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Summary 

How can Alice trust computation occurring at Bob’s 
computer? Since it exists and is becoming ubiquitous, the 
current-generation TCPA/TCG hardware might enable a 
solution. When we started investigating this technology, the 
specification of the TCG software stack was not publicly 
available, and an implementation is still not; so, we designed 
and built an open-source platform based on Linux 
and commercially available TCPA/TCG hardware which 
would allow us to address the problem of trusting computation. 
Within the limits of TCPA/TCG hardware security, our 
solution balances what Alice needs to do to make trust judgments 
against what Bob needs to do to keep his system running. 
Furthermore, we describe how we use our platform to 
harden three sample open-source applications: Apache SSL 
Web servers, OpenCA certification authorities, and (with 
SELinux) compartmented attestation to balance privacy 
with DRM. To our knowledge, our project remains the only 
opensource. TCPA/TCG platform in existence, and is also 
enabling trusted computing applications developed by our 
user community (enforcer.sourceforge.net reports 
over 1100 sourcecode downloads so far). 

1. Introduction 

This paper presents a snapshot of our design and experimental 
work in applying TCPA/TCG hardware to solve computer 
security problems in the real world. 
Motivation Modern computing environments present many 
scenarios where Alice needs to trust that certain properties hold 
for a program running on Bob’s machine, even though Alice may 
have little reason to trust Bob. 
To be effective, a solution to this problem must satisfy 
several constraints: 
• It must be real. It cannot be based on hardware that 
does not exist or is too expensive to be ubiquitous, nor 
on software that is still vaporware. 
• It must be practical. It should work with standard protocols, 
and cannot require a significant departure from 
the standard software base. 
Our Project We began this project by asking ourselves if 
we could do anything about this problem of trusting remote 
computation, while living within these constraints. 
We started by considering TCPA. Over the last several 
years, the Trusted Computing Platform Alliance 
(TCPA) (now renamed the Trusted Computing Group 
(TCG)) has released a series of specifications—which, 
informally, are often referred to by “TCPA,” the former name of 

the group. The TCPA design includes a Trusted Platform Module 
(TPM)—essentially, a smart-card-like chip that is mounted on a 
PC’s motherboard and participates in the boot process—and a 
TCG Software Stack (TSS), both of which are tied up with 
Microsoft’s Next-Generation Secure Computing Base (NGSCB). 
Since the TPM described by the 1.1b specification already 
ships on many commodity machines, we figured it 
might be a good place to start. We decided to see what we 
could do now with the basic 1.1b tool. (TSS implementations and 
the successor 1.2 TPM are still unavailable.) 
This Paper Section 2 presents the basic framework we 
built on top of Linux and TCPA/TCG hardware. Section 3 
presents how we applied this framework to harden SSL 
Web servers and certification authorities (CAs), and how 
we combined this framework with SELinux to harden selective 
software attestation. Section 4 presents our evaluation of how 
well our solution works. Section 5 surveys prior related work, 
and Section 6 concludes with some avenues for future work. 

2. The basic framework 

To start with, we need a way for Alice, working within 
existing hardware, software, and protocols, to reach some 
conclusion about computation occurring on Bob’s computer. The 
TPM gives us a basic tool (described in Section 2.1). However, 
this tool binds a secret to a specific full blown software and data 
configuration on a given machine, which makes it difficult to 
deal with two problems: 
• In most applications where a relying party Alice needs 
to authenticate a remote program P on Bob’s machine, 
the overall software and data configuration on a platform 
often need to change (e.g., for upgrades), even though P remains 
the same. 
• In current distributed security infrastructures, Alice 
wants to make her trust decision based on whether P 
proves knowledge of a long-lived private key matching 
a long-lived X.509 identity certificate, and Bob does 
not want to have to go back to a CA each time his software or 
data changes. We addressed both problems by indirection. The 
TPM and boot process verifies that our Enforcer security module 
(described in Section 2.2) and supporting software is unmodified; 
the Enforcer then checks the more dynamic parts of the system 
against a configuration file signed by a (possibly remote) 
Security Administrator, Cathy. The TPM releases private keys to 
the Enforcer only when it boots correctly; but the Enforcer only 
releases the program private key when it satisfies the current 
configuration (described in Section 2.3). Thus, by delegating 
configuration judgment to Cathy, a CA can issue a long-lived 
certificate to Bob’s application.[17, 20]  
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2.1 THE TPM 

