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Summary 
The complex networked systems of today that our technological 
and social society relies upon are vulnerable to a large number of 
failures, accidental as well as intentional. Ideally, the service 
delivered by such a system should be both dependable and secure. 
This paper presents a framework for integrated security and 
dependability assessment. The proposed model is based on 
traditional stochastic analysis techniques, supported by live data 
from network sensors, which is used to estimate the current state 
and predict the future behavior of a system in real-time. The 
method is demonstrated by a small case study. 
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1. Introduction 

The new paradigms of ubiquitous computing and high 
capacity data transfer has led to an explosive growth in the 
number and complexity of computing systems used for 
critical applications, such as electronic commerce, health-
care and urgent information interchange. Since the modern 
society of today is highly dependent on these services, the 
computing systems need to function properly despite not 
only accidental failures but also malicious attacks. To 
increase the trustworthiness of the implemented services, 
it should be possible to monitor the systems’ current 
robustness towards these impairments, as well as assess 
and predict their current and near future behavior. This 
paper deals with a method for such monitoring and 
prediction.  
 
A system’s ability to provide a correct and timely service 
can be described in terms of its dependability and security. 
Dependability is the ability to deliver service that can 
justifiably be trusted, and can be stated as an integrative 
concept that encompasses the attributes availability, 
reliability, safety, integrity and maintainability [1]. 
Security, on the other hand, is defined as a concept 
addressing the attributes confidentiality, integrity and 
availability [7]. To function properly, critical applications 

and systems need to be both dependable and secure. 
However, despite the fact that a system cannot be 
considered trustworthy without a rigorous analysis 
comprising a joint consideration of these two concepts, 
dependability and security have tended to be treated 
separately. To allow continuous estimation of the 
trustworthiness of the services provided by today’s 
computing systems, there is an urgent need of new 
modeling methods that treats both security and 
dependability.  
 
As pointed out in [10], to model, analyze and evaluate 
systems that are yet to be built or systems whose specific 
vulnerabilities remain unknown, stochastic assumptions 
are needed. During the last decade, probabilistic modeling 
of security has gained a lot of interest [2, 8–10, 13, 17]. 
Such models, which are inspired by the traditional 
dependability analysis techniques, can be used to provide 
quantitative measures of a system’s operational security. 
However, most of the recent research efforts have focus 
on either security or dependability analysis, rather than 
aiming for a unified evaluation framework. In [12] we 
described a method for integrated security and 
dependability evaluation, which uses stochastic analysis 
techniques to model and compute expected failure times 
for a computing system, regardless of whether the failure 
cause is intentional or not. To incorporate malicious 
behavior in the stochastic model, a game theoretic 
approach is applied. The method can be used for both 
predicting a system’s future security and dependability 
behavior, as well as for trade-off analysis of possible 
countermeasures. This paper extends our previously 
published results by integrating the proposed model in a 
distributed network monitoring environment. By using 
observations provided by network sensors, the probability 
of the current system state can be estimated, which makes 
it possible to use the stochastic model to predict the future 
behavior of the monitored computer system in real-time. 
The overall concepts used in our framework are depicted 
in Fig. 1. The system that is to be assessed, together with 
its operational environment, is described by a stochastic 
model. There is a monitor that continuously surveys the 
system and gives warnings of possible disturbances. By 
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using the stochastic model together with real-time data 
from the monitor our model can estimate the current state 
of the system, and predict its future behavior.  
 

”real-time” 

system

stochastic
model

monitor
”prediction”

 

Fig. 1:  The overall concepts. 

 
This paper is organized as follows. Section 2 starts by 
reviewing the basis of stochastic modeling, and introduces 
the proposed security and dependability measures. Section 
3 discusses how security analysis differs from traditional 
dependability evaluation, and explains how these issues 
are treated in our integrated framework. In Section 4 the 
proposed security and dependability assessment 
architecture is presented. In Section 5 we explain how a 
monitoring architecture can be used to collect sensor data 
and how this information is interpreted to estimate the 
current system state. Section 6 provides the methodology 
for computing real-time measures of the system. In 
Section 7 the approach is demonstrated by an illustrative 
example. Finally, Section 8 concludes the paper and points 
to future work. 

2. Predicting Security and Dependability 

When operating a system with security and dependability  
requirements it is of interest to be able answer questions 
like: ”Is the system already compromised?”, ”What is the 
probability that the system is currently under 
attack?”, ”What is the probability that the system will 
operate without security breaches or failures for the next 
24 hours?”, or ”What is the expected time until such an 
event occurs?”. The objective of this paper is to provide a 
methodology that can be used to provide answers to such 
questions. For the simplicity of the presentation we denote 
any undesired event in or state of the system as a failure, 
in accordance with [1], without discrimination with 
respect to kind of failure. A refinement is straight forward. 
Hence, we denote the time from now and until the next 
failure by FT  and seek to obtain:  

• )()( tTPtP FF >=  
The probability that the time until the next failure is 
greater than t 1.  

• ∫
∞

=
0

)(
)0(

1 dttP
P

MTNF F
F

 

The mean time to next failure2 , assuming that the 
system will sooner or later fail 
(i.e., 0)(lim =∞→ tPFt ).  

Dealing with security issues, it is not necessarily evident 
when the system is failed (compromised), so we will in 
general have 1)0( ≤FP , where )0(1 FP−  represents the 
probability that the system is already failed (compromised).  
 
