
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

161

Manuscript received March 5, 2007

Manuscript revised March 25, 2007

Open-Source Applications of TCPA Hardware
 Karim Faez Ashkan Hassani Karimabad

Islamic Azad University of Qazvin , Qazvin , Iran

Summary

How can Alice trust computation occurring at Bob’s
computer? Since it exists and is becoming ubiquitous, the
current-generation TCPA/TCG hardware might enable a
solution. When we started investigating this technology, the
specification of the TCG software stack was not publicly
available, and an implementation is still not; so, we designed
and built an open-source platform based on Linux
and commercially available TCPA/TCG hardware which
would allow us to address the problem of trusting computation.
Within the limits of TCPA/TCG hardware security, our
solution balances what Alice needs to do to make trust judgments
against what Bob needs to do to keep his system running.
Furthermore, we describe how we use our platform to
harden three sample open-source applications: Apache SSL
Web servers, OpenCA certification authorities, and (with
SELinux) compartmented attestation to balance privacy
with DRM. To our knowledge, our project remains the only
opensource. TCPA/TCG platform in existence, and is also
enabling trusted computing applications developed by our
user community (enforcer.sourceforge.net reports
over 1100 sourcecode downloads so far).

1. Introduction

This paper presents a snapshot of our design and experimental
work in applying TCPA/TCG hardware to solve computer
security problems in the real world.
Motivation Modern computing environments present many
scenarios where Alice needs to trust that certain properties hold
for a program running on Bob’s machine, even though Alice may
have little reason to trust Bob.
To be effective, a solution to this problem must satisfy
several constraints:
• It must be real. It cannot be based on hardware that
does not exist or is too expensive to be ubiquitous, nor
on software that is still vaporware.
• It must be practical. It should work with standard protocols,
and cannot require a significant departure from
the standard software base.
Our Project We began this project by asking ourselves if
we could do anything about this problem of trusting remote
computation, while living within these constraints.
We started by considering TCPA. Over the last several
years, the Trusted Computing Platform Alliance
(TCPA) (now renamed the Trusted Computing Group
(TCG)) has released a series of specifications—which,
informally, are often referred to by “TCPA,” the former name of

the group. The TCPA design includes a Trusted Platform Module
(TPM)—essentially, a smart-card-like chip that is mounted on a
PC’s motherboard and participates in the boot process—and a
TCG Software Stack (TSS), both of which are tied up with
Microsoft’s Next-Generation Secure Computing Base (NGSCB).
Since the TPM described by the 1.1b specification already
ships on many commodity machines, we figured it
might be a good place to start. We decided to see what we
could do now with the basic 1.1b tool. (TSS implementations and
the successor 1.2 TPM are still unavailable.)
This Paper Section 2 presents the basic framework we
built on top of Linux and TCPA/TCG hardware. Section 3
presents how we applied this framework to harden SSL
Web servers and certification authorities (CAs), and how
we combined this framework with SELinux to harden selective
software attestation. Section 4 presents our evaluation of how
well our solution works. Section 5 surveys prior related work,
and Section 6 concludes with some avenues for future work.

2. The basic framework

To start with, we need a way for Alice, working within
existing hardware, software, and protocols, to reach some
conclusion about computation occurring on Bob’s computer. The
TPM gives us a basic tool (described in Section 2.1). However,
this tool binds a secret to a specific full blown software and data
configuration on a given machine, which makes it difficult to
deal with two problems:
• In most applications where a relying party Alice needs
to authenticate a remote program P on Bob’s machine,
the overall software and data configuration on a platform
often need to change (e.g., for upgrades), even though P remains
the same.
• In current distributed security infrastructures, Alice
wants to make her trust decision based on whether P
proves knowledge of a long-lived private key matching
a long-lived X.509 identity certificate, and Bob does
not want to have to go back to a CA each time his software or
data changes. We addressed both problems by indirection. The
TPM and boot process verifies that our Enforcer security module
(described in Section 2.2) and supporting software is unmodified;
the Enforcer then checks the more dynamic parts of the system
against a configuration file signed by a (possibly remote)
Security Administrator, Cathy. The TPM releases private keys to
the Enforcer only when it boots correctly; but the Enforcer only
releases the program private key when it satisfies the current
configuration (described in Section 2.3). Thus, by delegating
configuration judgment to Cathy, a CA can issue a long-lived
certificate to Bob’s application.[17, 20]

