
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

169

Manuscript received March 5, 2007

Manuscript revised March 25, 2007

A Framework for Predicting Security and Dependability
Measures in Real-time

Karin Sallhammar, Bjarne E. Helvik and Svein J. Knapskog

“Centre for Quantifiable Quality of Service in Communication Systems”,
Norwegian University of Science and Technology, Trondheim, Norway

Summary
The complex networked systems of today that our technological
and social society relies upon are vulnerable to a large number of
failures, accidental as well as intentional. Ideally, the service
delivered by such a system should be both dependable and secure.
This paper presents a framework for integrated security and
dependability assessment. The proposed model is based on
traditional stochastic analysis techniques, supported by live data
from network sensors, which is used to estimate the current state
and predict the future behavior of a system in real-time. The
method is demonstrated by a small case study.

Key words:
Stochastic modeling, integrating security and dependability,
security measures, real-time prediction, hidden Markov models.

1. Introduction

The new paradigms of ubiquitous computing and high
capacity data transfer has led to an explosive growth in the
number and complexity of computing systems used for
critical applications, such as electronic commerce, health-
care and urgent information interchange. Since the modern
society of today is highly dependent on these services, the
computing systems need to function properly despite not
only accidental failures but also malicious attacks. To
increase the trustworthiness of the implemented services,
it should be possible to monitor the systems’ current
robustness towards these impairments, as well as assess
and predict their current and near future behavior. This
paper deals with a method for such monitoring and
prediction.

A system’s ability to provide a correct and timely service
can be described in terms of its dependability and security.
Dependability is the ability to deliver service that can
justifiably be trusted, and can be stated as an integrative
concept that encompasses the attributes availability,
reliability, safety, integrity and maintainability [1].
Security, on the other hand, is defined as a concept
addressing the attributes confidentiality, integrity and
availability [7]. To function properly, critical applications

and systems need to be both dependable and secure.
However, despite the fact that a system cannot be
considered trustworthy without a rigorous analysis
comprising a joint consideration of these two concepts,
dependability and security have tended to be treated
separately. To allow continuous estimation of the
trustworthiness of the services provided by today’s
computing systems, there is an urgent need of new
modeling methods that treats both security and
dependability.

As pointed out in [10], to model, analyze and evaluate
systems that are yet to be built or systems whose specific
vulnerabilities remain unknown, stochastic assumptions
are needed. During the last decade, probabilistic modeling
of security has gained a lot of interest [2, 8–10, 13, 17].
Such models, which are inspired by the traditional
dependability analysis techniques, can be used to provide
quantitative measures of a system’s operational security.
However, most of the recent research efforts have focus
on either security or dependability analysis, rather than
aiming for a unified evaluation framework. In [12] we
described a method for integrated security and
dependability evaluation, which uses stochastic analysis
techniques to model and compute expected failure times
for a computing system, regardless of whether the failure
cause is intentional or not. To incorporate malicious
behavior in the stochastic model, a game theoretic
approach is applied. The method can be used for both
predicting a system’s future security and dependability
behavior, as well as for trade-off analysis of possible
countermeasures. This paper extends our previously
published results by integrating the proposed model in a
distributed network monitoring environment. By using
observations provided by network sensors, the probability
of the current system state can be estimated, which makes
it possible to use the stochastic model to predict the future
behavior of the monitored computer system in real-time.
The overall concepts used in our framework are depicted
in Fig. 1. The system that is to be assessed, together with
its operational environment, is described by a stochastic
model. There is a monitor that continuously surveys the
system and gives warnings of possible disturbances. By

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

170

using the stochastic model together with real-time data
from the monitor our model can estimate the current state
of the system, and predict its future behavior.

”real-time”

system

stochastic
model

monitor
”prediction”

Fig. 1: The overall concepts.

This paper is organized as follows. Section 2 starts by
reviewing the basis of stochastic modeling, and introduces
the proposed security and dependability measures. Section
3 discusses how security analysis differs from traditional
dependability evaluation, and explains how these issues
are treated in our integrated framework. In Section 4 the
proposed security and dependability assessment
architecture is presented. In Section 5 we explain how a
monitoring architecture can be used to collect sensor data
and how this information is interpreted to estimate the
current system state. Section 6 provides the methodology
for computing real-time measures of the system. In
Section 7 the approach is demonstrated by an illustrative
example. Finally, Section 8 concludes the paper and points
to future work.

2. Predicting Security and Dependability

When operating a system with security and dependability
requirements it is of interest to be able answer questions
like: ”Is the system already compromised?”, ”What is the
probability that the system is currently under
attack?”, ”What is the probability that the system will
operate without security breaches or failures for the next
24 hours?”, or ”What is the expected time until such an
event occurs?”. The objective of this paper is to provide a
methodology that can be used to provide answers to such
questions. For the simplicity of the presentation we denote
any undesired event in or state of the system as a failure,
in accordance with [1], without discrimination with
respect to kind of failure. A refinement is straight forward.
Hence, we denote the time from now and until the next
failure by FT and seek to obtain:

•)()(tTPtP FF >=
The probability that the time until the next failure is
greater than t 1.

• ∫
∞

=
0

)(
)0(

1 dttP
P

MTNF F
F

The mean time to next failure2 , assuming that the
system will sooner or later fail
(i.e., 0)(lim =∞→ tPFt).

Dealing with security issues, it is not necessarily evident
when the system is failed (compromised), so we will in
general have 1)0(≤FP , where)0(1 FP− represents the
probability that the system is already failed (compromised).

To obtain the above measures, two important elements are
needed:
• The ability to predict the current state of the system,

and

• For a given state, the ability to predict the future
behavior of the system.

We will return to these elements later on in this paper.
First, we introduce the overall modeling approach
applying Markov models and discuss how security issues
may be included in these.