To obtain the above measures, two important elements are 
needed:  
• The ability to predict the current state of the system, 

and  

• For a given state, the ability to predict the future 
behavior of the system.  

We will return to these elements later on in this paper. 
First, we introduce the overall modeling approach 
applying Markov models and discuss how security issues 
may be included in these. 

2.1 The Stochastic Modeling Approach 

Above we have informally introduced the concept of state.  
By a state in this context is meant an operational mode of  
the system characterized by which units of the system that  
are operational or failed, whether there are ongoing attacks, 
active countermeasures, operational and maintenance 
activities, whether parts of the system have been 
compromised or not, etc. The decision of what to include 
or not in the state definition is a trade-off between model 
representativeness and complexity, and is a salient part of 
every modeling and analysis effort. The more system 
states that are taken into consideration, the more fine-

                                                           
1 This expression corresponds to the reliability function in 
traditional dependability analysis (where only random 
failures are regarded), but this term is not used to avoid 
misinterpretation. 
2 The MTNF measure differs from the MTTF (mean time 
to failure) and MTFF (mean time to first failure) 
traditionally used in dependability analysis. In contrast to 
MTTF and MTFF, the MTNF measure is conditioned 
on )0(FP . The measure will be further explained in 
Section 6. 
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granular the model becomes. Since the model needs to be 
parameterized, the granulation of the state space must be 
carefully considered. Too simple models will not provide 
any valuable insight into the system behavior, whereas too 
complex models will quickly lead to state space explosion. 
An example primarily for illustration will be presented in 
Section 7.  
 
Let say the system has N disjoint states and that at any 
time it is in one of these. The behavior of the system is 
characterized by the transitions between the states, each 
transition triggered by an event. The events that will occur 
next, as well as the time until next event, are random. 
Hence, the behavior of the system is a stochastic process. 
For the sake of simplicity, assume that the occurrence 
rates of events depend only on the state the system is in, 
i.e., the system is modeled by a continuous time Markov 
chain (CTMC) (for an introduction to Markov modeling 
for dependability analysis, see for instance [5]). A CTMC 
is characterized by its rate matrix, whose elements 
represent the transition rates between the system states.  

2.2 System Equations 

Assume that the system has a finite number of states, 
denoted { }NSSS ,,1 K= . This state set can be split into two 
subsets { }FG SSS ,= , such that 

GS  contains the good 
system states and FS  contains the failed system states. Let  
 

{ },)(,),()( 1 tXtXtX NK=    (1) 
 
where )(tXi

 denotes the probability that the system is in 
state i at time t. The state equation describing the system 
behavior is then  
 

,)()( QtXtX
dt
d

=     (2) 

 
where { }ijqQ =  is the N ×N state transition rate matrix of 

the system. The element 
ijq  represents the transition rate 

from state i to state j. Note that ∑ ≠
−=

ji ijii qq . The state 

equation can be solved if the initial state of the system 
)0(X  is known. Then  

 
.)0()( QteXtX =     (3) 

 
The solution to (3) provides the transient state 
probabilities for the system. See for instance [15]. 
However, the probability that a CTMC will be in state i at 
time t often converges to a limiting value, which is 

independent of the initial state. The steady state 
probabilities 
 

{ },,,1 NXXX K=     (4) 
 
whose elements ,,,1),(lim NitXX iti K==

∞→
 can then be 

obtained by solving the set of N equations given by N - 1 
of the N equations  
 

,0=XQ      (5) 
 
and with the N’th equation  
 

.1
1

=∑
=

N

l
lX      (6) 

 
As is common practice in dependability analysis, the 
CTMC can be used as a basis for obtaining various 
measures of the system, such as the MTNF or )(tPF  
previously discussed. For computation of measures 
relating to FT , the failure states may be made absorbing, 

i.e., 0* =ijq  when
GF SjSi ∈∈ , , otherwise ijij qq =* . Let 

{ }**
ijqQ =  be the modified state transition rate matrix 

with absorbing failure states and denote by )(* tX  the 
corresponding state probabilities. Hence,  
 

∑
∈

=
GSi

iF tXtP )()( * ,    (7) 

 
from which the MTNF can be computed. Rather than 

integrating ∫
∞

0
)( dttPF  to obtain MTNF we will adopt a 

computationally more efficient approach, based on [3]. 
The details together with computational issues will be 
further explained in Section 6. 

3. The Challenges with Security Modeling 

In dependability analysis it is very common to use the 
stochastic modeling approach described in Section 2 to 
quantify the reliability or availability of systems. In that 
case, the states are classified as either ”up” states (the 
good states in 

GS ) or ”down” states (the failed states in 

FS ), depending on whether the required service is 
delivered or not. In theory, by associating down states 
with failures of confidentiality or integrity one can use 
these methods for evaluating also the security properties of 
a system. A simple example is depicted in Fig. 2, where S 
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= {G,C,F} = {”good”,”compromised”,”failed”}. Here, it 
is assumed that a large number of attackers are targeting 
the system in state G, with accumulated attack intensityλ . 
In contrast to attack graphs (as used in e.g., [8]) where 
each state transition corresponds to a single atomic step of 
a penetration, our model aim to be more high-level and 
focus on the impact of the attacks on the system rather 
than on the specific attack procedures themselves. This 
facilitates the modeling of unknown attacks in terms of 
generic state transitions. For example, in Fig. 2 the attack 
is merely defined as “the action that seeks to transfer the 
system from a good state to a compromised state” and 
nothing more. 
 

repair (φ2)

fail (µ)

restore (φ1)

attack (λ)

fail (µ)G FC

 

Fig. 2: A simple Markov model, including a compromised system state. 