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

162

2.1 THE TPM

We quickly review the basic functionality of the
TPM that is currently available.The TPM in our commodity
hardware has 16 platform configuration registers (PCRs), each
20 bytes long. The TCPA PC specification reserves eight PCRs
for specific purposes, leaving eight for applications. The TPM
provides a protected storage service to its machine. From the
programming perspective, one can ask the TPM to seal data, and
specify a subset of PCRs and target values. The TPM returns an
encrypted blob (with an internal hash, for integrity checking).
One can also give an encrypted blob to the TPM, and ask it to
unseal it. The TPM will release the data only if the PCRs
specified at sealing now have the same values they had when the
object was sealed (and if the blob passes its integrity check).It is
also possible to create keys which are bound to a specific
machine configuration with the TPM CreateWrapKey
function. This alleviates the need to create a key and then seal it,
allowing both events to be performed by one atomic operation.
TPM protected storage can thus bind secrets to a particular
software configuration, if the PCRs reflect hashes of the
elements of this configuration. The TPM also has the ability to
save and report the PCR values that existed when an object was
sealed. The TPM can perform RSA private-key operations
internally. Besides enabling management of the key tree, this
feature permits the TPM to do private-key operations with other
stored objects that happen to be private keys (if the PCRs and
authorization permit this) without exposing the private keys to
the host platform. One special use of a TPMheld private key is
the TPM Quote command. If the caller is authorized to use a
TPM-held private key, the caller can use the TPM Quote
command to have the TPM use it to sign a snapshot of the
current values of the PCRs. Another useful feature of a TPM-
held key is exposed via the TPM CertifyKey call. This
function allows a TPM-held private key to sign a certificate
binding a TPM-held public key to its usage properties, including
whether it is wrapped, and to what PCR values. Certification
TCPA provides additional functionality for tasks like proving
that a TPM is genuine and attesting to the software configuration
of a machine. The TCPA specification and subsequent research
[27]lays out some fairly complex procedures. However, Alice
does not want to carry out a complex procedure she just wants to
verify that a remote program knows a private key matching the
public key in an X.509 certificate. Upon careful reading of the
specification, it appears the TPM can provide equivalent
functionality. We provide a new code module that has the TPM
create what it terms an “identity key pair” and then obtain an
“identity certificate” from what we call YACA (“yet another
CA”). This module then uses the TPM to create a wrapped key
pair bound to a configuration which includes itself—and then has
the TPM use the identity private key to certify that fact. Finally,
the module needs to return to a standard X.509 CA (which could
be the same YACA) with the identity certificate and the
certificate created for this wrapped key pair, in order to obtain a
standard X.509 certificate. Threat Model The TCPA design
cannot protect against fundamental physical attacks. If an
adversary can extract the core secrets from the TPM, then they
can build a fake one that ignores the PCRs. If an adversary can
manage to trick a genuine TPM, during boot, to storing hash
values that do not match the code that actually runs (e.g., perhaps

with dual-ported RAM or malicious DMA), then secrets can be
exposed to the wrong software. If the adversary can manage to
read machine memory during runtime, then they may be able to
extract protected objects that the TPM has unsealed and returned
to the host.
However, the TPM can protect against many attacks on
software integrity. If the adversary changes the boot loader or
critical software on the hard disk, the TPM will refuse to reveal
secrets. Otherwise, the verified software can then verify (via
hashes) data and other software. Potentially, the TPM can protect
against runtime attacks on software and data, if onboard software
can hash the attacked areas and inform the TPM of changes.

2.2 THE ENFORCER

Our goal is to bind a private key to program P. How do
we permit Bob to carry out appropriate updates to the software
that constitutes program P, without rendering this private key
unavailable? How do we ensure a malicious Bob cannot roll back
a patched program to an earlier version that we now know is
unsafe? How do we permit a CA to express something in a
certificate that says something meaningful about the
trustworthiness of P over future changes—both of software as
well as of more dynamic state?
Design In some sense, everything is dynamic, even X.509
key pairs. However, in current PKI paradigms, a certificate binds
an entity to a key pair for some relatively long-lived period. But
if this entity P is to be a remote program offering some type of
service, the entity will have to change in ways that cannot be
predicted at the time of certification. To address this problem, we
decided to organize system elements by how often they change:
the relatively long-lived core kernel; more medium-lived
software; and short-lived operational data As noted above, we
add two additional items to the mix:
a remote Security Admin, who controls the medium-lived
software configuration via public-key signatures, and an
Enforcer software module that is part of the long-lived core. The
Security Admin signs a description of the mediumlived software
which represents a good configuration of the medium-lived
software. The Security Admin’s signed description acts as a
security policy for the medium-lived software. For simplicity,
the Security Admin’s public key can be part of the long-lived
core (although we could have it elsewhere).
A Security Admin’s security policy could apply to
large sets of machines, and in theory, the Security Admin
may in fact be part of a different organization. For example,
Verisign or CERT might set up a Security Admin who signs
descriptions of what are believed to be secure configurations of
the program(s) in question, and distributes these descriptions to a
number of organizations to use as a a security policy. This
approach allows one entity to bless the configurations for
multiple sites without having to run all of the servers itself.
The TCPA boot process ensures that the long-lived core boots
correctly and has access to its secrets. The Enforcer (within the
long-lived core) checks that the Security Admin’s security policy
is correctly signed, and that the medium-lived software matches
this policy. The Enforcer then uses the secure storage API to
retrieve and update short-lived operational data, when requested
by the other software. Our design binds the protected secrets to
the Enforcer and long-lived core instead of the the medium- and