We quickly review the basic functionality of the 
TPM that is currently available.The TPM in our commodity 
hardware has 16 platform configuration registers (PCRs), each 
20 bytes long. The TCPA PC specification reserves eight PCRs 
for specific purposes, leaving eight for applications. The TPM 
provides a protected storage service to its machine. From the 
programming perspective, one can ask the TPM to seal data, and 
specify a subset of PCRs and target values. The TPM returns an 
encrypted blob (with an internal hash, for integrity checking). 
One can also give an encrypted blob to the TPM, and ask it to 
unseal it. The TPM will release the data only if the PCRs 
specified at sealing now have the same values they had when the 
object was sealed (and if the blob passes its integrity check).It is 
also possible to create keys which are bound to a specific 
machine configuration with the TPM CreateWrapKey 
function. This alleviates the need to create a key and then seal it, 
allowing both events to be performed by one atomic operation. 
TPM protected storage can thus bind secrets to a particular 
software configuration, if the PCRs reflect hashes of the 
elements of this configuration. The TPM also has the ability to 
save and report the PCR values that existed when an object was 
sealed. The TPM can perform RSA private-key operations 
internally. Besides enabling management of the key tree, this 
feature permits the TPM to do private-key operations with other 
stored objects that happen to be private keys (if the PCRs and 
authorization permit this) without exposing the private keys to 
the host platform. One special use of a TPMheld private key is 
the TPM Quote command. If the caller is authorized to use a 
TPM-held private key, the caller can use the TPM Quote 
command to have the TPM use it to sign a snapshot of the 
current values of the PCRs. Another useful feature of a TPM-
held key is exposed via the TPM CertifyKey call. This 
function allows a TPM-held private key to sign a certificate 
binding a TPM-held public key to its usage properties, including 
whether it is wrapped, and to what PCR values. Certification 
TCPA provides additional functionality for tasks like proving 
that a TPM is genuine and attesting to the software configuration 
of a machine. The TCPA specification and subsequent research 
[27]lays out some fairly complex procedures. However, Alice 
does not want to carry out a complex procedure she just wants to 
verify that a remote program knows a private key matching the 
public key in an X.509 certificate. Upon careful reading of the 
specification, it appears the TPM can provide equivalent 
functionality. We provide a new code module that has the TPM 
create what it terms an “identity key pair” and then obtain an 
“identity certificate” from what we call YACA (“yet another 
CA”). This module then uses the TPM to create a wrapped key 
pair bound to a configuration which includes itself—and then has 
the TPM use the identity private key to certify that fact. Finally, 
the module needs to return to a standard X.509 CA (which could 
be the same YACA) with the identity certificate and the 
certificate created for this wrapped key pair, in order to obtain a 
standard X.509 certificate. Threat Model The TCPA design 
cannot protect against fundamental physical attacks. If an 
adversary can extract the core secrets from the TPM, then they 
can build a fake one that ignores the PCRs. If an adversary can 
manage to trick a genuine TPM, during boot, to storing hash 
values that do not match the code that actually runs (e.g., perhaps 

with dual-ported RAM or malicious DMA), then secrets can be 
exposed to the wrong software. If the adversary can manage to 
read machine memory during runtime, then they may be able to 
extract protected objects that the TPM has unsealed and returned 
to the host. 
However, the TPM can protect against many attacks on 
software integrity. If the adversary changes the boot loader or 
critical software on the hard disk, the TPM will refuse to reveal 
secrets. Otherwise, the verified software can then verify (via 
hashes) data and other software. Potentially, the TPM can protect 
against runtime attacks on software and data, if onboard software 
can hash the attacked areas and inform the TPM of changes. 

