
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

220

Manuscript received March 5, 2007

Manuscript revised March 25, 2007

A Simple Secure M-Commerce Protocol SSMCP*

Elias Haddad and Brian King,

Indiana University Purdue University Indianapolis,
Indianapolis, IN, USA

Summary
The trend in technology is such that small lightweight low-
complexity devices, like PDAs, cell-phones, . . .,will become one
of the more predominant computing platforms. Consequently,
these devices will play an increasing role in e-commerce and m-
commerce transactions. In the past, the role of the merchant has
been played by workstations/servers, but due to advancements in
wireless communications, like Bluetooth, we should expect more
peer-to-peer e-commerce/m-commerce transactions and hence
we should expect more lightweight devices playing the role of
merchants. Here we develop secure efficient m-commerce
protocol SSMCP*. This is a low-complexity protocol that is both
efficient for mobile lightweight customers as well as mobile
lightweight merchants. SSMCP* is both efficient in terms of
bandwidth, eliminating any redundant information, as well as
efficient in terms of rounds of communication. Further, SSMCP*
addresses the important issue of a fair commitment to the
transaction between the merchant and the customer.
Key words:
m-commerce, e-commerce, security for mobile devices

Introduction

As computing becomes more pervasive, we will demand
to perform many of our customary computing tasks where
we are and with what computing devices that are available.
One customary task will be e-commerce transactions. A
problem that could arise is that the most commonly
available computing devices are personal devices like
PDAs, cell-phones, and such. Typically, these devices do
not have the same resources that are available in the
typical PC workstations that today dominate the today’s e-
commerce transactions. Consequently, as we envision
tomorrows e-commerce transactions, we must be
cognizant of this. Further, the typical merchant in today’s
ecommerce transactions is some server (workstation). As
wireless mediums like Bluetooth and IEEE802.11 become
more popular, peer-to-peer e-commerce/m-commerce will
become more common and so the role of merchant could
very well be a limited resource device. For example,
lightweight merchant KIOSKs may be placed in a
“commons area”, a well-trafficked area perhaps some
space in a mall or community square, where it has no
persistent internet connection. In anticipation of this trend
we need to develop a lightweight low-complexity
ecommerce/m-commerce protocol that is secure for both

the merchant (server) and the customer (client). An m-
commerce protocol is needed that joins efficiency, fairness
and security all at the same time. Efficiency can be defined
as low bandwidth for the communication and less
computation for the devices that are memory and power
limited.

In this paper we will introduce a secure protocol that can
be used for any m-commerce transaction. We will use
TLS/WTLS [1], [10] in lower layers to reduce the number
of required signature generations and within the protocol.
Moreover, this protocol has been developed to reduce the
amount of communication, in order to comply with
wireless bandwidth limitations. One integral tool utilized
within this protocol is the use of e-cheque [2] which is a
token that commits the signer of the e-cheque to pay a
designated amount of money to the recipient. Each time a
customer wants to make a payment, they send a request to
the bank to credit their account with the amount of money
to create the e-cheque to the merchant. The bank will
check for fund availability before withdrawing the funds
from the customer’s account. This e-cheque has a unique
serial number or e-cheque identifier to prevent any replay
attack and only the merchant (cheque recipient) will be
able to cash it.

2 Motivation

The problem concerning a fair commitment is that a
financial transaction will need to be a multi-round
communication protocol. What further complicates this is
that the transaction is more than a 2-party protocol,
because it includes financial institutions. An important
aspect of any financial transaction is a fair commitment.
What we mean by a fair commitment is that two parties
are negotiating an agreement, the exchange starts with an
interest from the customer, if a price (cost) is flexible,
which is often the case, the customer will make an offer,
the merchant could counter. They may say “I will sell it to
you for $XXX but I need a response by the end of the
day”. Once an offer is made, the merchant has made a
commitment.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