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

163

shortlived components of the system. This approach alleviates
the need to get a new certificate each time the medium- or short-
lived components change presumably quite often. To prevent
replay of old signed policies, the Security Admin could include a
serial number within each description, as well a “high water
mark” specifying the least serial number that should still be
regarded as valid. The Enforcer saves a high-water mark as a
field in the freshness table; the Enforcer accepts a signed policy
only if the serial number equals or exceeds the saved high-water
mark. If the new high-water mark exceeds the old, the Enforcer
updates the saved one. (Alternatively, the Enforcer could use
some type of forward-secure key evolution.)
Structure In order to make our system usable, we chose
designs that coincide with familiar programming constructs.
These choices may also made our system easier to build ,since
we could re-use existing code.
Short-Lived Data. For short-lived data, we wanted to give
the programmer a way to save and retrieve non-volatile data
whose structure can be fairly arbitrarily. In systems, the standard
way that programmers expect to do this is via a file system. A
loop back file system provides a way for a single file to be
mounted and used as a file system; an encrypted loop back file
system allows this file to be encrypted when stored [3].
So, a natural choice for short-lived data was to have the
Enforcer save and retrieve keys for an encrypted loop back file
system. (A remaining question is how often an update
should be committed.) Since the TPM provides a way to use
RSA private keys without exposing them, we also provided an
interface to do that.
Medium-lived Software. For the medium-lived software,
we needed a way for a (remote) human to specify the
security-relevant configuration of a system, and a tool that
can check whether the system matches that configuration.
We chose an approach in the spirit of previous work on kernel
integrity (e.g., [2, 40]).
The Security Admin (again, possibly on a different machine or
part of a different organization) prepares a signed security policy
of the medium-lived component; the longlived component of our
system uses this policy to verify the integrity of the medium-
lived component.
Long-lived Core. Another question was how to structure
the Enforcer itself. The natural choice was as a Linux Security
Module (LSM)—besides being the standard framework for
security modules in Linux, this choice also gives us the chance to
mediate (if the LSM implementation is correct) all security-
relevant calls—including every inode lookup and insmod call.
We envisioned this Enforcer module running in two steps: an
initialization component, checking for the signed configuration
file and performing other appropriate tasks at start-up, and a run-
time component, checking the integrity of the files in the
medium-lived configuration.
Security Admin. As noted, our design provides a level of
indirection:
the Security Admin defines an updatable security
policy; the long-lived core ensures that critical secrets are
maintained only as long as the rest of the system matches
this policy.
Implementation Experience We built our Enforcer as an
LSM, for the 2.6 kernel (or a 2.4 kernel with the LSM
2.4.20-1 kernel patch). The initial prototype is about 2000

lines of code. Our code is set up either to be compiled into
the kernel or to be loaded as a separate module; the former
makes sense for real deployment; however, the latter makes
experimentation easier. Full details of this implementation are
available in our preliminary reports.
The Enforcer uses the /etc/enforcer/ directory to
store its signed policy, public key, etc. (Having the kernel
store data in the filesystem is a bit uncouth, but was the
best solution and is not completely unprecedented.) When
the kernel initializes the Enforcer, the Enforcer registers its
hooks with the LSM framework. If built as a loadable module,
the Enforcer verifies the policy’s signature at load-time; if
compiled into the kernel, the Enforcer verifies it when the root
file system is mounted. At run-time, the Enforcer hooks all i
node permission checks (which happen as a file is opened). The
Enforcer calculates a SHA-1 of the file and compares it to the
SHA-1 listed in the policy; if the values do not match, it reacts
according the option: log the event to the system log, fail the
call, or panic the system. Tapping each i node read operation
would be better from a security standpoint, in that it would check
the file’s integrity each time the file is read.
While this would alleviate any TOCTOU issues which arise
between opening a file and another party writing to it,

It would also be quite expensive and would still not work for
things like log files.
Additional Tools. We wrote a number of small executables which
make some of the TCPA calls necessary for attestation—TPM
MakeIdentity and TPM ActivateIdentity. We also
wrote some utilities to produce the security policies, and for each
file covered by the policy, the Security Admin can specify what
should happen if its integrity check fails: log, deny,
or panic (see Figure 1). We used an open-source big integer
package [12] to produce a rudimentary key generation (2048-
bits), signing tool, and stripped-down verification tool (which
was included in the Enforcer kernel module).