However, for real-world cases where more complex 
models are needed two problems quickly arise:  

1. The attacks are intentional, rather than purely 
random.  

2. Regarding security, the current system state may 
be unobservable.  

The remainder of this section will discuss these two 
problems and explain our proposed solutions. 

3.1 Incorporating Attacker Behavior 

When using the traditional Markov approach it is (in most 
cases) straightforward to model accidental failures as state 
transitions. However, since attacks are intentional they 
may not always be well characterized by models of 
random nature. Hence, a more sophisticated approach than 
the simple model depicted in Fig. 2 is needed. To be able 
to model the effect of a successful attack as a transition 
between system states one needs to consider the two 
underlying causes of any attack. As pointed out in [12], 
there must be (at least) one vulnerability in the system, and 
a malicious action that tries to exploit that vulnerability, 
for an attack to be successful. Even though the time an 
attacker needs to perform an attack action may be modeled 
as randomly distributed, the decision to perform the action 
will also influence the system failure rate. Therefore, 
attacker behavior must be represented in the state 
transitions. In this paper we follow the approach in [12] 
and define )(aiπ  as the probability that an attacker will 
choose action a when the system is in (the vulnerable) 

state i. The failure rate between state i and j when 
incorporating malicious behavior can therefore be 
computed as 
 

)()( aaq ijiij λπ= ,    (8) 

 
where )(aijλ  is the accumulated intensity if all potential 

attackers always take action a. By introducing the attack  
probability )(aiπ  as an element in the rate value 

ijq , the 

result from a successful attack can be modeled as one or 
more intentional state changes of the underlying 
stochastic process, which represents the dynamic behavior 
of the system. To compute the attack probabilities we use 
the game model proposed in [12]. The game model is 
based on a reward- and cost concept, which makes it 
possible to predict the expected attacker behavior, in terms 
of attack probabilities, for a number of different attacker 
profiles. The game theoretic approach will not be further 
explained in this paper; the reader is referred to [12] for 
the exact details. 

3.2 Observing the System Security State 

In dependability analysis, the system state set S is usually 
considered known. Moreover, all states are assumed to be 
deterministically observable, in that the current system 
state is well defined and perceptible, at all times. However, 
in a security context the degree of unobservability may be 
quite high. A system might very well seem to be in a good 
state even though it is compromised, e.g., due to a stealthy 
attack. How can one compute measures such as )(tPF  or 
MTNF if one does not know the initial state of the system 
with certainty? Our solution is to use information from 
network sensors monitoring the system to estimate its 
current state probability. We then replace )0(X  in (3) 
with the most likely state probability at that particular time 
instant, which provides us with the possibility of re-
computing the system measures in real-time. This 
procedure will be further explained in the subsequent three 
sections of this paper. 

4. The Prediction Framework 

The proposed real-time security and dependability 
prediction framework is illustrated in Fig. 3. As depicted 
in the figure, the system is described by a three-part 
stochastic model, which consists of the state space S, the 
game model Γ and the corresponding state transition rate 
matrix Q. Naturally, the system behavior will depend on 
its operating environment, such as user behavior, 
administrative activities, the possible intrusions and 
exploits, and random software and hardware failures. Note 
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that we include attacker profile data as a separate part of 
the system environment. As mentioned in the previous 
section, by using cost-and reward values from the attacker 
profile, the game model is used to compute the attack 
probabilities that are to be incorporated in the rate matrix. 
As Fig. 3 indicates, the purpose of the stochastic model is 
to provide the system rate values needed to predict 
the )(tPF and MTNF measures.  
 

 

Fig. 3: The security and dependability assessment architecture. 

From Fig. 3 it is clear that to perform real-time security 
and dependability assessment for the system, there are 
three main tasks that has to be performed; monitoring, 
estimation and predicting. The main task of the monitor is 
to provide the estimator with observations regarding the 
system security and dependability behavior. The monitor 
is implemented as a distributed architecture consisting of 
agents that observe the system by means of network 
sensors. The estimator then uses the observations provided 
by the monitor to estimate the current state probability of 
the system. To be able to obtain the goal of real-time 
security and dependability measurements, the current state 
probability is updated and forwarded to the predictor as 
soon as a new observation has been received and 
interpreted. Finally, the predictor computes measures for 
the observed system, based on the transition rates from the 
stochastic model together with the estimated state 
probability. As previously discussed, the predictor uses 
well-known Markov analysis techniques to compute 
the )(tPF  and MTNF for the system. The implementation 
details of the monitoring and estimation architecture (Alg. 
1) will be further described in Section 5 and the exact 
procedure for computing the predicted measures (Alg. 2-
3) will be explained in Section 6. 

5. The Monitoring and Estimation 
Architecture 

The proposed monitor and estimator in Fig. 3 are both 
based on the results published in [11]. In this paper we 

restrict ourselves to an overall description of the 
architecture. The reader is referred to [11] for more details. 