2.1 The Stochastic Modeling Approach

Above we have informally introduced the concept of state.
By a state in this context is meant an operational mode of
the system characterized by which units of the system that
are operational or failed, whether there are ongoing attacks,
active countermeasures, operational and maintenance
activities, whether parts of the system have been
compromised or not, etc. The decision of what to include
or not in the state definition is a trade-off between model
representativeness and complexity, and is a salient part of
every modeling and analysis effort. The more system
states that are taken into consideration, the more fine-

1 This expression corresponds to the reliability function in
traditional dependability analysis (where only random
failures are regarded), but this term is not used to avoid
misinterpretation.
2 The MTNF measure differs from the MTTF (mean time
to failure) and MTFF (mean time to first failure)
traditionally used in dependability analysis. In contrast to
MTTF and MTFF, the MTNF measure is conditioned
on)0(FP . The measure will be further explained in
Section 6.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

171

granular the model becomes. Since the model needs to be
parameterized, the granulation of the state space must be
carefully considered. Too simple models will not provide
any valuable insight into the system behavior, whereas too
complex models will quickly lead to state space explosion.
An example primarily for illustration will be presented in
Section 7.

Let say the system has N disjoint states and that at any
time it is in one of these. The behavior of the system is
characterized by the transitions between the states, each
transition triggered by an event. The events that will occur
next, as well as the time until next event, are random.
Hence, the behavior of the system is a stochastic process.
For the sake of simplicity, assume that the occurrence
rates of events depend only on the state the system is in,
i.e., the system is modeled by a continuous time Markov
chain (CTMC) (for an introduction to Markov modeling
for dependability analysis, see for instance [5]). A CTMC
is characterized by its rate matrix, whose elements
represent the transition rates between the system states.

2.2 System Equations

Assume that the system has a finite number of states,
denoted { }NSSS ,,1 K= . This state set can be split into two
subsets { }FG SSS ,= , such that

GS contains the good
system states and FS contains the failed system states. Let

{ },)(,),()(1 tXtXtX NK= (1)

where)(tXi

 denotes the probability that the system is in
state i at time t. The state equation describing the system
behavior is then

,)()(QtXtX
dt
d

= (2)

where { }ijqQ = is the N ×N state transition rate matrix of

the system. The element
ijq represents the transition rate

from state i to state j. Note that ∑ ≠
−=

ji ijii qq . The state

equation can be solved if the initial state of the system
)0(X is known. Then

.)0()(QteXtX = (3)

The solution to (3) provides the transient state
probabilities for the system. See for instance [15].
However, the probability that a CTMC will be in state i at
time t often converges to a limiting value, which is

independent of the initial state. The steady state
probabilities

{ },,,1 NXXX K= (4)

whose elements ,,,1),(lim NitXX iti K==

∞→
 can then be

obtained by solving the set of N equations given by N - 1
of the N equations

,0=XQ (5)

and with the N’th equation

.1
1

=∑
=

N

l
lX (6)

As is common practice in dependability analysis, the
CTMC can be used as a basis for obtaining various
measures of the system, such as the MTNF or)(tPF
previously discussed. For computation of measures
relating to FT , the failure states may be made absorbing,

i.e., 0* =ijq when
GF SjSi ∈∈ , , otherwise ijij qq =* . Let

{ }**
ijqQ = be the modified state transition rate matrix

with absorbing failure states and denote by)(* tX the
corresponding state probabilities. Hence,

∑
∈

=
GSi

iF tXtP)()(* , (7)

from which the MTNF can be computed. Rather than

integrating ∫
∞

0
)(dttPF to obtain MTNF we will adopt a

computationally more efficient approach, based on [3].
The details together with computational issues will be
further explained in Section 6.

3. The Challenges with Security Modeling

In dependability analysis it is very common to use the
stochastic modeling approach described in Section 2 to
quantify the reliability or availability of systems. In that
case, the states are classified as either ”up” states (the
good states in

GS) or ”down” states (the failed states in

FS), depending on whether the required service is
delivered or not. In theory, by associating down states
with failures of confidentiality or integrity one can use
these methods for evaluating also the security properties of
a system. A simple example is depicted in Fig. 2, where S

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

172

= {G,C,F} = {”good”,”compromised”,”failed”}. Here, it
is assumed that a large number of attackers are targeting
the system in state G, with accumulated attack intensityλ .
In contrast to attack graphs (as used in e.g., [8]) where
each state transition corresponds to a single atomic step of
a penetration, our model aim to be more high-level and
focus on the impact of the attacks on the system rather
than on the specific attack procedures themselves. This
facilitates the modeling of unknown attacks in terms of
generic state transitions. For example, in Fig. 2 the attack
is merely defined as “the action that seeks to transfer the
system from a good state to a compromised state” and
nothing more.

repair (φ2)

fail (µ)

restore (φ1)

attack (λ)

fail (µ)G FC

Fig. 2: A simple Markov model, including a compromised system state.

However, for real-world cases where more complex
models are needed two problems quickly arise:

1. The attacks are intentional, rather than purely
random.

2. Regarding security, the current system state may
be unobservable.

The remainder of this section will discuss these two
problems and explain our proposed solutions.

3.1 Incorporating Attacker Behavior

When using the traditional Markov approach it is (in most
cases) straightforward to model accidental failures as state
transitions. However, since attacks are intentional they
may not always be well characterized by models of
random nature. Hence, a more sophisticated approach than
the simple model depicted in Fig. 2 is needed. To be able
to model the effect of a successful attack as a transition
between system states one needs to consider the two
underlying causes of any attack. As pointed out in [12],
there must be (at least) one vulnerability in the system, and
a malicious action that tries to exploit that vulnerability,
for an attack to be successful. Even though the time an
attacker needs to perform an attack action may be modeled
as randomly distributed, the decision to perform the action
will also influence the system failure rate. Therefore,
attacker behavior must be represented in the state
transitions. In this paper we follow the approach in [12]
and define)(aiπ as the probability that an attacker will
choose action a when the system is in (the vulnerable)

state i. The failure rate between state i and j when
incorporating malicious behavior can therefore be
computed as

)()(aaq ijiij λπ= , (8)

where)(aijλ is the accumulated intensity if all potential

attackers always take action a. By introducing the attack
probability)(aiπ as an element in the rate value

ijq , the

result from a successful attack can be modeled as one or
more intentional state changes of the underlying
stochastic process, which represents the dynamic behavior
of the system. To compute the attack probabilities we use
the game model proposed in [12]. The game model is
based on a reward- and cost concept, which makes it
possible to predict the expected attacker behavior, in terms
of attack probabilities, for a number of different attacker
profiles. The game theoretic approach will not be further
explained in this paper; the reader is referred to [12] for
the exact details.