2.2 THE ENFORCER 

Our goal is to bind a private key to program P. How do 
we permit Bob to carry out appropriate updates to the software 
that constitutes program P, without rendering this private key 
unavailable? How do we ensure a malicious Bob cannot roll back 
a patched program to an earlier version that we now know is 
unsafe? How do we permit a CA to express something in a 
certificate that says something meaningful about the 
trustworthiness of P over future changes—both of software as 
well as of more dynamic state? 
Design In some sense, everything is dynamic, even X.509 
key pairs. However, in current PKI paradigms, a certificate binds 
an entity to a key pair for some relatively long-lived period. But 
if this entity P is to be a remote program offering some type of 
service, the entity will have to change in ways that cannot be 
predicted at the time of certification. To address this problem, we 
decided to organize system elements by how often they change: 
the relatively long-lived core kernel; more medium-lived 
software; and short-lived operational data As noted above, we 
add two additional items to the mix: 
a remote Security Admin, who controls the medium-lived 
software configuration via public-key signatures, and an 
Enforcer software module that is part of the long-lived core. The 
Security Admin signs a description of the mediumlived software 
which represents a good configuration of the medium-lived 
software. The Security Admin’s signed description acts as a 
security policy for the medium-lived software. For simplicity, 
the Security Admin’s public key can be part of the long-lived 
core (although we could have it elsewhere). 
A Security Admin’s security policy could apply to 
large sets of machines, and in theory, the Security Admin 
may in fact be part of a different organization. For example, 
Verisign or CERT might set up a Security Admin who signs 
descriptions of what are believed to be secure configurations of 
the program(s) in question, and distributes these descriptions to a 
number of organizations to use as a a security policy. This 
approach allows one entity to bless the configurations for 
multiple sites without having to run all of the servers itself. 
The TCPA boot process ensures that the long-lived core boots 
correctly and has access to its secrets. The Enforcer (within the 
long-lived core) checks that the Security Admin’s security policy 
is correctly signed, and that the medium-lived software matches 
this policy. The Enforcer then uses the secure storage API to 
retrieve and update short-lived operational data, when requested 
by the other software. Our design binds the protected secrets to 
the Enforcer and long-lived core instead of the the medium- and 
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shortlived components of the system. This approach alleviates 
the need to get a new certificate each time the medium- or short-
lived components change presumably quite often. To prevent 
replay of old signed policies, the Security Admin could include a 
serial number within each description, as well a “high water 
mark” specifying the least serial number that should still be 
regarded as valid. The Enforcer saves a high-water mark as a 
field in the freshness table; the Enforcer accepts a signed policy 
only if the serial number equals or exceeds the saved high-water 
mark. If the new high-water mark exceeds the old, the Enforcer 
updates the saved one. (Alternatively, the Enforcer could use 
some type of forward-secure key evolution.) 
Structure In order to make our system usable, we chose 
designs that coincide with familiar programming constructs. 
These choices may also made our system easier to build ,since 
we could re-use existing code. 
Short-Lived Data. For short-lived data, we wanted to give 
the programmer a way to save and retrieve non-volatile data 
whose structure can be fairly arbitrarily. In systems, the standard 
way that programmers expect to do this is via a file system. A 
loop back file system provides a way for a single file to be 
mounted and used as a file system; an encrypted loop back file 
system allows this file to be encrypted when stored [3]. 
So, a natural choice for short-lived data was to have the 
Enforcer save and retrieve keys for an encrypted loop back file 
system. (A remaining question is how often an update 
should be committed.) Since the TPM provides a way to use 
RSA private keys without exposing them, we also provided an 
interface to do that. 
Medium-lived Software. For the medium-lived software, 
we needed a way for a (remote) human to specify the 
security-relevant configuration of a system, and a tool that 
can check whether the system matches that configuration. 
We chose an approach in the spirit of previous work on kernel 
integrity (e.g., [2, 40]). 
The Security Admin (again, possibly on a different machine or 
part of a different organization) prepares a signed security policy 
of the medium-lived component; the longlived component of our 
system uses this policy to verify the integrity of the medium-
lived component. 
Long-lived Core. Another question was how to structure 
the Enforcer itself. The natural choice was as a Linux Security 
Module (LSM)—besides being the standard framework for 
security modules in Linux, this choice also gives us the chance to 
mediate (if the LSM implementation is correct) all security-
relevant calls—including every inode lookup and insmod call. 
We envisioned this Enforcer module running in two steps: an 
initialization component, checking for the signed configuration 
file and performing other appropriate tasks at start-up, and a run-
time component, checking the integrity of the files in the 
medium-lived configuration. 
Security Admin. As noted, our design provides a level of 
indirection:  
the Security Admin defines an updatable security 
policy; the long-lived core ensures that critical secrets are 
maintained only as long as the rest of the system matches 
this policy. 
Implementation Experience We built our Enforcer as an 
LSM, for the 2.6 kernel (or a 2.4 kernel with the LSM 
2.4.20-1 kernel patch). The initial prototype is about 2000 