5.1 The Monitor 

In [11], the monitor is implemented as a distributed 
monitoring architecture consisting of agents that observe 
one or more systems using network sensors. A sensor can 
be any information-gathering program or device, including 
network sniffers using sampling or filtering, different 
types of intrusion detection systems (IDS), logging 
systems, virus detectors, etc. The main task of a sensor is 
to gather information regarding the current state of one or 
more systems. The assumed monitoring architecture is 
hybrid in the sense that it supports any type of sensor. 
However, it is assumed that the sensors are able to classify 
and send standardized observations according to the state 
estimation model described in this paper. An agent is a 
computer program capable of a certain degree of 
autonomous action. An agent is responsible for collecting 
and aggregating sensor data from a set of sensors that 
monitor one or more systems and to forward these data to 
the estimator. In a multi-agent system, agents are capable 
of communicating and cooperating with other agents. A 
multi-agent architecture is preferable over a single agent 
implementation, due to its flexibility and scalability. The 
case study presented later on in this paper makes use of a 
single agent only.  
 
In real-life distributed agent-sensor implementations, 
observations often arrive in bursts, and there will also be 
silent periods without any activity at all. In this paper we 
let the agent adopt a sampling process of the sensors 
monitoring a particular system, similarly to the approach 
in [18]. By providing the estimator with observations at 
regular time intervals, the predicted system security and 
dependability measures can be updated at a predefined 
frequency. The sampling process will be further explained 
in the next subsection. 

5.2 The Discrete Sampling Process 

Recall that we use a CTMC to model the security and 
dependability behavior of a system. Due to its stochastic 
behavior, the system may be in any of the states in S when 
sampled. As Fig. 3 indicates, the purpose of the estimator 
is to use the sampled observations to estimate the current 
system state. To formalize, let τz  be the (possibly 
unobservable) system state at sampling instant τ . The 
sequence of states that a system is in during the sampling 
instants will then be denoted ( )K,, 21 zzZ = . Let 
 

{ }τττ
NXXX ,,1 K= ,    (9) 
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where τ

iX  denotes the probability that the system is in 
state i at the τ’th sample. Since one cannot assume that Z is 
known (recall the unobservability problem discussed in 
Section 3.2), it is this state probability that will be 
estimated and used to predict new system measures, at 
each sampling instant τ. 
 
Recall the system rate matrix Q. Assume that the interval 
between two different adjacent samples is fixed to Δ. Now, 
let ( )ΔP  denote the one-step transition probability matrix 

with elements ( )Δijp , such 

that ( ) ( )izjzPpij ===Δ + ττ |1 , Nji ≤≤ ,1 . Hence, 

( )Δijp  represents the probability that the system will, 

given that its current state at sampling instant τ is i, be in 
state j after an additional time Δ, i.e., at the next sample τ 
+1. By using (3), ( )ΔP can be derived from Q as 
 

( ) Δ⋅=Δ QeIP ,    (10) 
 
where I is the identity matrix. For simplicity, we let P 
represents ( )ΔP  in the rest of this paper. It is important 
to notice that even though we used a fixed sampling 
interval Δ in this paper, this is not a requirement for the 
model to work. One can easily imagine scenarios where it 
is desirable to sample the sensors and predict new system 
measures at irregular time intervals. In that case 
( )ΔP needs to be recomputed at each sampling instant τ 

5.3 Interpreting Observations 

Due to the inhomogeneity of sensor types, the 
observations can consist of a variety of information; 
different types of alarms, suspect traffic patterns, entries in 
log data files, input from network administrators, 
indications of system elements up and down, ongoing 
operational and maintenance activities, and so on. To 
formalize, we assume that any observation can be 
classified as one of the symbols in the finite symbol 
set { }MvvV ,,1 K= . The sequence of observations that 
the monitor forwards to the estimator is 
denoted ( )K,, 21 yyY = , where Vy ∈τ  is the 
observation received at sampling instant τ. Based on Y, the 
estimator will estimate the system’s current state, in terms 
of the state probability τX  in (9). The estimator will 
receive observations originating from more than one 
sensor, and these sensors may provide different types of 
data or even inconsistent data. All sensors will not be able 
to register all kinds of activities, so one cannot assume that 

the estimator is able to resolve the correct state of the 
monitored system at all times. The observation symbols 
are therefore probabilistic functions of the system's 
Markov chain, i.e., the system's true state will be hidden 
from the estimator. This is consistent with the basic idea of 
hidden Markov models (HMMs), as described in [14]. 

5.4 State Probability Estimation 

Each monitored system can be represented by a HMM, 
defined by the three tuple ( )OXP ,, 1=Λ . As previously 

discussed, { }ijpP =  is the one-step transition probability 

matrix for the system, { }11
1

1 ,, NXXX K=  is the state 
probability distribution of the system when the sampling 
starts, i.e., at sample instant τ = 1. If one does not know 
the initial state probability of the system, the elements in 

1X  have to be estimated, for instance by using the system 

steady state probabilities in (4). { })(loO j=  is the 

observation symbol probability matrix for a system during 
sampling. Its elements 
are ( ),|)( jzvyPlo lj === ττ ,1 Nj ≤≤ Ml ≤≤1  

i.e., )(lo j  represents the probability that a sensor will 

provide the observation symbol lv  when sampled, given 
that the system is in state j. The elements of O will 
therefore give an indication of the sensor’s false-positive 
and false-negative effect on the security and dependability 
prediction process. Note that if there is more than one 
sensor monitoring a particular system, one should define a 
separate observation symbol probability vector kO  for 
each sensor k. 
 