3.2 Observing the System Security State

In dependability analysis, the system state set S is usually
considered known. Moreover, all states are assumed to be
deterministically observable, in that the current system
state is well defined and perceptible, at all times. However,
in a security context the degree of unobservability may be
quite high. A system might very well seem to be in a good
state even though it is compromised, e.g., due to a stealthy
attack. How can one compute measures such as)(tPF or
MTNF if one does not know the initial state of the system
with certainty? Our solution is to use information from
network sensors monitoring the system to estimate its
current state probability. We then replace)0(X in (3)
with the most likely state probability at that particular time
instant, which provides us with the possibility of re-
computing the system measures in real-time. This
procedure will be further explained in the subsequent three
sections of this paper.

4. The Prediction Framework

The proposed real-time security and dependability
prediction framework is illustrated in Fig. 3. As depicted
in the figure, the system is described by a three-part
stochastic model, which consists of the state space S, the
game model Γ and the corresponding state transition rate
matrix Q. Naturally, the system behavior will depend on
its operating environment, such as user behavior,
administrative activities, the possible intrusions and
exploits, and random software and hardware failures. Note

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

173

that we include attacker profile data as a separate part of
the system environment. As mentioned in the previous
section, by using cost-and reward values from the attacker
profile, the game model is used to compute the attack
probabilities that are to be incorporated in the rate matrix.
As Fig. 3 indicates, the purpose of the stochastic model is
to provide the system rate values needed to predict
the)(tPF and MTNF measures.

Fig. 3: The security and dependability assessment architecture.

From Fig. 3 it is clear that to perform real-time security
and dependability assessment for the system, there are
three main tasks that has to be performed; monitoring,
estimation and predicting. The main task of the monitor is
to provide the estimator with observations regarding the
system security and dependability behavior. The monitor
is implemented as a distributed architecture consisting of
agents that observe the system by means of network
sensors. The estimator then uses the observations provided
by the monitor to estimate the current state probability of
the system. To be able to obtain the goal of real-time
security and dependability measurements, the current state
probability is updated and forwarded to the predictor as
soon as a new observation has been received and
interpreted. Finally, the predictor computes measures for
the observed system, based on the transition rates from the
stochastic model together with the estimated state
probability. As previously discussed, the predictor uses
well-known Markov analysis techniques to compute
the)(tPF and MTNF for the system. The implementation
details of the monitoring and estimation architecture (Alg.
1) will be further described in Section 5 and the exact
procedure for computing the predicted measures (Alg. 2-
3) will be explained in Section 6.

5. The Monitoring and Estimation
Architecture

The proposed monitor and estimator in Fig. 3 are both
based on the results published in [11]. In this paper we

restrict ourselves to an overall description of the
architecture. The reader is referred to [11] for more details.

5.1 The Monitor

In [11], the monitor is implemented as a distributed
monitoring architecture consisting of agents that observe
one or more systems using network sensors. A sensor can
be any information-gathering program or device, including
network sniffers using sampling or filtering, different
types of intrusion detection systems (IDS), logging
systems, virus detectors, etc. The main task of a sensor is
to gather information regarding the current state of one or
more systems. The assumed monitoring architecture is
hybrid in the sense that it supports any type of sensor.
However, it is assumed that the sensors are able to classify
and send standardized observations according to the state
estimation model described in this paper. An agent is a
computer program capable of a certain degree of
autonomous action. An agent is responsible for collecting
and aggregating sensor data from a set of sensors that
monitor one or more systems and to forward these data to
the estimator. In a multi-agent system, agents are capable
of communicating and cooperating with other agents. A
multi-agent architecture is preferable over a single agent
implementation, due to its flexibility and scalability. The
case study presented later on in this paper makes use of a
single agent only.

In real-life distributed agent-sensor implementations,
observations often arrive in bursts, and there will also be
silent periods without any activity at all. In this paper we
let the agent adopt a sampling process of the sensors
monitoring a particular system, similarly to the approach
in [18]. By providing the estimator with observations at
regular time intervals, the predicted system security and
dependability measures can be updated at a predefined
frequency. The sampling process will be further explained
in the next subsection.

5.2 The Discrete Sampling Process

Recall that we use a CTMC to model the security and
dependability behavior of a system. Due to its stochastic
behavior, the system may be in any of the states in S when
sampled. As Fig. 3 indicates, the purpose of the estimator
is to use the sampled observations to estimate the current
system state. To formalize, let τz be the (possibly
unobservable) system state at sampling instant τ . The
sequence of states that a system is in during the sampling
instants will then be denoted ()K,, 21 zzZ = . Let

{ }τττ
NXXX ,,1 K= , (9)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

174

where τ

iX denotes the probability that the system is in
state i at the τ’th sample. Since one cannot assume that Z is
known (recall the unobservability problem discussed in
Section 3.2), it is this state probability that will be
estimated and used to predict new system measures, at
each sampling instant τ.

Recall the system rate matrix Q. Assume that the interval
between two different adjacent samples is fixed to Δ. Now,
let ()ΔP denote the one-step transition probability matrix

with elements ()Δijp , such

that () ()izjzPpij ===Δ + ττ |1 , Nji ≤≤ ,1 . Hence,

()Δijp represents the probability that the system will,

given that its current state at sampling instant τ is i, be in
state j after an additional time Δ, i.e., at the next sample τ
+1. By using (3), ()ΔP can be derived from Q as

() Δ⋅=Δ QeIP , (10)

where I is the identity matrix. For simplicity, we let P
represents ()ΔP in the rest of this paper. It is important
to notice that even though we used a fixed sampling
interval Δ in this paper, this is not a requirement for the
model to work. One can easily imagine scenarios where it
is desirable to sample the sensors and predict new system
measures at irregular time intervals. In that case
()ΔP needs to be recomputed at each sampling instant τ

5.3 Interpreting Observations

Due to the inhomogeneity of sensor types, the
observations can consist of a variety of information;
different types of alarms, suspect traffic patterns, entries in
log data files, input from network administrators,
indications of system elements up and down, ongoing
operational and maintenance activities, and so on. To
formalize, we assume that any observation can be
classified as one of the symbols in the finite symbol
set { }MvvV ,,1 K= . The sequence of observations that
the monitor forwards to the estimator is
denoted ()K,, 21 yyY = , where Vy ∈τ is the
observation received at sampling instant τ. Based on Y, the
estimator will estimate the system’s current state, in terms
of the state probability τX in (9). The estimator will
receive observations originating from more than one
sensor, and these sensors may provide different types of
data or even inconsistent data. All sensors will not be able
to register all kinds of activities, so one cannot assume that

the estimator is able to resolve the correct state of the
monitored system at all times. The observation symbols
are therefore probabilistic functions of the system's
Markov chain, i.e., the system's true state will be hidden
from the estimator. This is consistent with the basic idea of
hidden Markov models (HMMs), as described in [14].