2.3. Trust

Linux with the TPM and our Enforcer LSM enables in
practice what prior work only enabled in theory: a way to bind a
general-function desktop or server program including its
configuration and operational data to a long lived private key. If
someone tampers with a file on the server which is guarded by
the Security Admin’s security policy, the program will not be
able to prove knowledge of the private key to the relying party
Alice. A CA who wants to certify the “correctness” of such a
platform essentially certifies that the long-lived core operates
correctly, and that the named Security Admin will have good
judgment about future maintenance. (Essentially, this approach

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

164

generalizes the “epoch” idea of outbound authentication in the
IBM 4758 [34].)
In our scheme, the TPM testifies directly, through use of
PCRs, to the long-lived components of our server: the hardware
and BIOS, the kernel and current Enforcer, and the Security
Admin’s current public key. The Security Admin then testifies to
the medium-level software, and the Enforcer (already verified)
ensures that the current system matches the Security Admin’s
signed policy.
The operational data of the program is controlled by various
users, per Bob’s policy. These users are authenticated via the
kernel and medium-level configuration that has already been
testified to. Their content is saved in a protected loop back file
system, ensuring that it was valid content at some point.
Figure 2 at the end of this paper sketches how this trust
flows.

3. Applications

Our platform enables us to bind a private key to a program P at
Bob’s computer, such that:
• Bob can still maintain and upgrade P and its environment, as
long as it complies with a security policy signed by the Security
Admin Cathy, and
• A relying party Alice can deduce from a long-lived
X.509 certificate that, within the physical security limits of the
TPM, the wielder of this private key is still P, in this trustworthy
configuration.
 Furthermore, our platform works in a nicely decentralized way.
Bob merely obtains the platform and installs the software; the
Enforcer then uses the TPM credentials to obtain a certificate for
itself from an appropriate CA. Once our platform reached some
level of stability, we applied it to three problem scenarios.

3.1. SSL Web Servers

First, consider the case where Bob operates a Web site SX
offering some service X (e.g., selling bicycle parts, or providing
health insurance quotes) with some specific security properties
(e.g., Bob will not reveal Alice’s credit card number or health
information). How can Alice know that Bob’s site will provide
these properties? Server-side SSL binds a key pair to the identity
of Bob’s site; server-side cryptographic hardware can strengthen
the claim that Bob’s private key stays at Bob’s site, but how can
Alice bind it to X? This could give a marketing advantage to
Bob: “you can trust my service, because you don’t have to trust
me.” Moving both the key and the service X into a secure
coprocessor co-located at Bob’s site provides a potential
solution. In addition to binding the identity to a public key, the
SSL CA could certify that the private key lives inside the
coprocessor, which is used for X and nothing else, even if Bob
would like to cheat. Our lab prototyped this approach in prior
work [14, 33]. However, this previous approach overlooked how
to map a long-lived key pair onto short-lived configurations.
Must the Web site go back to the CA with each new upgrade of
Apache or modification to the Web pages or scripts? With our
platform, we solve this problem as follows. The Security Admin
signs descriptions of what she believes are secure configurations
of Apache, mod ssl, etc. The TPM checks the Enforcer, which

checks that the current server configuration matches the Security
Admin’s description. The OS (already checked) determines who
can change what Web content and when; this content is saved in
the loopback file system that the Enforcer protects. Last, the SSL
private key lives inside of the encrypted loopback filesystem. A
symbolic link places a reference to the key in a place where
Apache would normally look for it. Should the Enforcer detect a
violation of the Security Admin’s policy, the loopback is
immediately unmounted. The result is that the symbolic link is
broken and Apache can no longer access the private key, and can
therefore no longer establish SSL connections. We have
implemented this application, and it has been available for
download since late 2003.