By using an observation τy  and the HMM Λ , the 

estimator will compute and replace τX  in (9) with
∧
τX , 

where 
∧
τX is the system’s most likely state probability at 

sampling instant τ. This is done by means of Alg. 1. The 
complexity of the algorithm is ( )2NO  where N is the 
number of system states. 
 
Algorithm 1 Estimate the current state probability 
Require: τy ,Λ {an obs. at sampl. instant τ, the HMM} 

Ensure: 
∧
τX {the estimated state prob. at sampl. inst. τ } 

  if τ =1 then 
    for i=1 to N do 
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      1
1 )( iii Xyo←τα      

      
∑ =

∧

← N

j j

i
iX

1
τ

τ
τ

α
α

 

    end for 
  else 
    for i=1 to N do 

      ∑ =
−←

N

j jijii pyo
1

1)( τ
τ

τ αα  

      
∑ =

∧

← N

j j

i
iX

1
τ

τ
τ

α
α

 

    end for 
  end if 

return 
⎭
⎬
⎫

⎩
⎨
⎧

=
∧∧∧
τττ
NXXX ,,1 K  

To see why Alg. 1 works, note that, given the first 
observation 1y  at τ = 1, and the HMM ( )OXP ,, 1=Λ , 

the elements in a new initial state probability 
∧

1X  can be 

estimated as  
 

( ) ( )
( )

( ) ( )
( )Λ

Λ=Λ=
=

Λ
Λ=

=Λ==
∧

|
|,|

|
|,,|

1

111

1

11
11

1

yP
izPizyP

yP
izyPyizPXi   (11) 

 
To find the denominator, one can condition on the first 
visited state and sum over all possible states  
 

( ) ( ) ( )

.)(

|,||

1

1
1

1
1111

∑

∑

=

=

=

Λ=Λ==Λ

N

j
jj

N

j

Xyo

jzPjzyPyP
 (12) 

 
Hence, by combining (11) and (12) 
 

.
)(

)(

1
1

1

1
11

∑ =

∧

= N

j jj

ii
i

Xyo

Xyo
X     (13) 

 
To simplify the computation of the estimated state 
probability at the τ’t observation we use the forward-
variable ( )Λ== |,1 izyyPi ττ

τα K , as defined in 
[14]. By using recursion, this variable can be calculated in 
an efficient way as  
 

( )∑
=

−=
N

j
jijii pyo

1

1 ,τ
τ

τ αα     (14) 

 
for τ>1. In the derivation of τα i  we assumed that τy  

depends on τz only, and that the Markov property holds. 
From (11) and (13) we find the initial forward variable  
 

( ) 1
1

1
iii Xyo=α     (15) 

 
when τ=1. Now we can use the forward variable τα i to 
update the estimated state probability distribution by new 
observations. This is done by 
 

( ) ( )
( )

( )
( )

.
|,

|,

|
|,

,|

11 1

1

1

1
1

∑∑ ==

∧

=
Λ=

Λ=
=

Λ
Λ=

=Λ==

N

j j

i
N

j

i

jzyyP

izyyP

yyP
izyyP

yyizPX

τ

τ

ττ

ττ

τ

ττ
ττ

τ

α

α

K

K

K

K
K

 (16) 

 

6. Making the System Predictions 

The final step in the security and dependability assessment 
process illustrated in Fig 3 is that the predictor uses the 
estimated state probability distribution together with the 
state transition rate matrix to compute system measures. 
This section provides the algorithms (Alg. 2-3) together 
with a detailed explanation of the mathematical equations 
that are used to compute the )(tPF  and MTNF measures. 

6.1 Computing )(tPF
τ  

Recall the definition of )(tPF  provided in (7). To use the 
estimated state probabilities to compute the function at 
sample instant τ, Alg. 2 can be used.  
 
Algorithm 2 Predict the )(tPF

τ  measures 

Require: *Q ,
∧
τX {the modified rate matrix, the 

estimated state prob. at τ} 
Ensure: )(tPF

τ {the predicted )(tPF at sample τ } 
  for i=1 to N do 

      
∧

← τ
ii XX )0(*    

      tQ
ii eXtX

*

)0()( ** ←  

    if Ki ≤  then 
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      )()( * tXtP iF =+τ  
    end if 
  end for 
return )(tPF

τ  
 
As can be seen from the algorithm, at each sampling 
instant τ there are three main steps to perform. First, the 
algorithm sets the initial state probability equal to the 

estimated, i.e.,
∧

← τXX )0(* . The )0(*X  vector is then 
used when solving the system state equation defined in (2), 

i.e., ( ) tQeXtX
*** 0)( = . To solve the system state 

equation, the algorithm uses the Mathematica 
package ”StateDiagrams.m” [6], which implements the 
theory in [3]. Then, in accordance to (7), the )(tPF

τ  
function is computed as  
 

∑
∈

=
GSi

iF tXtP )()( *τ .   (17) 

 
Even though this definition of )(tPF

τ  is very similar to the 
traditional definition of the system reliability function (see 
e.g., [5]), there is a crucial difference. As a consequence of 
the estimation process, we cannot make the usual 
assumption that the system state is good when computing 

(17). Because 
∧
τX is used to determine )0(*X  in Alg. 2 

it might be that 1)0(* ≠∑∈ GSi iX . Hence, to validate the 

predicted system measures, one should also use (17) to 
compute ∑∈

=
GSi iF XP )0()0( *τ , i.e., the probability that 

the system actually is in a good state at sampling instant τ. 