221

If the customer accepts the offer then they have committed
to the purchase. At this point the customer will most likely
remove themselves from the “market”. Therefore if a
merchant was allowed to renege on the “price” then the
customer has been penalized. In a multi-round, multi-party
(banks as well) protocol it is very likely that the merchant
could discover that they can get a better price/offer, this is
especially true in mobile-commerce transactions where
there maybe some delay to the completion of the
transaction. Similarly when the merchant make a price
offer to a customer they too may have removed their
product off the market for that brief period that the
customer gets to consider the price. Thus the merchant
does not want a customer to also be able to renege on a
consideration-to-purchase offer. Consequently the
merchant has an interest as well, for a fair commitment.
An important aspect of our m-commerce protocol is that it
forces the merchant to commit to their offer. A second
motivation factor is our vision of the future of m-
commerce transactions. In today’s version of e-commerce,
the client will contact the merchant which is most likely
some server. The e-commerce protocol is often designed
with the assumption that the merchant has a persistent
internet connectivity, and a large number of resources
available. But the future is such that as computing
becomes more pervasive the notion of what is a typical
merchant will change. It is very likely that organizations
place small devices, merchant kiosks into the market place,
in some cases remote sites, with no persistent internet
connection. The future m-commerce protocol under this
vision should not require the merchant to have an
established (persistent) internet connection. This should
not prohibit the transaction if the protocol is carefully
constructed. We recognize that the customer will need
some network connectivity (in order for it to connect to its
financial institution). Another goal of an m-commerce
protocol is to minimize communications between the
merchant and the customer, between the customer and
their bank, and between the merchant and their bank. The
reasoning for this is that we are assuming that the
customer (or client) is a lightweight device and
transmitting over a wireless medium. Further, we are
assuming that the merchant is lightweight and could be
transmitting over a wireless channel.

Utilizing WTLS Wireless Transport Layer Security [10] or
TLS [1] in lower layers will provide message integrity,
authentication and non repudiation. Our protocol takes
advantage of the certificates already exchanged by WTLS
in lower layers. In the communication between the
merchant and the client, we will be using WTLS class 3
that provides both server and client authentication which is
the merchant and customer, respectively. WTLS will
provide the protocol with integrity authentication and non-
repudiation. Therefore, SSMCP* does not deal with

message integrity nor authentication since it’s provided by
WTLS/TLS in lower layers. One popular e-commerce
protocol that is used today is the SET protocol [8]. The
protocol is designed for credit card services and so an
integral aspect is the use of a centralized trusted party,
which cannot be used in our model. An important tool
used in the SET protocol is the dual signature, which also
has no use in our model. There are several examples of e-
commerce protocols constructed for the wireless domain,
some of them include [4], [5], [9]. In the SSMCP*
protocol, the names of stages are similar to those names in
the SET protocol. However the information in each stage
varies greatly from SET. The content of the data structures
that we use is very similar to [5]. One particular security
flaw of [5], [9] is that they allow the merchant to generate
the transaction ID. Since this is the identification of the
transaction this is a serious security problem if the
merchant is not trusted (an assumption we should always
make).

Figure 1 Set Protocol

Our m-commerce model will make use of a PKI (public-
key infrastructure). There are several different
assumptions that one can make concerning the use of a
trusted party (persistent). We prefer to have an off-line
trusted party, some entity that generates the public-keys,
private-keys and certificates for each party once. We will
not go into any details concerning the PKI generation.
Later, we will discuss possible cryptographic primitives
that fit well with our protocol. Of course since this is an e-
commerce protocol we will be utilizing financial
institutions like banks. The customer and the merchant
trust the banks because they are federally regulated. Note:
The various data structures that will be transmitted, for
example certificate, invoice, e-cheque, etc., may have
entries that had already been transmitted in a previous
communication with the receiving party. Consequently in

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

222

order to save bandwidth the sending party could omit a
data structure or a field of the data structure if the
information was already transmitted. It is important,
however, that the field is present whenever a signature is
performed on the data structure.