3.2. Certification Authorities

Secondly, consider the case where Bob’s program P is a
CA he operates. Many parties may want to have assurance
that Bob’s CA only uses its private key in accordance with
the policies and practices established by this program, running on
this operating system. These parties include:
• relying parties who depend on the correctness of the
certificates Bob issues, for the correctness of their own
applications;
• a bridge CA or higher-level CA that issues a certificate
attesting to the trustworthiness of Bob’s CA;
• Bob himself, if (as we have seen frequently) his CA is
at risk: online, in a shared machine room, and operated
by an already overworked staff.
With our platform, we solve this problem as follows. The
Security Admin signs descriptions of what she believes are
secure configurations of OpenCA [4] and any other related code,
such as Apache for online Web-based CAs. The TPM checks the
Enforcer, which checks that the server configuration matches this
description.We have implemented the CA private key in two
ways. In our initial approach, we set it up as an item within the
encrypted loopback file system as in the Apache case. In our
second approach, we set it up as a TPM-protected RSA
credential that never leaves the TPM. We have written an
OpenSSL engine that wraps around the TPM-protected
credential, which more elegant and extensible. We have
implemented this application; it will be available for download
as soon as testing is complete. We are also exploring
incorporating threshold cryptography (in the spirit of [44, 45]),
perhaps using low-cost programmable cryptographic tokens in
addition to the TPM. Furthermore, if Bob’s CA is itself being
certified by a higher-level CA, then that higher CA can act as the
Security Admin, thereby further easing the maintenance pressure
on Bob. We hope to take this approach, and combine our
Enforcer/OpenCA code with a “CA-in-a-box” service we will be
offering in conjunction with the Higher Education Bridge CA
(HEBCA) our laboratory will be operating.

3.3. Compartmented Attestation

Finally, consider the case where Bob is a consumer, running a
program P whose authenticity and integrity is of concern to a
remote stakeholder Alice. The canonical instantiation of this
scenario is digital rights management (DRM): Bob purchases
licensed content (such as music), and Alice would like ensure

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

165

that Bob uses this content only in a program that makes illicit use
sufficiently difficult for her tastes. Other instantiations include
consumer Bob running a banking program that bank Alice wants
to verify, or municipality Bob running a online voting program
that watchdog Alice would like to verify. TCPA/TCG The
potential of TCPA/TCG for content applications has generated
much controversy (e.g, [29]).With the 1.1b TPM, to use the
content he has purchased, Bob may have to expose everything on
his machine to Alice even programs and data that have little to
do with the application in question. Alice might even choose to
deny services and rights to Bob, if he has a competitor’s product
installed. Unfortunately, TCPA/TCG itself appears insufficient to
solve Alice’s problems we are still at the mercy of a corrupt
superuser. For example, a simple test on Linux shows that,
without further countermeasures, the root user can manipulate
the memory space of other processes with a debugger. Even the
1.2 TPM’s attempts to localize PCR contexts appear to suffer
from this problem. SELinux To address some of these problems
in operating systems, the National Security Agency (NSA)
created Security-Enhanced Linux (SELinux), an LSM and a set of
programs for Linux, intended to provided mandatory rolebased
access control, described by a complex and rigorous policy
document. This policy assigns roles to subjects and types to
objects; after assigning roles and types, the policy document then
further describes how subjects in each role can interact with
objects of each type. The access controls in SELinux apply not
only to filesystem objects but also to memory, network
resources, and devices, and are orthogonal to the controls in a
standard Unix environment [16].
Therefore, compatibility with existing applications and security
structures is maintained. However, since they are
mandatory access controls, the system runs under the assumption
that unless specific permission is given to a role with regard to a
particular data object, that object is completely protected from
that role. In this way, sensitive data, whether in a filesystem
object or in memory, can be protected from a “root-spy.” Even if
a program is compromised in a way that it is inadvertently
privileged as root (as is common with, say, buffer-overrun
attacks), the program is confined to role it was running in and so
its ability to compromise other programs is contained.
SELinux can thus provide software compartments: confining
software programs so that they cannot arbitrarily spy on or
modify another program’s data except in policyprescribed,
presumably safe ways such as (if we allow) by cut-and-paste or
inter-process communication. Traditional operating systems also
attempt to do this, but these efforts are frustrated by the fact that
there are really only two levels of privilege, user and root, and
root is all-powerful. Plus, the access-control checking is often so
messily strewn throughout the kernel that one is rarely sure
whether it is working at all. SELinux provides far finer
granularity, a restricted root, and a central access-control
checking module. Merging SELinux and Enforcer Our design
combines these two techniques—our TCPA-based Enforcer with
SELinux to provide compartmentalized attestation.
The TPM checks SELinux, its policy, and the Enforcer.
The SELinux policy keeps applications of interest in their own
compartments, and denies other applications and root the ability
to interfere with these compartments. The Enforcer module can
use a key pair to testify about (and certify a key pair for) the
contents of just one compartment; we architected this as a