5.4 State Probability Estimation

Each monitored system can be represented by a HMM,
defined by the three tuple ()OXP ,, 1=Λ . As previously

discussed, { }ijpP = is the one-step transition probability

matrix for the system, { }11
1

1 ,, NXXX K= is the state
probability distribution of the system when the sampling
starts, i.e., at sample instant τ = 1. If one does not know
the initial state probability of the system, the elements in

1X have to be estimated, for instance by using the system

steady state probabilities in (4). { })(loO j= is the

observation symbol probability matrix for a system during
sampling. Its elements
are (),|)(jzvyPlo lj === ττ ,1 Nj ≤≤ Ml ≤≤1

i.e.,)(lo j represents the probability that a sensor will

provide the observation symbol lv when sampled, given
that the system is in state j. The elements of O will
therefore give an indication of the sensor’s false-positive
and false-negative effect on the security and dependability
prediction process. Note that if there is more than one
sensor monitoring a particular system, one should define a
separate observation symbol probability vector kO for
each sensor k.

By using an observation τy and the HMM Λ , the

estimator will compute and replace τX in (9) with
∧
τX ,

where
∧
τX is the system’s most likely state probability at

sampling instant τ. This is done by means of Alg. 1. The
complexity of the algorithm is ()2NO where N is the
number of system states.

Algorithm 1 Estimate the current state probability
Require: τy ,Λ {an obs. at sampl. instant τ, the HMM}

Ensure:
∧
τX {the estimated state prob. at sampl. inst. τ }

 if τ =1 then
 for i=1 to N do

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

175

 1
1)(iii Xyo←τα

∑ =

∧

← N

j j

i
iX

1
τ

τ
τ

α
α

 end for
 else
 for i=1 to N do

 ∑ =
−←

N

j jijii pyo
1

1)(τ
τ

τ αα

∑ =

∧

← N

j j

i
iX

1
τ

τ
τ

α
α

 end for
 end if

return
⎭
⎬
⎫

⎩
⎨
⎧

=
∧∧∧
τττ
NXXX ,,1 K

To see why Alg. 1 works, note that, given the first
observation 1y at τ = 1, and the HMM ()OXP ,, 1=Λ ,

the elements in a new initial state probability
∧

1X can be

estimated as

() ()
()

() ()
()Λ

Λ=Λ=
=

Λ
Λ=

=Λ==
∧

|
|,|

|
|,,|

1

111

1

11
11

1

yP
izPizyP

yP
izyPyizPXi (11)

To find the denominator, one can condition on the first
visited state and sum over all possible states

() () ()

.)(

|,||

1

1
1

1
1111

∑

∑

=

=

=

Λ=Λ==Λ

N

j
jj

N

j

Xyo

jzPjzyPyP
 (12)

Hence, by combining (11) and (12)

.
)(

)(

1
1

1

1
11

∑ =

∧

= N

j jj

ii
i

Xyo

Xyo
X (13)

To simplify the computation of the estimated state
probability at the τ’t observation we use the forward-
variable ()Λ== |,1 izyyPi ττ

τα K , as defined in
[14]. By using recursion, this variable can be calculated in
an efficient way as

()∑
=

−=
N

j
jijii pyo

1

1 ,τ
τ

τ αα (14)

for τ>1. In the derivation of τα i we assumed that τy

depends on τz only, and that the Markov property holds.
From (11) and (13) we find the initial forward variable

() 1
1

1
iii Xyo=α (15)

when τ=1. Now we can use the forward variable τα i to
update the estimated state probability distribution by new
observations. This is done by

() ()
()

()
()

.
|,

|,

|
|,

,|

11 1

1

1

1
1

∑∑ ==

∧

=
Λ=

Λ=
=

Λ
Λ=

=Λ==

N

j j

i
N

j

i

jzyyP

izyyP

yyP
izyyP

yyizPX

τ

τ

ττ

ττ

τ

ττ
ττ

τ

α

α

K

K

K

K
K

 (16)

6. Making the System Predictions

The final step in the security and dependability assessment
process illustrated in Fig 3 is that the predictor uses the
estimated state probability distribution together with the
state transition rate matrix to compute system measures.
This section provides the algorithms (Alg. 2-3) together
with a detailed explanation of the mathematical equations
that are used to compute the)(tPF and MTNF measures.

6.1 Computing)(tPF
τ

Recall the definition of)(tPF provided in (7). To use the
estimated state probabilities to compute the function at
sample instant τ, Alg. 2 can be used.

Algorithm 2 Predict the)(tPF

τ measures

Require: *Q ,
∧
τX {the modified rate matrix, the

estimated state prob. at τ}
Ensure:)(tPF

τ {the predicted)(tPF at sample τ }
 for i=1 to N do

∧

← τ
ii XX)0(*

 tQ
ii eXtX

*

)0()(** ←

 if Ki ≤ then

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

176

)()(* tXtP iF =+τ
 end if
 end for
return)(tPF

τ

As can be seen from the algorithm, at each sampling
instant τ there are three main steps to perform. First, the
algorithm sets the initial state probability equal to the

estimated, i.e.,
∧

← τXX)0(* . The)0(*X vector is then
used when solving the system state equation defined in (2),

i.e., () tQeXtX
*** 0)(= . To solve the system state

equation, the algorithm uses the Mathematica
package ”StateDiagrams.m” [6], which implements the
theory in [3]. Then, in accordance to (7), the)(tPF

τ
function is computed as

∑
∈

=
GSi

iF tXtP)()(*τ . (17)

Even though this definition of)(tPF

τ is very similar to the
traditional definition of the system reliability function (see
e.g., [5]), there is a crucial difference. As a consequence of
the estimation process, we cannot make the usual
assumption that the system state is good when computing

(17). Because
∧
τX is used to determine)0(*X in Alg. 2

it might be that 1)0(* ≠∑∈ GSi iX . Hence, to validate the

predicted system measures, one should also use (17) to
compute ∑∈

=
GSi iF XP)0()0(*τ , i.e., the probability that

the system actually is in a good state at sampling instant τ.