6.2 Computing τMTNF  

To compute the mean time to next failure (MTNF) 
measure at sampling instant τ, Alg. 3 is used. 
 
Algorithm 3 Predict the τMTNF  measures 

Require: 1Q ,
∧
τX {(a part of) the rate matrix, the 

estimated state prob. at τ} 
Ensure: τMTNF {the predicted MTNF at sample τ } 

  for j=1 to K do 

      

∑ =

∧

∧∧
∧

←
K

j j

j
j

X

X
X

1
τ

τ
τ    

      define 

∧
∧

=
=−∑ τ

j
K

i iji XqT
1

   

  end for 
  solve for all iT  

  return ∑=
=

K

i iTMTNF
1

τ   

 
The algorithm has been implemented in accordance to 
methodology in [3], slightly modified to fit into the 
context of the proposed security and dependability 
assessment architecture. Suppose the states are ordered, 
such that { }KG SSS K,1=  and { }NKF SSS K,1+= . 
Then Q can be written in partitioned form as 
 

,
43

21
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

QQ
QQ

Q     (18) 

 
where the size of 1Q  is KK × , the size of 2Q  is 

( )KNK −×  and so forth. Now also the estimated state 
probability vector can be partitioned as 

⎭
⎬
⎫

⎩
⎨
⎧

=
∧∧∧
τττ
FG XXX ,  where 

⎭
⎬
⎫

⎩
⎨
⎧

=
∧∧∧
τττ
KG XXX ,,1 K  

and
⎭
⎬
⎫

⎩
⎨
⎧

=
∧∧

+

∧
τττ
NKF XXX ,,1 K .  

 
To compute the system’s expected time to next failure, 
one has to assume that the system is in one of the good 
states in GS  at sampling instant τ (otherwise MTNF = 0, 
since the system already has failed). Therefore, the 

estimated state probabilities in
∧
τ
GX  must be re-normalized 

such that 
 

KG

G
G

hX

XX ∧

∧∧
∧

=
τ

τ
τ     (19) 

 
where Kh  is a column vector of K ones. Define  

{ }KTTT ,,1 K= . By solving 
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∧
∧

=− τ
GXTQ1     (20) 

 
the mean time to next failure for the system at the 
particular instant τ can be computed as 
 

∑
=

=
K

i
iTMTNF

1

τ ,    (21) 

 
    
provided that the system is in any of the good states in GS  
when sampled. The main difference between the 

τMTNF  measure used in this paper and the MTFF 
(mean time to first failure) measure used in traditional 
dependability analysis, is that when computing MTFF the 
system is considered new when it starts to deliver its 
intended service, i.e., { }0,,0,1)0( K=X . In contrast, 

τMTNF  is computed from the estimated state 
probabilities rather than the initial system state 
probabilities. The advantage with our approach is that by 
computing τMTNF  as proposed in (21) one can use the 
real-time observations provided by the monitoring 
architecture to make a better prediction of the system’s 
expected time to next failure, and update this prediction 
whenever new information arrives. Hence, in contrast to 
the static MTFF, the τMTNF  will be a dynamic system 
measure, more suitable for a real-time system assessment 
architecture. However, as previously discussed, since 
the τMTNF is conditioned on a good system state at 
sampling instant τ (i.e., that GSz ∈τ ) the measure should 
always be evaluated together with the corresponding 

)0(τ
FP  to make sense. This will be illustrated in the case 

study in the next section. 

7. Case Study: A Database Server 

To illustrate the proposed approach, we model and 
simulate the security and dependability assessment process 
for a typical network service configuration consisting of a 
database service for a local area network (LAN). In this 
paper we consider a single server implementation only; 
however, the example model can easily be extended to the 
more commonly used distributed server implementation 
(see [16] for an example). Fig. 4 illustrates the database 
server that is to be assessed in this study. 

 

Fig. 4: The database server in its network environment. 

In this example, the database server is assumed to be 
subject to accidental software-and hardware failures, as 
well as packet flooding Denial of Service (DoS) attacks 
originating from outside the LAN. As can be seen, the 
database server is monitored by a distributed agent-sensor 
system consisting of one agent that samples and interprets 
information from two different kinds of sensors; a network 
intrusion detection system (NIDS) and a host-based sensor 
system (HSS). The NIDS monitors traffic between the 
outside network and the internal LAN, and the HSS 
processes log files and checks system status locally at the 
database server.   