lines of code. Our code is set up either to be compiled into 
the kernel or to be loaded as a separate module; the former 
makes sense for real deployment; however, the latter makes 
experimentation easier. Full details of this implementation are 
available in our preliminary reports. 
The Enforcer uses the /etc/enforcer/ directory to 
store its signed policy, public key, etc. (Having the kernel 
store data in the filesystem is a bit uncouth, but was the 
best solution and is not completely unprecedented.) When 
the kernel initializes the Enforcer, the Enforcer registers its 
hooks with the LSM framework. If built as a loadable module, 
the Enforcer verifies the policy’s signature at load-time; if 
compiled into the kernel, the Enforcer verifies it when the root 
file system is mounted. At run-time, the Enforcer hooks all i 
node permission checks (which happen as a file is opened). The 
Enforcer calculates a SHA-1 of the file and compares it to the 
SHA-1 listed in the policy; if the values do not match, it reacts 
according the option: log the event to the system log, fail the 
call, or panic the system. Tapping each i node read operation 
would be better from a security standpoint, in that it would check 
the file’s integrity each time the file is read. 
While this would alleviate any TOCTOU issues which arise 
between opening a file and another party writing to it, 

It would also be quite expensive and would still not work for 
things like log files. 
Additional Tools. We wrote a number of small executables which 
make some of the TCPA calls necessary for attestation—TPM 
MakeIdentity and TPM ActivateIdentity. We also 
wrote some utilities to produce the security policies, and for each 
file covered by the policy, the Security Admin can specify what 
should happen if its integrity check fails: log, deny, 
or panic (see Figure 1). We used an open-source big integer 
package [12] to produce a rudimentary key generation (2048-
bits), signing tool, and stripped-down verification tool (which 
was included in the Enforcer kernel module). 

2.3. Trust 

Linux with the TPM and our Enforcer LSM enables in 
practice what prior work only enabled in theory: a way to bind a 
general-function desktop or server program including its 
configuration and operational data to a long lived private key. If 
someone tampers with a file on the server which is guarded by 
the Security Admin’s security policy, the program will not be 
able to prove knowledge of the private key to the relying party 
Alice. A CA who wants to certify the “correctness” of such a 
platform essentially certifies that the long-lived core operates 
correctly, and that the named Security Admin will have good 
judgment about future maintenance. (Essentially, this approach 
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generalizes the “epoch” idea of outbound authentication in the 
IBM 4758 [34].) 
In our scheme, the TPM testifies directly, through use of 
PCRs, to the long-lived components of our server: the hardware 
and BIOS, the kernel and current Enforcer, and the Security 
Admin’s current public key. The Security Admin then testifies to 
the medium-level software, and the Enforcer (already verified) 
ensures that the current system matches the Security Admin’s 
signed policy. 
The operational data of the program is controlled by various 
users, per Bob’s policy. These users are authenticated via the 
kernel and medium-level configuration that has already been 
testified to. Their content is saved in a protected loop back file 
system, ensuring that it was valid content at some point. 
Figure 2 at the end of this paper sketches how this trust 
flows. 