6.2 Computing τMTNF

To compute the mean time to next failure (MTNF)
measure at sampling instant τ, Alg. 3 is used.

Algorithm 3 Predict the τMTNF measures

Require: 1Q ,
∧
τX {(a part of) the rate matrix, the

estimated state prob. at τ}
Ensure: τMTNF {the predicted MTNF at sample τ }

 for j=1 to K do

∑ =

∧

∧∧
∧

←
K

j j

j
j

X

X
X

1
τ

τ
τ

 define

∧
∧

=
=−∑ τ

j
K

i iji XqT
1

 end for
 solve for all iT

 return ∑=
=

K

i iTMTNF
1

τ

The algorithm has been implemented in accordance to
methodology in [3], slightly modified to fit into the
context of the proposed security and dependability
assessment architecture. Suppose the states are ordered,
such that { }KG SSS K,1= and { }NKF SSS K,1+= .
Then Q can be written in partitioned form as

,
43

21
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

QQ
QQ

Q (18)

where the size of 1Q is KK × , the size of 2Q is

()KNK −× and so forth. Now also the estimated state
probability vector can be partitioned as

⎭
⎬
⎫

⎩
⎨
⎧

=
∧∧∧
τττ
FG XXX , where

⎭
⎬
⎫

⎩
⎨
⎧

=
∧∧∧
τττ
KG XXX ,,1 K

and
⎭
⎬
⎫

⎩
⎨
⎧

=
∧∧

+

∧
τττ
NKF XXX ,,1 K .

To compute the system’s expected time to next failure,
one has to assume that the system is in one of the good
states in GS at sampling instant τ (otherwise MTNF = 0,
since the system already has failed). Therefore, the

estimated state probabilities in
∧
τ
GX must be re-normalized

such that

KG

G
G

hX

XX ∧

∧∧
∧

=
τ

τ
τ (19)

where Kh is a column vector of K ones. Define

{ }KTTT ,,1 K= . By solving

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

177

∧
∧

=− τ
GXTQ1 (20)

the mean time to next failure for the system at the
particular instant τ can be computed as

∑
=

=
K

i
iTMTNF

1

τ , (21)

provided that the system is in any of the good states in GS
when sampled. The main difference between the

τMTNF measure used in this paper and the MTFF
(mean time to first failure) measure used in traditional
dependability analysis, is that when computing MTFF the
system is considered new when it starts to deliver its
intended service, i.e., { }0,,0,1)0(K=X . In contrast,

τMTNF is computed from the estimated state
probabilities rather than the initial system state
probabilities. The advantage with our approach is that by
computing τMTNF as proposed in (21) one can use the
real-time observations provided by the monitoring
architecture to make a better prediction of the system’s
expected time to next failure, and update this prediction
whenever new information arrives. Hence, in contrast to
the static MTFF, the τMTNF will be a dynamic system
measure, more suitable for a real-time system assessment
architecture. However, as previously discussed, since
the τMTNF is conditioned on a good system state at
sampling instant τ (i.e., that GSz ∈τ) the measure should
always be evaluated together with the corresponding

)0(τ
FP to make sense. This will be illustrated in the case

study in the next section.

7. Case Study: A Database Server

To illustrate the proposed approach, we model and
simulate the security and dependability assessment process
for a typical network service configuration consisting of a
database service for a local area network (LAN). In this
paper we consider a single server implementation only;
however, the example model can easily be extended to the
more commonly used distributed server implementation
(see [16] for an example). Fig. 4 illustrates the database
server that is to be assessed in this study.

Fig. 4: The database server in its network environment.

In this example, the database server is assumed to be
subject to accidental software-and hardware failures, as
well as packet flooding Denial of Service (DoS) attacks
originating from outside the LAN. As can be seen, the
database server is monitored by a distributed agent-sensor
system consisting of one agent that samples and interprets
information from two different kinds of sensors; a network
intrusion detection system (NIDS) and a host-based sensor
system (HSS). The NIDS monitors traffic between the
outside network and the internal LAN, and the HSS
processes log files and checks system status locally at the
database server.

7.1 The Stochastic Model

The database server can be modeled by a four-state CTMC.
State G means that the server is fully operational, i.e., it is
a system ”up” state. In state A the server is subject to an
ongoing DoS attack, which means that its performance is
degraded so that the service is only partially available.
Still, the A state is considered a system ”up” state. If the
DoS attack is detected and reacted to before the server
crashes, the system will return to state G. In the ”down”
states SF and HF the server is subject to software and
hardware failures, respectively. A hardware failure
requires a manual repair. To recover from a software
failure, only a server reboot is needed. Note that since also
the effect of a successful DoS attack is a software failure
requiring a reboot, we do not need to distinguish between
accidental and malicious software failure modes in the
stochastic model. Hence, the complete state set is

{ }HFSFAGS ,,,= whereof { }AGSG ,=

and { }HFSFSF ,= , as illustrated in Fig. 5.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

178

λH
φ2+λS

μA

φ1

λS
λH

μH

μS

G A

SFHF

Fig. 5: The state transition diagram for the database server.

The time to failure, attack and repair are assumed to
follow the exponential distributions te λλ − , te ϕϕ −

and te μμ − , respectively. The specific rates used in this
example
are 005.0=Sλ , 0003.0=Hλ , 002.01 =ϕ , 602 =ϕ ,

15=Aμ , 25.0=Sμ and 04.0=Hμ (1−h). The rate

transition matrix for the server, denoted serverQ , is

()
()

()

.