separate key-wielder service that communicates to the
compartments. Alice can have assurance that the attestation she
receives really pertains to the compartment in question, and that
the Enforcer with SELinux will confine her data to just that
compartment; Bob can have confidence that nothing outside of
that compartment and above Enforcer/SELinux will be
communicated to Alice.
Our Experience Currently, we have SELinux running and
confining the XMMS music player from root manipulation.
Official NSA documentation of SELinux is scant, extremely
theoretical in nature, and offers little in the way of practical
“how-to” information to the intermediate or even advanced Unix
user as to how to begin. The bulk of papers published about
SELinux do not contain much helpful information on configuring
the kernel, and papers which describe non-trivial
accomplishments in SELinux (such as Gosselin and Schommer’s
work confining the Apache web server [8]) are so focused on the
details of the accomplishment that broad details such as
configuration and installation are left out. Even doing trivial
tasks such as adding a role or type involve complex
manipulations of the many policy files. On one occasion, a
mistake in describing a policy somehow resulted in a system that
was virtually unusable and needed to be formatted and reloaded.
This demonstrates the dangers of working with an overly
complex, overly secure system! The policy language is robust
and expressive, but is also cumbersome to learn and use [31]. It
is not always clear how to state the security goals of the system
and then build a policy which accomplishes those goals. In fact,
other researchers (Jaeger et al.) have noted that “the policy
implies the security goals of the system we only learn that certain
subjects can only perform certain operations on certain objects”
[13]. Status Getting the Enforcer and SELinux to cooperate was a
challenge. The first obstacle we faced involved LSM stacking
under Linux. The SELinux LSM has the restriction that it must
be the primary module in the stack, which would force the
Enforcer to be second. This configuration leaves no room for the
standard “capabilities” module which is used for default Linux
security (e.g., file permissions checking and enforcement). Our
first task was to get the functionality of the capabilities module
into the Enforcer, as this would free up a slot in the module
stack.We then had to rewrite parts of the SELinux LSM so that it
does not hook the inode permissions call, thus allowing
the Enforcer to handle those calls. (Further analysis here might
be necessary.)

4. Evaluation

How well did our project work?

4.1. Performance

We benchmarked the Enforcer to get an accurate idea
of the performance impact it has versus running a typical
Apache installation. We wanted to benchmark a realistic
system and workload so we decided to protect Apache’s
data in the loopback filesystem and calculate how much the
Enforcer slows down Apache’s ability to serve pages. In trying
to apply a good benchmark, we acquired the staticWeb pages of
all of the Athletics departments at Dartmouth as well as the

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

166

Apache log of all the hits against those pages on a weekday. The
dataset was 19,623 files with a total size of 664 MB. The log file
consisted of 20,741 URLs, of which 15% were requests for files
that did not exist. The machine running the benchmark program
was a dual processor Intel Xeon CPU running at 2.00GHz with
512 MB of memory, and running Linux kernel version 2.4.20-
ac1 with Debian’s “unstable” distribution. The machine running
the Enforcer was an IBM Netvista 8310 desktop machine with a
Pentium 4 CPU at 2.00GHz, 128MB of memory, one IDE hard
drive, running Linux kernel 2.6.0- test7 (no preempt), and
Debian’s “unstable” distribution. Each machine had a 100
megabit full-duplex Ethernet network, plugged directly into the
same switch. When the Enforcer’s database was built, 156 of the
hashes (out of the 19,623 total) were intentionally modified to be
incorrect. This allowed us to see that the Enforcer was actually
working because it would log a message every time one of these
files was accessed. The performance for an Apache SSL server
with all of the content in an encrypted loopback filesystem, using
the TPM to protect the server’s private key, and using the
Enforcer for integrity checking is quite good. The slowdown is
around 6.8% compared to a standard Apache SSL server ,i.e.,
content is not in a loopback, no TPM is involved, and the
Enforcer is not used at all.

4.2. Impact

However, another measure of effectiveness is the impact
our project has had already. Ours is the first integration
of TCPA with a non-trivial application in the open world, and (as
noted above) appears to remain the only open-source TCPA
platform. The basic framework and Apache application has been
available for open-source download since 3Q2003. Statistics
from enforcer.sourceforge.net report over 1100
sourcecode downloads so far, and email contacts indicate that the
project is being used in a number of European projects, as well
as generating interest among a number of corporations. Our CA
and SELinux applications are currently being prepared for open-
source release.

5. RelatedWork

Besides presenting a number of novel applications which
utilize the TCPA/TCG technology, this paper also extends a
number of earlier ideas and previous work. In some ways, our
work extends earlier research into secure coprocessors (e.g.,
[32,15]). Secure coprocessors have been shown to be feasible as
commercial products [5, 35] and can even run Linux and modern
build tools [9], and even provided versions of the TCPA/TCG
properties of safe computation, sealed storage, and even
attestation [34].
Our lab has investigated and developed a number of applications
for the IBM 4758 secure coprocessor including hardening
Apache [14, 33] (as noted earlier), enhancing privacy [11],
hardening S/MIME [23], and exploring new PKI architectures
[18, 41]. Many of these projects were repeatedly hampered by
the 4758’s relatively weak computational power and lack of
space. Such specialty devices typically lag behind desktops in
terms of functionality and power which, along with their
relatively high cost, inhibits widespread adoption, particularly at

clients. These previous struggles led us to investigate emerging
TCPA/TCG technology [22, 37, 38, 39], and develop early
versions of our platform [17, 20]. During our initial
development, we learned of a number of interesting
concurrently-developed projects from IBM research [10, 26] in
the same space. IBM has since developed a an alternate Linux-
based attestation scheme for TCPA [27]. Some academic efforts
[15, 21, 36] have also explored alternative approaches in this
“use a small amount of hardware security” space, but no silicon
is available for experiments yet.
Many in the field ([1, 30] are notable examples) have
criticized TCPA for their potential negative social effects;
others (e.g, [7, 24, 25]) have seen positive potential. (Felten [6]
and Schneider [28] give more balanced high-level overviews.)