3. Applications 

Our platform enables us to bind a private key to a program P at 
Bob’s computer, such that: 
• Bob can still maintain and upgrade P and its environment, as 
long as it complies with a security policy signed by the Security 
Admin Cathy, and 
• A relying party Alice can deduce from a long-lived 
X.509 certificate that, within the physical security limits of the 
TPM, the wielder of this private key is still P, in this trustworthy 
configuration. 
 Furthermore, our platform works in a nicely decentralized way. 
Bob merely obtains the platform and installs the software; the 
Enforcer then uses the TPM credentials to obtain a certificate for 
itself from an appropriate CA. Once our platform reached some 
level of stability, we applied it to three problem scenarios. 

3.1. SSL Web Servers 

First, consider the case where Bob operates a Web site SX 
offering some service X (e.g., selling bicycle parts, or providing 
health insurance quotes) with some specific security properties 
(e.g., Bob will not reveal Alice’s credit card number or health 
information). How can Alice know that Bob’s site will provide 
these properties? Server-side SSL binds a key pair to the identity 
of Bob’s site; server-side cryptographic hardware can strengthen 
the claim that Bob’s private key stays at Bob’s site, but how can 
Alice bind it to X? This could give a marketing advantage to 
Bob: “you can trust my service, because you don’t have to trust 
me.” Moving both the key and the service X into a secure 
coprocessor co-located at Bob’s site provides a potential 
solution. In addition to binding the identity to a public key, the 
SSL CA could certify that the private key lives inside the 
coprocessor, which is used for X and nothing else, even if Bob 
would like to cheat. Our lab prototyped this approach in prior 
work [14, 33]. However, this previous approach overlooked how 
to map a long-lived key pair onto short-lived configurations. 
Must the Web site go back to the CA with each new upgrade of 
Apache or modification to the Web pages or scripts? With our 
platform, we solve this problem as follows. The Security Admin 
signs descriptions of what she believes are secure configurations 
of Apache, mod ssl, etc. The TPM checks the Enforcer, which 

checks that the current server configuration matches the Security 
Admin’s description. The OS (already checked) determines who 
can change what Web content and when; this content is saved in 
the loopback file system that the Enforcer protects. Last, the SSL 
private key lives inside of the encrypted loopback filesystem. A 
symbolic link places a reference to the key in a place where 
Apache would normally look for it. Should the Enforcer detect a 
violation of the Security Admin’s policy, the loopback is 
immediately unmounted. The result is that the symbolic link is 
broken and Apache can no longer access the private key, and can 
therefore no longer establish SSL connections. We have 
implemented this application, and it has been available for 
download since late 2003. 

3.2. Certification Authorities 

Secondly, consider the case where Bob’s program P is a 
CA he operates. Many parties may want to have assurance 
that Bob’s CA only uses its private key in accordance with 
the policies and practices established by this program, running on 
this operating system. These parties include: 
• relying parties who depend on the correctness of the 
certificates Bob issues, for the correctness of their own 
applications; 
• a bridge CA or higher-level CA that issues a certificate 
attesting to the trustworthiness of Bob’s CA; 
• Bob himself, if (as we have seen frequently) his CA is 
at risk: online, in a shared machine room, and operated 
by an already overworked staff. 
With our platform, we solve this problem as follows. The 
Security Admin signs descriptions of what she believes are 
secure configurations of OpenCA [4] and any other related code, 
such as Apache for online Web-based CAs. The TPM checks the 
Enforcer, which checks that the server configuration matches this 
description.We have implemented the CA private key in two 
ways. In our initial approach, we set it up as an item within the 
encrypted loopback file system as in the Apache case. In our 
second approach, we set it up as a TPM-protected RSA 
credential that never leaves the TPM. We have written an 
OpenSSL engine that wraps around the TPM-protected 
credential, which more elegant and extensible. We have 
implemented this application; it will be available for download 
as soon as testing is complete. We are also exploring 
incorporating threshold  cryptography (in the spirit of [44, 45]), 
perhaps using low-cost programmable cryptographic tokens in 
addition to the TPM. Furthermore, if Bob’s CA is itself being 
certified by a higher-level CA, then that higher CA can act as the 
Security Admin, thereby further easing the maintenance pressure 
on Bob. We hope to take this approach, and combine our 
Enforcer/OpenCA code with a “CA-in-a-box” service we will be 
offering in conjunction with the Higher Education Bridge CA 
(HEBCA) our laboratory will be operating.  