04.00004.0
0003.02503.0025.0
0003.0005.600053.7515
0003.0005.0002.00073.0

00
0

22

11

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−

−
−

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
+−
++++−

++−

=

HH

HHSS

HSHSAA

HSHS

serverQ

μμ
λλμμ
λλϕλλϕμμ
λλϕλλϕ

In this example we chose not to demonstrate how to
incorporate attacker behavior in the rate matrix, but
assume that a game model, serverΓ , has already been

applied to obtain the attack probability parts of 1ϕ and

2ϕ . The result from the game model affects the numerical
values of the predicted system measures in the final step of
the system assessment model but is otherwise not
substantially important for understanding the functionality
of the prediction architecture. The reader is therefore
referred to the previously published paper [12] for a more
illustrative case-study on this particular topic.

7.2 The Monitoring System

As illustrated in Fig. 4, the agent collects and interprets
data from both the NIDS and the HSS. The observations
are then forwarded to the estimator (not illustrated in the
figure). In this example the observation symbol set is

{ }hfsfagV ,,,= where symbol g is an indication of
system state G, symbol a an indication of state A, and so

forth. In this paper we do not focus on how the NIDS and
HSS data is interpreted; we simple assume that the agent is
able to map sensor data into symbols representing states.

The HMM representing this monitoring system is defined
by the three-tuple ()serverserverserver OXP ,, 1=Λ . The

sampling interval is fixed to 15=Δ min. By using (10)
we compute the one-step transition probability matrix as

.

990.01085.71051.21094.9
1046.7939.01053.1061.0
1046.7754.01049.6246.0
1046.71058.11066.2998.0

673

56

56

535

,,,,

,,,,

,,,,

,,,,

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅⋅⋅
⋅⋅
⋅⋅
⋅⋅⋅

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

−−−

−−

−−

−−−

HFHFSFHFAHFGHF

HFSFSFSFASFGSF

HFASFAAAGA

HFGSFGAGGG

server

pppp
pppp
pppp
pppp

P

As the initial sampling state distribution we use the steady
state probabilities of the system

 { }
{ },1044.7,1055.2,1058.2,967.0

,,,
325

11111

−−− ⋅⋅⋅=

= HFSFAGserver XXXXX

found by solving (5)-(6). One can see that the database
most likely will be in state G when the sampling process
starts. The observation symbol probability matrix for the
database server is

.

88.010.001.001.0
20.070.002.008.0
05.010.055.030.0
04.006.010.080.0

)()()()(
)()()()(
)()()()(
)()()()(

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

hfosfoaogo
hfosfoaogo
hfosfoaogo
hfosfoaogo

O

HFHFHFHF

SFSFSFSF

AAAA

GGGG

server

Since both)(sfoG ,)(hfoG ,)(sfoA and 0)(≠hfoA ,

and)(goSF ,)(aoSF ,)(goHF and 0)(≠aoHF in

serverO , one can see that even though the sensors in this
case study have relatively low false-positive and false-
negative rates there is still room for the possibility of

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

179

misleading observations. Note that we use a single
observation symbol probability matrix to represent the
trustworthiness of the (merged) data from both the NIDS
and the HSS sensor. See e.g., [11] for an example of round
robin sampling of sensors, or [4] for an algorithm for
optimal selection of data from multiple sensors.

7.3 Simulation Results

To evaluate the effectiveness of the proposed prediction
method, we simulate the following three different
observation sequences

()ggggggagggY ,,,,,,,,,1 = ,
()gggsfsfasfaggY ,,,,,,,,,2 = ,
()hfhfhfhfgsfgsfggY ,,,,,,,,,3 = .

The purpose of the first simulated sequence (1Y) is to
demonstrate how the prediction process reacts to a
single ”attack” warning observation (a) that are preceded
and followed by a number of ”good” observations (g). The
second simulation (2Y) demonstrates how the prediction
algorithm reacts to alternate a and sf observations. The
third sequence (3Y) simulates a number of software failure
observations that are indicated to be repaired, and finally
followed by a protracted hardware failure.

The)(tPF
τ functions

First, we discuss the predicted)(tPF
τ functions for the

three cases. From Fig. 6 it appears that)0(τ
FP is very

close to 1 for all samples 10,,1K=τ when simulating 1Y .
Fig. 7 shows a more detailed view of the simulation results
from 1Y . One can see that the)(tPF

τ graph is lower for the
first sample, i.e., when τ= 1. This is because, in
accordance to 1

serverX , the server is assumed to be in state
G with only 96.7% certainty when the sampling process
starts. As the estimator receives more g symbols, the
estimated probability of state G will rise, and hence, the
corresponding)(tPF

τ graph will rise. Note that since the
fourth observation ay =4 in the first simulation, the

)(4 tPF graph will be slightly lower than the subsequent
predicted graphs.

50 100 150 200
t

0.2

0.4

0.6

0.8

1
PF
tHtL

Fig. 6: An overview of the)(tPF
τ graphs when simulating 1Y . The

figure depicts the predicted)(tPF
τ graphs at the sampling

instants 10,,1K=τ .

0.05 0.1 0.15 0.2
t

0.997

0.998

0.999

1
PF
tHtL

t=1

t=2,4

t=3,5,6,7,8,9,10

Fig. 7: A closer look at the)(tPF
τ graphs when

simulating ()ggggggagggY ,,,,,,,,,1 = .

As can be seen from Fig. 8 and Fig. 9,)(tPF
τ for the

second simulation will be quite high until the estimator
receives the first sf symbol at sampling instant τ = 4. Even
though the next observation (ay =5) will rise the

predicted graph, the next observation after that (sfy =6)
will lower it even more. The lowest graph of them all will
appear at sampling instant τ = 7, which is due to the two
successive sf observations. Note that for the same
reason 55.0)0(7 ≈FP , since the system with a high
probability already has failed.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

180

50 100 150 200
t

0.2

0.4

0.6

0.8

1
PF
tHtL

Fig. 8: An overview of the)(tPF
τ graphs when simulating 2Y . The

figure depicts the predicted)(tPF
τ graphs at the sampling

instants 10,,1K=τ .