6. Conclusions and FutureWork

Modern computing presents many scenarios such as remote Web
applications, or the policies and practices of a CA, or whether a
consumer will violate DRM restrictions, or whether voting
software operates untampered where a party Alice needs to trust
properties about a computation running on Bob’s machine. In
this paper, we have reported our work on building a systematic
framework to address these problems in a practical way, in the
real world by using currently common TCPA/TCG hardware,
and building open-source Linux solutions that lets Alice draw
conclusions by verifying ownership of a long-lived private key,
and lets Bob maintain and update his system. As we noted
earlier, this project yielded the first non-trivial application of
TCPA hardware in the open world, and remains (we believe) the
only open-source TCPA-based platform. Many issues lie outside
the scope of this submission, such as: a security analysis of
overall system, a security analysis of some specific issues with
the 1.1b TPM (such as freshness, TOCTOU risks, replay attacks,
and vulnerability to root), and our general experiences trying to
turn the specification and off-the-shelf hardware into something
useful. Our preliminary technical reports contain further thoughts
In ongoing work, we plan to combine the SELinux protection
from root-almighty (of Section 3.3), with the TPMheld private
keys (of Section 3.2), as part of our general toolkit. In future
work, we plan to explore how a CA might use X.509v3
extensions or attribute certificates to communicate the additional
hardness properties of an Enforcerprotected private key, as well
as to migrate our project to the 1.2 TPM when it becomes
commercially available.

7.References

[1] R. Anderson. TCPA/Palladium Frequently Asked Questions.
http://www.cl.cam.ac.uk/users/rja14/
tcpa-faq.html.
[2] S. Beattie, A. Black, C. Cowan, C. Pu, and L. Yang.
CryptoMark: Locking the Stable door ahead of the Trojan Horse,
2000.
[3] D. Bryson. The Linux Crypto API - A User’s Perspective.
http://www.kerneli.org/howto/index.php, May
2002.
[4] C. Covell and M. Bell. OpenCA Guides for 0.9.2+. http:

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

167

//www.openca.org/openca/docs/online.
[5] J. Dyer, M. Lindemann, R. Perez, R. Sailer, S. Smith, L.van
Doorn, and S. Weingart. Building the IBM 4758 Secure
Coprocessor.
IEEE Computer, 34:57–66, October 2001.
[6] E. Felten. Understanding Trusted Computing. IEEE Security
& Privacy, pages 60–62, May/June 2003.
[7] T. Garfinkel, M. Rosenblum, and D. Boneh. Flexible OS
Support and Applications for Trusted Computing. In 9th Hot
Topics in Operating Systems (HOTOS-IX), 2003.
[8] M. J. Gosselin and J. Schommer. Confining the apache web
server with security-enhanced linux. MITRE Technical Report,
June 2001.
[9] IBM Research Demonstrates Linux Running on Secure
Cryptographic Coprocessor, August 2001. Press release.
[10] IBM Watson Global Security Analysis Lab. TCPA
Resources.
http://www.research.ibm.com/gsal/
tcpa.
[11] A. Iliev and S. Smith. Privacy-Enhanced Credential
Services.
In 2nd Annual PKI Research Workshop. NIST, April 2003.
[12] D. Ireland. BigDigits multiple-precision arithmetic source
code. http://www.di-mgt.com.au/bigdigits.
html.
[13] T. Jaeger, R. Sailer, and X. Zhang. Analyzing Integrity
Protection
in the SELinux Example Policy. In 12th Usenix Security
Symposium, August 2003.
[14] S. Jiang, S. Smith, and K. Minami. Securing Web Servers
against Insider Attack. In Seventeenth Annual Computer Security
Applications Conference, pages 265–276. IEEE Computer
Society, 2001.
[15] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural Support for
Copy and Tamper Resistant Software. In Proceedings of
the 9th Int’l Conference on Architectural Support for
Programming
Languages and Operating Systems, pages 168–
177, November 2000.
[16] P. Loscocco and S. Smalley. Integrating flexible support for
security policies into the linux operating system. NSA/NAI
Technical Report, February 2001.
[17] R. Macdonald, S. Smith, J. Marchesini, and O. Wild.
Bear: An Open-Source Virtual Secure Coprocessor based on
TCPA. Computer Science Technical Report TR2003-471,
Dartmouth College, August 2003.
[18] J. Marchesini and S. Smith. Virtual Hierarchies - An
Architecture
for Building and Maintaining Efficient and Resilient
Trust Chains. In NORDSEC2002 - 7th Nordic Workshop on
Secure IT Systems, November 2002.
[19] J. Marchesini, S. Smith, O. Wild, and R. MacDonald.
Open source, gpl download site for source. enforcer.
sourceforge.net.
[20] J. Marchesini, S. Smith, O. Wild, and R. Macdonald.
Experimenting
with TCPA/TCG Hardware, Or: How I Learned
to Stop Worrying and Love The Bear. Computer Science
Technical Report TR2003-476, Dartmouth College, December