3.3. Compartmented Attestation  

Finally, consider the case where Bob is a consumer, running a 
program P whose authenticity and integrity is of concern to a 
remote stakeholder Alice. The canonical instantiation of this 
scenario is digital rights management (DRM): Bob purchases 
licensed content (such as music), and Alice would like ensure 
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that Bob uses this content only in a program that makes illicit use 
sufficiently difficult for her tastes. Other instantiations include 
consumer Bob running a banking program that bank Alice wants 
to verify, or municipality Bob running a online voting program 
that watchdog Alice would like to verify. TCPA/TCG The 
potential of TCPA/TCG for content applications has generated 
much controversy (e.g, [29]).With the 1.1b TPM, to use the 
content he has purchased, Bob may have to expose everything on 
his machine to Alice even programs and data that have little to 
do with the application in question. Alice might even choose to 
deny services and rights to Bob, if he has a competitor’s product 
installed. Unfortunately, TCPA/TCG itself appears insufficient to 
solve Alice’s problems we are still at the mercy of a corrupt 
superuser. For example, a simple test on Linux shows that, 
without further countermeasures, the root user can manipulate 
the memory space of other processes with a debugger. Even the 
1.2 TPM’s attempts to localize PCR contexts appear to suffer 
from this problem. SELinux To address some of these problems 
in operating systems, the National Security Agency (NSA) 
created Security-Enhanced Linux (SELinux), an LSM and a set of 
programs for Linux, intended to provided mandatory rolebased 
access control, described by a complex and rigorous policy 
document. This policy assigns roles to subjects and types to 
objects; after assigning roles and types, the policy document then 
further describes how subjects in each role can interact with 
objects of each type. The access controls in SELinux apply not 
only to filesystem objects but also to memory, network 
resources, and devices, and are orthogonal to the controls in a 
standard Unix environment [16]. 
Therefore, compatibility with existing applications and security 
structures is maintained. However, since they are 
mandatory access controls, the system runs under the assumption 
that unless specific permission is given to a role with regard to a 
particular data object, that object is completely protected from 
that role. In this way, sensitive data, whether in a filesystem 
object or in memory, can be protected from a “root-spy.” Even if 
a program is compromised in a way that it is inadvertently 
privileged as root (as is common with, say, buffer-overrun 
attacks), the program is confined to role it was running in and so 
its ability to compromise other programs is contained. 
SELinux can thus provide software compartments: confining 
software programs so that they cannot arbitrarily spy on or 
modify another program’s data except in policyprescribed, 
presumably safe ways such as (if we allow) by cut-and-paste or 
inter-process communication. Traditional operating systems also 
attempt to do this, but these efforts are frustrated by the fact that 
there are really only two levels of privilege, user and root, and 
root is all-powerful. Plus, the access-control checking is often so 
messily strewn throughout the kernel that one is rarely sure 
whether it is working at all. SELinux provides far finer 
granularity, a restricted root, and a central access-control 
checking module. Merging SELinux and Enforcer Our design 
combines these two techniques—our TCPA-based Enforcer with 
SELinux to provide compartmentalized attestation. 
The TPM checks SELinux, its policy, and the Enforcer. 
The SELinux policy keeps applications of interest in their own 
compartments, and denies other applications and root the ability 
to interfere with these compartments. The Enforcer module can 
use a key pair to testify about (and certify a key pair for) the 
contents of just one compartment; we architected this as a 