7.1 The Stochastic Model 

The database server can be modeled by a four-state CTMC. 
State G means that the server is fully operational, i.e., it is 
a system ”up” state. In state A the server is subject to an 
ongoing DoS attack, which means that its performance is 
degraded so that the service is only partially available. 
Still, the A state is considered a system ”up” state. If the 
DoS attack is detected and reacted to before the server 
crashes, the system will return to state G. In the ”down” 
states SF and HF the server is subject to software and 
hardware failures, respectively. A hardware failure 
requires a manual repair. To recover from a software 
failure, only a server reboot is needed. Note that since also 
the effect of a successful DoS attack is a software failure 
requiring a reboot, we do not need to distinguish between 
accidental and malicious software failure modes in the 
stochastic model. Hence, the complete state set is 

{ }HFSFAGS ,,,=  whereof { }AGSG ,=  

and { }HFSFSF ,= , as illustrated in Fig. 5. 
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Fig. 5: The state transition diagram for the database server. 

The time to failure, attack and repair are assumed to 
follow the exponential distributions te λλ − , te ϕϕ −  

and te μμ − , respectively. The specific rates used in this 
example 
are 005.0=Sλ , 0003.0=Hλ , 002.01 =ϕ , 602 =ϕ ,

15=Aμ , 25.0=Sμ and 04.0=Hμ  ( 1−h ). The rate 

transition matrix for the server, denoted serverQ , is 
 

 

( )
( )

( )
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In this example we chose not to demonstrate how to 
incorporate attacker behavior in the rate matrix, but 
assume that a game model, serverΓ , has already been 

applied to obtain the attack probability parts of 1ϕ  and 

2ϕ . The result from the game model affects the numerical 
values of the predicted system measures in the final step of 
the system assessment model but is otherwise not 
substantially important for understanding the functionality 
of the prediction architecture. The reader is therefore 
referred to the previously published paper [12] for a more 
illustrative case-study on this particular topic. 

7.2 The Monitoring System 

As illustrated in Fig. 4, the agent collects and interprets 
data from both the NIDS and the HSS. The observations 
are then forwarded to the estimator (not illustrated in the 
figure). In this example the observation symbol set is 

{ }hfsfagV ,,,=  where symbol g is an indication of 
system state G, symbol a an indication of state A, and so 

forth. In this paper we do not focus on how the NIDS and 
HSS data is interpreted; we simple assume that the agent is 
able to map sensor data into symbols representing states.  
 
The HMM representing this monitoring system is defined 
by the three-tuple ( )serverserverserver OXP ,, 1=Λ . The 

sampling interval is fixed to 15=Δ min. By using (10) 
we compute the one-step transition probability matrix as 
 

.

990.01085.71051.21094.9
1046.7939.01053.1061.0
1046.7754.01049.6246.0
1046.71058.11066.2998.0

673

56
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=
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As the initial sampling state distribution we use the steady 
state probabilities of the system  
 

 { }
{ },1044.7,1055.2,1058.2,967.0

,,,
325

11111

−−− ⋅⋅⋅=

= HFSFAGserver XXXXX
  

 
found by solving (5)-(6). One can see that the database 
most likely will be in state G when the sampling process 
starts. The observation symbol probability matrix for the 
database server is  

.

88.010.001.001.0
20.070.002.008.0
05.010.055.030.0
04.006.010.080.0

)()()()(
)()()()(
)()()()(
)()()()(

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞
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⎜

⎝

⎛

=
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Since both )(sfoG , )(hfoG , )(sfoA and 0)( ≠hfoA , 

and )(goSF , )(aoSF , )(goHF and 0)( ≠aoHF  in 

serverO , one can see that even though the sensors in this 
case study have relatively low false-positive and false-
negative rates there is still room for the possibility of 
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misleading observations. Note that we use a single 
observation symbol probability matrix to represent the 
trustworthiness of the (merged) data from both the NIDS 
and the HSS sensor. See e.g., [11] for an example of round 
robin sampling of sensors, or [4] for an algorithm for 
optimal selection of data from multiple sensors. 

7.3 Simulation Results 

To evaluate the effectiveness of the proposed prediction 
method, we simulate the following three different 
observation sequences  
 

( )ggggggagggY ,,,,,,,,,1 = , 
( )gggsfsfasfaggY ,,,,,,,,,2 = , 
( )hfhfhfhfgsfgsfggY ,,,,,,,,,3 = . 

 
The purpose of the first simulated sequence ( 1Y ) is to 
demonstrate how the prediction process reacts to a 
single ”attack” warning observation (a) that are preceded 
and followed by a number of ”good” observations (g). The 
second simulation ( 2Y ) demonstrates how the prediction 
algorithm reacts to alternate a and sf observations. The 
third sequence ( 3Y ) simulates a number of software failure 
observations that are indicated to be repaired, and finally 
followed by a protracted hardware failure.  

The )(tPF
τ  functions 

First, we discuss the predicted )(tPF
τ  functions for the 

three cases. From Fig. 6 it appears that )0(τ
FP  is very 

close to 1 for all samples 10,,1K=τ  when simulating 1Y . 
Fig. 7 shows a more detailed view of the simulation results 
from 1Y . One can see that the )(tPF

τ graph is lower for the 
first sample, i.e., when τ= 1. This is because, in 
accordance to 1

serverX , the server is assumed to be in state 
G with only 96.7% certainty when the sampling process 
starts. As the estimator receives more g symbols, the 
estimated probability of state G will rise, and hence, the 
corresponding )(tPF

τ  graph will rise. Note that since the 
fourth observation ay =4  in the first simulation, the 

)(4 tPF  graph will be slightly lower than the subsequent 
predicted graphs. 
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0.6

0.8

1
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tHtL

 

Fig. 6: An overview of the )(tPF
τ  graphs when simulating 1Y . The 

figure depicts the predicted )(tPF
τ  graphs at the sampling 

instants 10,,1K=τ .   
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Fig. 7: A closer look at the )(tPF
τ  graphs when 

simulating ( )ggggggagggY ,,,,,,,,,1 = . 