2003.
[21] P. McGregor and R. Lee. Virtual Secure Co-Processing on
General-purpose Processors. Technical Report CE-L2002-
003, Princeton University, November 2002.
[22] S. Pearson, editor. Trusted Computing Platforms: TCPA
Technology in Context. Prentice Hall, 2003.
[23] M. Periera. Trusted S/MIME Gateways, May 2003. Senior
Honors Thesis. Also available as Computer Science Technical
Report TR2003-461, Dartmouth College.
[24] D. Safford. Clarifying Misinformation on TCPA.
http://www.research.ibm.com/gsal/tcpa/
tcpa_rebuttal.pdf, October 2002.
[25] D. Safford. The Need for TCPA. http://www.
research.ibm.com/gsal/tcpa/why_tcpa.pdf,
October 2002.
[26] D. Safford, J. Kravitz, and L. van Doorn. Take Control of
TCPA. Linux Journal, pages 50–55, August 2003.
[27] R. Sailer, X. Zhang, T. Jaeher, and L. van Doorn. Design
and
Implementation of a TCG-Based Integrity Measurement
Architecture.
Technical Report RC23064, IBM Research, 2004.
[28] F. Schneider. Secure Systems Conundrum. Communications
of the ACM, 45(10):160, October 2002.
[29] S. Schoen. Trusted computing: Promise and risk.
http://www.eff.org/Infra/trusted_
computing/20031001_tc.php, October 2003.
[30] S. Schoen. Who Controls Your Computer? Electronic
Frontier Foundation Reports on Trusted Computing.
http://www.eff.org/Infra/trusted_
computing/20031002_eff_pr.php, October 2003.
[31] S. Smalley. Configuring the SELinux Policy. NSA/NAI
Technical Report, January 2003.
[32] S. Smith. Secure Coprocessing Applications and Research
Issues. Technical Report Los Alamos Unclassified Release
LA-UR-96-2805, Los Alamos National Laboratory, August
1996.
[33] S. Smith. WebALPS: A Survey of E-Commerce Privacy
and Security Applications. ACM SIGecom Exchanges, 2.3,
September 2001.
[34] S. Smith. Outbound Authentication for Programmable
Secure
Coprocessors. In Computer Security—ESORICS 2002,
pages 72–89. Springer-Verlag LNCS 2502, October 2002.
[35] S. Smith and S. Weingart. Building a High-Performance,
Programmable Secure Coprocessor. Computer Networks,
31:831–860, April 1999.
[36] G. Suh, D. Clarke, B. Gassend, M. van Dijk, and S.
Devadas.
AEGIS: Architecture for Tamper-Evident and
Tamper-Resistant processing. In In Proceedings of the 17
Int’l Conference on Supercomputing, pages 160–171, 2003.
[37] Trusted Computing Platform Alliance. TCPA Design
Philosophies and Concepts, Version 1.0. http://www.
trustedcomputinggroup.org, January 2001.
[38] Trusted Computing Platform Alliance. TCPA PC
Specific Implementation Specification, Version 1.00.
http://www.trustedcomputinggroup.org,
September 2001.
[39] Trusted Computing Platform Alliance. Main
Specification, Version 1.1b. http://www.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

168

trustedcomputinggroup.org, February 2002.

Dr. Karim Faez:
BS from Tehran Polytechnic, 1973,
MS from UCLA, 1977, Ph.D from UCLA, 1980
University professor in Islamic Azad University of Qazvin and Amirkabir university

Ashkan Hassani Karimabad
BS(computer engineering) from Islamic Azad university of Khoy ,2002
MS(IT Network) from Islamic Azad University of Qazvin ,2007
MS(IT Management) from Payamnoor University of Tehran ,2008
University Teacher in Science and Applied University of Jahad Daneshgahi Urmia and Payamnoor
University of Urmia