0.2 0.4 0.6 0.8 1
t

0.92

0.94

0.96

0.98

1
PF
tHtL

t=1,2,3,5,9,10
t=4

t=6,8

Fig. 9: A closer look at the)(tPF
τ graphs when

simulating ()gggsfsfasfaggY ,,,,,,,,,2 = .

The result from the third simulation (Fig. 10, Fig. 11 and
Fig. 12) shows that the alternating g and sf observations
will give rise to corresponding)(tPF

τ graphs. As the
agent starts to receive hf (hardware failure) symbols, the
predicted)(tPF

τ graphs will decrease even more.

Also 0)0(→τ
FP as 10→τ .

50 100 150 200
t

0.2

0.4

0.6

0.8

1
PF
tHtL

Fig. 10: An overview of the)(tPF
τ graphs when simulating 3Y . The

figure depicts the predicted)(tPF
τ graphs at the sampling

instants 10,,1K=τ .

20 40 60 80 100
t

0.2

0.4

0.6

0.8

1
PF
tHtL

t=1,2,3,4,5,6,7

t=8

t=9

t=10

Fig. 11: A closer look at the)(tPF
τ graphs when

simulating ()hfhfhfhfgsfgsfggY ,,,,,,,,,3 = .

0.2 0.4 0.6 0.8 1
t0.95

0.96

0.97

0.98

0.99

1
PF
tHtL

Fromtop downwards: t=2,4,1,6
t=3
t=7

t=5

Fig. 12: A closer look at the top seven)(tPF
τ graphs when

simulating 3Y .

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

181

As indicated in Fig. 6, Fig. 8 and Fig. 10, 0)(→tPF

τ as
∞→t for all simulated graphs, i.e., even though the

estimated state during sampling is likely to be good, the
system will sooner or later fail.

The MTNF measures

The predicted τMTNF measures, together with the
corresponding)0(τ

FP ’s, are depicted in Fig. 13. During
the first simulation (1Y), the predicted MTNF measure
drops as the a symbol is received (at sampling instant τ =
4), but returns to the same level as more g symbols are
received. The corresponding)0(τ

FP graph indicates that
the predicted MTNF measures are very reliable
(1)0(≈τ

FP), with an exception for the first sample

(998.0)0(1 =FP).

Simulating Y3

1 2 3 4 5 6 7 8 910
t

144.915
144.92

144.925
144.93

MTNF

1 2 3 4 5 6 7 8 910
t

0.2
0.4
0.6
0.8

1
PF
tH0L

1 2 3 4 5 6 7 8 910
t

0.2
0.4
0.6
0.8

1
PF
tH0L

Simulating Y2

1 2 3 4 5 6 7 8 910
t

144.915
144.92

144.925
144.93

MTNF

1 2 3 4 5 6 7 8 910
t

0.2
0.4
0.6
0.8

1
PF
tH0L

1 2 3 4 5 6 7 8 910
t

0.2
0.4
0.6
0.8

1
PF
tH0L

Simulating Y1

1 2 3 4 5 6 7 8 910
t

144.915
144.92

144.925
144.93

MTNF

1 2 3 4 5 6 7 8 910
t

0.2
0.4
0.6
0.8

1
PF
tH0L

1 2 3 4 5 6 7 8 910
t

0.2
0.4
0.6
0.8

1
PF
tH0L

Fig. 13: The MTNF measures together with the corresponding)0(τ
FP ’s.

From the second simulation we observe that
since ayy == 53 , the predicted MTNF measure will be
slightly lower at τ = 3 and τ = 5. Interestingly, MTNF will
rise at τ = 4, τ = 6 and τ = 7, even
though sfyyy === 764 . The corresponding)0(τ

FP
graph explains this phenomenon; since the graph is lower
at τ = 4, 6, 7 the system may already be in a failed state at
these particular sampling instants.

The results from the third simulation indicates that sf and
hf symbols will lower the predicted MTNF measures.
Since the simulated trace ends with four subsequent hf
symbols (at τ =7, 8, 9, 10), 0)0(→τ

FP as 10→τ .

8. Concluding Remarks

This paper presents a framework for integrated security
and dependability assessment of computing systems. By
using data provided by a monitoring architecture, the
current system state and its future behavior can be
predicted in real-time. The proposed method for
computing system measures is based on Markov analysis,
where some of the model parameters are determined by a
game theoretic analysis of attacker behavior. To
demonstrate the feasibility of the proposed prediction
architecture, we performed three simulation experiments
for a small case study.

The stochastic modeling approach used in this paper relies
on a few assumptions. First, we assume that the security
and dependability behavior of the system can be modeled
as a Markov process, which means that the conditional
probability distribution of future states of the process
depends only upon the current state. Even though it is very
common to assume these properties when modeling and
analyzing systems in a traditional dependability context
(considering accidental failures only), it is not (yet) a well
established practice in the security community. Second,
the HMM approach relies on independent observations,
which means that the observations that a sensor produces
depend on the current system state only, and not on any
previous observations. The main drawback of this
approach is that, because security indications and alerts
can be highly correlated, the sampling interval must be
large enough so that the observations received by the
estimator can be considered independent, for the model to
be valid. Of course the exact lower limit for the sampling
interval will depend on the particular system that is to be
assessed, and on the types of sensors that monitors the
system. As an example, for the database server in the case
study 15 minutes was suggested as a reasonable sampling
interval.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

182

The case study used to demonstrate the approach in
Section 7 is kept simple for illustration. In the future we
plan to model and simulate the security and dependability
assessment process for a more extensive example. A
validation by a prototype system also remains.

References
[1] Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic

concepts and taxonomy of dependable and secure
computing. IEEE Transactions on Dependable and Secure
Computing, 1:11–33, January-March 2004

[2] K. B. B. Madan, K. Vaidyanathan Goseva-Popstojanova,
and K. S. Trivedi. A method for modeling and quantifying
the security attributes of intrusion tolerant systems. In
Performance Evaluation, volume 56, 2004.

[3] John A. Buzacott. Markov approach to finding failure times
of repairable systems. IEEE Transactions on Reliability, R-
19:128–134, November 1970.