separate key-wielder service that communicates to the 
compartments. Alice can have assurance that the attestation she 
receives really pertains to the compartment in question, and that 
the Enforcer with SELinux will confine her data to just that 
compartment; Bob can have confidence that nothing outside of 
that compartment and above Enforcer/SELinux will be 
communicated to Alice. 
Our Experience Currently, we have SELinux running and 
confining the XMMS music player from root manipulation. 
Official NSA documentation of SELinux is scant, extremely 
theoretical in nature, and offers little in the way of practical 
“how-to” information to the intermediate or even advanced Unix 
user as to how to begin. The bulk of papers published about 
SELinux do not contain much helpful information on configuring 
the kernel, and papers which describe non-trivial 
accomplishments in SELinux (such as Gosselin and Schommer’s 
work confining the Apache web server [8]) are so focused on the 
details of the accomplishment that broad details such as 
configuration and installation are left out. Even doing trivial 
tasks such as adding a role or type involve complex 
manipulations of the many policy files. On one occasion, a 
mistake in describing a policy somehow resulted in a system that 
was virtually unusable and needed to be formatted and reloaded. 
This demonstrates the dangers of working with an overly 
complex, overly secure system! The policy language is robust 
and expressive, but is also cumbersome to learn and use [31]. It 
is not always clear how to state the security goals of the system 
and then build a policy which accomplishes those goals. In fact, 
other researchers (Jaeger et al.) have noted that “the policy 
implies the security goals of the system we only learn that certain 
subjects can only perform certain operations on certain objects” 
[13]. Status Getting the Enforcer and SELinux to cooperate was a 
challenge. The first obstacle we faced involved LSM stacking 
under Linux. The SELinux LSM has the restriction that it must 
be the primary module in the stack, which would force the 
Enforcer to be second. This configuration leaves no room for the 
standard “capabilities” module which is used for default Linux 
security (e.g., file permissions checking and enforcement). Our 
first task was to get the functionality of the capabilities module 
into the Enforcer, as this would free up a slot in the module 
stack.We then had to rewrite parts of the SELinux LSM so that it 
does not hook the inode permissions call, thus allowing 
the Enforcer to handle those calls. (Further analysis here might 
be necessary.) 

4. Evaluation 

How well did our project work? 

4.1. Performance 

We benchmarked the Enforcer to get an accurate idea 
of the performance impact it has versus running a typical 
Apache installation. We wanted to benchmark a realistic 
system and workload so we decided to protect Apache’s 
data in the loopback filesystem and calculate how much the 
Enforcer slows down Apache’s ability to serve pages. In trying 
to apply a good benchmark, we acquired the staticWeb pages of 
all of the Athletics departments at Dartmouth as well as the 
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Apache log of all the hits against those pages on a weekday. The 
dataset was 19,623 files with a total size of 664 MB. The log file 
consisted of 20,741 URLs, of which 15% were requests for files 
that did not exist. The machine running the benchmark program 
was a dual processor Intel Xeon CPU running at 2.00GHz with 
512 MB of memory, and running Linux kernel version 2.4.20-
ac1 with Debian’s “unstable” distribution. The machine running 
the Enforcer was an IBM Netvista 8310 desktop machine with a 
Pentium 4 CPU at 2.00GHz, 128MB of memory, one IDE hard 
drive, running Linux kernel 2.6.0- test7 (no preempt), and 
Debian’s “unstable” distribution. Each machine had a 100 
megabit full-duplex Ethernet network, plugged directly into the 
same switch. When the Enforcer’s database was built, 156 of the 
hashes (out of the 19,623 total) were intentionally modified to be 
incorrect. This allowed us to see that the Enforcer was actually 
working because it would log a message every time one of these 
files was accessed. The performance for an Apache SSL server 
with all of the content in an encrypted loopback filesystem, using 
the TPM to protect the server’s private key, and using the 
Enforcer for integrity checking is quite good. The slowdown is 
around 6.8% compared to a standard Apache SSL server ,i.e., 
content is not in a loopback, no TPM is involved, and the 
Enforcer is not used at all. 

