
optimal in terms of the hit ratio in traditional cache 
management, is no longer optimal and that the MIN 
algorithm may not be directly applicable in certain cache 
environments. 

Though studies in using NVRAM have been conducted, 
this area of research is still quite young. Through this 
study, we have left some questions open. What is the 
optimal algorithm when the buffer cache has only 
nonvolatile space? What about when both volatile and 
nonvolatile space exists in the cache? What is the best 
ratio of volatile and nonvolatile space for maximum 
performance? We are in the process of examining some of 
these and many other new problems that arise with the 
addition of nonvolatile memory in our computer system. 
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