[4] R. Evans, V. Krishnamurthy, G. Nair, and L. Sciacca.
Networked sensor management and data rate control for
tracking maneuvering targets. IEEE Transactions on Signal
Processing, 53:1979–1991, June 2005.

[5] Bjarne E. Helvik. Dependable Computing Systems and
Communication Networks, Design and Evaluation. Draft
lecture notes (256 p.), Department of Telematics, NTNU,
Nov. 2003.

[6] Bjarne E. Helvik. Statediagrams.m; a Mathematica package
for dependability analysis of systems by CTMC.
Unpublished NTNU, 2002.

[7] ISO/IEC 13335: Information Technology -Guidelines for
the management of IT Security. http://www.iso.org

[8] S. Jha, O. Sheyner, and J. Wing. Two formal analyses of
attack graphs. In Proceedings of the 2002 Computer
Security Foundations Workshop, 2002.

[9] Littlewood, S. Brocklehurst, N. Fenton, P. Mellor, S. Page,
D. Wright, J. Dobson, McDermid J., and D. Gollmann.
Towards operational measures of computer security. Journal
of Computer Security, 2:211–229, Oct 1993.

[10] David M. Nicol, William H. Sanders, and Kishor S. Trivedi.
Model-based evaluation: From dependability to security.
IEEE Transactions on Dependable and Secure Computing,
1:48–65, January-March 2004.

[11] Andre Årnes, Karin Sallhammar, Kjetil Haslum, Tønnes
Brekne, Marie Elisabeth Gaup Moe, Svein Johan Knapskog.
Real-time Risk Assessment with Network Sensors and
Intrusion Detection Systems. In International Conference on
Computational Intelligence and Security (CIS), Dec 2005

[12] Karin Sallhammar, Bjarne E. Helvik and Svein J. Knapskog.
Towards a stochastic model for integrated security and
dependability evaluation. In Proceedings of the First
International Conference on Availability, Reliability and
Security (AReS), 2006.

[13] R. Ortalo and Y. Deswarte. Experimenting with quantitative
evaluation tools for monitoring operational security. IEEE
Transactions on Software Engineering, 25(5):633–650,
Sept/Oct 1999.

[14] Lawrence R. Rabiner. A Tutorial on Hidden Markov
Models and Selected Applications in Speech Recognition.
Readings in speech recognition, pages 267–296, 1990.

[15] Sheldon M. Ross. Introduction to Probability Models.
Academic Press, 8th edition, 2003.

[16] Mehmet Savsar and Fawaz S. Al-Anzi. Reliability of data
allocation on a centralized server configuration with
distributed servers. The Computer Journal, 49:258–267,
2005.

[17] F. Stevens, T. Courtney, S. Singh, A. Agbaria, J. F. Meyer,
W. H. Sanders, and P. Pal. Model-based validation of an
intrusion-tolerant information system. In Proceedings of the
23rd Symposium on Reliable Distributed Systems (SRDS
2004), Oct 18-20 2004.

[18] Wei Wei, Bing Wang, and Don Towsley. Continuous-time
Hidden Markov Models for Network Performance
Evaluation. Performance Evaluation, 49:129–146, 2002.

Karin Sallhammar received her Civ.ing.
degree (M.S.) in Media Technology and
Engineering from the Linköping
University, Sweden in 2003. She is
currently a Ph.D. candidate at the
Norwegian University of Science and
Technology (NTNU), the Department of
Telematics, and is associated with the
Norwegian Centre of Excellence (CoE)
for Quantifiable Quality of Service in

Communication Systems (Q2S).
Her field of interests includes information security

primitives and protocols, network monitoring and intrusion
detection, as well as dependability modeling and analysis. Her
current research focus is on stochastic models for security and
dependability evaluation.

Bjarne E. Helvik received his Siv.ing.
degree (M.S.E.E.) from the Norwegian
Institute of Technology (NTH),
Trondheim, Norway in 1975. He was
awarded the degree Dr. Techn. from
NTH in 1982. He has since 1997 been
Professor at the Norwegian University of
Science and Technology (NTNU), the
Department of Telematics. He is
principal academic at the Norwegian

Centre of Excellence (CoE) for Quantifiable Quality of Service
in Communication Systems (Q2S). He has previously held
various positions at ELAB and SINTEF Telecom and
Informatics. In the period 1988-1997 he was appointed as
Adjunct Professor at the Department of Computer Engineering
and Telematics at NTH.

His field of interests includes QoS, dependability
modeling, measurements, analysis and simulation, fault-tolerant
computing systems and survivable networks as well as related
communication system architectural issues. His current research
focus is on distributed, autonomous and adaptive fault-
management in telecommunication systems, networks and
services.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

183

Prof. Helvik is a member of the IEEE, has been active
in RACE, ACTS, IST and EURESCOM collaborations, and in
a number of program committees. Among them committees
for the International Symposium on Fault-Tolerant Computing
(FTCS), the European Dependable Computing Conferences
(EDCC), the ITC Specialist Seminars, the International
Teletraffic
Congress (ITC), GlobeCom and is co-chairing the EURONGI
2007 conference. He has authored/co-authored a number
of research papers and textbooks.
.

Svein J. Knapskog received his
Siv.ing. degree (M.S.E.E.) from the
Norwegian Institute of Technology
(NTH), Trondheim, Norway in 1972.
Since 2001, he has been Professor at
the Norwegian University of Science
and Technology (NTNU), the
Department of Telematics. He is
presently principal academic at the
Norwegian Centre of Excellence (CoE)

for Quantifiable Quality of Service in Communication Systems
(Q2S). He has previously held various positions in Norwegian
public sector, SINTEF and industry. From 1982 - 2000, he was
Associate Professor at NTH (later NTNU), Department of
Computer Science and Telematics, where he also served a three
year term as Head of Department. In the academic year 2005-
2006 he has been acting Head of Department of the Department
of Telematics.

His field of interests includes information security and
QoS as well as related communication system architectural
issues. His current research focus is on information security
primitives, protocols and services in distributed autonomous
telecommunication systems and networks, and security
evaluation thereof.

Prof. Knapskog has been active in a number of
conference program committees and has authored/co-authored a
number of technical reports, research papers and a textbook (in
Norwegian)