As can be seen from Fig. 8 and Fig. 9, )(tPF
τ  for the 

second simulation will be quite high until the estimator 
receives the first sf symbol at sampling instant τ = 4. Even 
though the next observation ( ay =5 ) will rise the 

predicted graph, the next observation after that ( sfy =6 ) 
will lower it even more. The lowest graph of them all will 
appear at sampling instant τ = 7, which is due to the two 
successive sf observations. Note that for the same 
reason 55.0)0(7 ≈FP , since the system with a high 
probability already has failed. 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007 

 

180 

 

50 100 150 200
t

0.2

0.4

0.6

0.8

1
PF
tHtL

 

Fig. 8: An overview of the )(tPF
τ  graphs when simulating 2Y . The 

figure depicts the predicted )(tPF
τ  graphs at the sampling 

instants 10,,1K=τ .   
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Fig. 9: A closer look at the )(tPF
τ  graphs when 

simulating ( )gggsfsfasfaggY ,,,,,,,,,2 = . 

The result from the third simulation (Fig. 10, Fig. 11 and 
Fig. 12) shows that the alternating g and sf observations 
will give rise to corresponding )(tPF

τ  graphs. As the 
agent starts to receive hf (hardware failure) symbols, the 
predicted )(tPF

τ graphs will decrease even more. 

Also 0)0( →τ
FP  as 10→τ . 
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Fig. 10: An overview of the )(tPF
τ  graphs when simulating 3Y . The 

figure depicts the predicted )(tPF
τ  graphs at the sampling 

instants 10,,1K=τ .    
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Fig. 11: A closer look at the )(tPF
τ  graphs when 

simulating ( )hfhfhfhfgsfgsfggY ,,,,,,,,,3 = . 
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Fig. 12: A closer look at the top seven )(tPF
τ  graphs when 

simulating 3Y . 
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As indicated in Fig. 6, Fig. 8 and Fig. 10, 0)( →tPF

τ as 
∞→t  for all simulated graphs, i.e., even though the 

estimated state during sampling is likely to be good, the 
system will sooner or later fail. 

The MTNF measures 

The predicted τMTNF  measures, together with the 
corresponding )0(τ

FP ’s, are depicted in Fig. 13. During 
the first simulation ( 1Y ), the predicted MTNF measure 
drops as the a symbol is received (at sampling instant τ = 
4), but returns to the same level as more g symbols are 
received. The corresponding )0(τ

FP  graph indicates that 
the predicted MTNF measures are very reliable 
( 1)0( ≈τ

FP ), with an exception for the first sample 

( 998.0)0(1 =FP ).  
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Fig. 13: The MTNF measures together with the corresponding )0(τ
FP ’s. 

From the second simulation we observe that 
since ayy == 53 , the predicted MTNF measure will be 
slightly lower at τ = 3 and τ = 5. Interestingly, MTNF will 
rise at τ = 4, τ = 6 and τ = 7, even 
though sfyyy === 764 . The corresponding )0(τ

FP  
graph explains this phenomenon; since the graph is lower 
at τ = 4, 6, 7 the system may already be in a failed state at 
these particular sampling instants.  
 
The results from the third simulation indicates that sf and  
hf symbols will lower the predicted MTNF measures. 
Since the simulated trace ends with four subsequent hf 
symbols (at τ =7, 8, 9, 10), 0)0( →τ

FP  as 10→τ . 

8. Concluding Remarks 

This paper presents a framework for integrated security 
and dependability assessment of computing systems. By 
using data provided by a monitoring architecture, the 
current system state and its future behavior can be 
predicted in real-time. The proposed method for 
computing system measures is based on Markov analysis, 
where some of the model parameters are determined by a 
game theoretic analysis of attacker behavior. To 
demonstrate the feasibility of the proposed prediction 
architecture, we performed three simulation experiments 
for a small case study.  
 
The stochastic modeling approach used in this paper relies 
on a few assumptions. First, we assume that the security 
and dependability behavior of the system can be modeled 
as a Markov process, which means that the conditional 
probability distribution of future states of the process 
depends only upon the current state. Even though it is very 
common to assume these properties when modeling and 
analyzing systems in a traditional dependability context 
(considering accidental failures only), it is not (yet) a well 
established practice in the security community. Second, 
the HMM approach relies on independent observations, 
which means that the observations that a sensor produces 
depend on the current system state only, and not on any 
previous observations. The main drawback of this 
approach is that, because security indications and alerts 
can be highly correlated, the sampling interval must be 
large enough so that the observations received by the 
estimator can be considered independent, for the model to 
be valid. Of course the exact lower limit for the sampling 
interval will depend on the particular system that is to be 
assessed, and on the types of sensors that monitors the 
system. As an example, for the database server in the case 
study 15 minutes was suggested as a reasonable sampling 
interval. 
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The case study used to demonstrate the approach in 
Section 7 is kept simple for illustration. In the future we 
plan to model and simulate the security and dependability 
assessment process for a more extensive example. A 
validation by a prototype system also remains.  
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