4.2. Impact 

However, another measure of effectiveness is the impact 
our project has had already. Ours is the first integration 
of TCPA with a non-trivial application in the open world, and (as 
noted above) appears to remain the only open-source TCPA 
platform. The basic framework and Apache application has been 
available for open-source download since 3Q2003. Statistics 
from enforcer.sourceforge.net report over 1100 
sourcecode downloads so far, and email contacts indicate that the 
project is being used in a number of European projects, as well 
as generating interest among a number of corporations. Our CA 
and SELinux applications are currently being prepared for open-
source release. 

5. RelatedWork 

Besides presenting a number of novel applications which 
utilize the TCPA/TCG technology, this paper also extends a 
number of earlier ideas and previous work. In some ways, our 
work extends earlier research into secure coprocessors (e.g., 
[32,15]). Secure coprocessors have been shown to be feasible as 
commercial products [5, 35] and can even run Linux and modern 
build tools [9], and even provided versions of the TCPA/TCG 
properties of safe computation, sealed storage, and even 
attestation [34]. 
Our lab has investigated and developed a number of applications 
for the IBM 4758 secure coprocessor including hardening 
Apache [14, 33] (as noted earlier), enhancing privacy [11], 
hardening S/MIME [23], and exploring new PKI architectures 
[18, 41]. Many of these projects were repeatedly hampered by 
the 4758’s relatively weak computational power and lack of 
space. Such specialty devices typically lag behind desktops in 
terms of functionality and power which, along with their 
relatively high cost, inhibits widespread adoption, particularly at 

clients. These previous struggles led us to investigate emerging 
TCPA/TCG technology [22, 37, 38, 39], and develop early 
versions of our platform [17, 20]. During our initial 
development, we learned of a number of interesting 
concurrently-developed projects from IBM research [10, 26] in 
the same space. IBM has since developed a an alternate Linux-
based attestation scheme for TCPA [27]. Some academic efforts 
[15, 21, 36] have also explored alternative approaches in this 
“use a small amount of hardware security” space, but no silicon 
is available for experiments yet.  
Many in the field ([1, 30] are notable examples) have 
criticized TCPA for their potential negative social effects; 
others (e.g, [7, 24, 25]) have seen positive potential. (Felten [6] 
and Schneider [28] give more balanced high-level overviews.) 

6. Conclusions and FutureWork 

Modern computing presents many scenarios such as remote Web 
applications, or the policies and practices of a CA, or whether a 
consumer will violate DRM restrictions, or whether voting 
software operates untampered  where a party Alice needs to trust 
properties about a computation running on Bob’s machine. In 
this paper, we have reported our work on building a systematic 
framework to address these problems in a practical way, in the 
real world by using currently common TCPA/TCG hardware, 
and building open-source Linux solutions that lets Alice draw 
conclusions by verifying ownership of a long-lived private key, 
and lets Bob maintain and update his system. As we noted 
earlier, this project yielded the first non-trivial application of 
TCPA hardware in the open world, and remains (we believe) the 
only open-source TCPA-based platform. Many issues lie outside 
the scope of this submission, such as: a security analysis of 
overall system, a security analysis of some specific issues with 
the 1.1b TPM (such as freshness, TOCTOU risks, replay attacks, 
and vulnerability to root), and our general experiences trying to 
turn the specification and off-the-shelf hardware into something 
useful. Our preliminary technical reports contain further thoughts 
In ongoing work, we plan to combine the SELinux protection 
from root-almighty (of Section 3.3), with the TPMheld private 
keys (of Section 3.2), as part of our general toolkit. In future 
work, we plan to explore how a CA might use X.509v3 
extensions or attribute certificates to communicate the additional 
hardness properties of an Enforcerprotected private key, as well 
as to migrate our project to the 1.2 TPM when it becomes 
commercially available. 
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