2.1 SET

Secure Electronic Transaction (SET) [8] a standard
security specification designed to protect credit card
transactions on the World Wide Web and designed by
Visa and MasterCard. SET provides a number of security
standards for protecting all payments made over the
internet and consists of three essential services: 1-
Ensuring a secure communication channel for all parties
involved in the transaction. 2-Providing authentication by
the use of certificates. 3-Providing privacy by making
information available to the right parties when and where
required.
Transaction Processing: SET protocol consists of three
major phases: purchase request, authorization request, and
the payment authorization. We will describe each of the
phases in details in the following sections (for more
complete description of SET, see [8]). The protocol is
illustrated in Figure 1.
Purchase Request Phase This phase consists of the
following messages exchanged between the merchant and
the cardholder: initiate request, initiate response, purchase
request, and purchase response.
Initiate Request The process starts with the customer
shopping and selecting the item(s) from the merchant
website. After selecting a particular payment card, they
send the initiate request message requesting the merchant
and the payment Gateway’s certificate.
Cardholder - Merchant:
 the brand of the credit card, his ID and a nonce (NC).
Initiate Response After receiving the initiate request, the
merchant generates a unique transaction identifier IDtrans
and a nonce NM. The merchant then signs the
concatenation of the IDtrans, the credit card brand CCBrand
and the nonces NC. and NM.. They proceed by sending the
signature along with the merchant and Gateway’s
certificates CERTM and CERTG.
Merchant Cardholder:
 SIGN(IDtrans,CCBrand, NC,NM) + CERTM + CERTG
Purchase Request The cardholder verifies the merchant
and Gateway’s certificates by means of the certificate
authority signatures. They then generate the order
information OI and the payment information PI. The OI
consists of the concatenation of IDtrans, IDbrand, date, NM
and NC where IDbrand is the unique credit card brand
identifier. The PI consists of the concatenation of IDtrans,
Amount and ExtraStrongEncryption (CardData) where the
CardData is the credit card number, Expiry and the PIN.

The cardholder computes the dual signature DS as
follows:

DS = SIGN(hash(hash(PI)||hash(OI)))PrivC
PrivC denotes the cardholder’s private key. The dual
signature is an integral tool in SET protocol, the reason
being that the Gateway will possess the digest of OI1 and
not the OI itself. Similarly the Gateway will have the
message digest of PI but not PI itself. Consequently, the
strength of the DS is that the Gateway and the merchant
will be able to verify the validity of the dual signature
(which binds the OI to PI) without being able to determine
OI and PI respectively. The cardholder generates a
symmetric Key K1, computes hash(OI), denoted by OIMD
and the hash(PI), denoted by PIMD. They then proceed by
sending the following information:
Cardholder Merchant:
 ENC(PI||DS||OIMD)K1 + ENC(K1||ACCinf)PubG+
 OI + PIMD + DS + CERTC
PubG and ACCinf denotes the Gateway’s public key and
the customer bank account information, respectively.
Purchase Response Once the merchant receives the order
from the cardholder, they proceed to the authorization
phase. When the merchant receives the authorization
response from the Gateway, they verify the Gateway's
certificate and decrypt the message to obtain the
symmetric key. This key is then used to decrypt the
response message. Next, they verify the digital signature
of the Gateway on the response. Knowing that only the
Gateway is capable of decrypting the capture token, the
merchant saves the capture in a safe location. The capture
token, denoted CapToken, allows the merchant to have a
guarantee of payment from the Gateway.
Payment Authorization Phase This phase is initiated by
the merchant after receiving the purchase request message
and is followed by sending the purchase response from the
merchant to the cardholder. The purchase response
includes the CapToken.
Authorization Request After receiving the purchase
request from the cardholder, the merchant verifies the
client's certificate and the dual signature DS by computing
and decrypts the DS using the cardholder public key. If
DS is the signature of hash(PIMD||hash(OI)), then the DS
is validated. Provided that all information is validated, the
merchant generates the authorization request AuthReq that
consists of the date, OIMD, merchant details, the
cardholder billing address and
{ ENC(PI||DS||OIMD)K1+ENC(K1||ACCinf)PubG }sent by

cardholder. The merchant then generates a new secret key K2
before sending the following message:
Merchant Gateway:
 {ENC(PI||DS||OIMD)K1+
 ENC(K1||ACCinf)PubG}}cardholder

1 The digest of a message M is hash(M) where hash() is a
cryptographic hash function[11].

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

223

 ENC(SIGN(AuthReq)M)K2+ENC(K2)PubG
 +CERTC+CERTM
PubG denotes the Gateway public key.
Authorization Response The Gateway starts by verifying
the merchant's certificate. It then decrypts K2 with
Gateway's private key then decrypts authorization request
using symmetric key K2. It then verifies the DS by
computing and then comparing them. The Gateway then
verifies cardholder's certificate by traversing the trust
chain. It then decrypts K1 with Gateway's private key to
use K1 to decrypt PI. The Gateway Ensures consistency
between merchant's and customer's PI's. The Gateway then
sends AuthReq through a financial network to customer's
financial institution. Once validated by the financial
institution, the Gateway computes the authorization
response AuthRes. It then computes the capture token
CapToken. The Gateway then generates two symmetric
keys K3 and K4. Gateway sends to merchant:
Gateway Merchant:
 ENC(SIGN(AuthRes)G)K3+ENC(K3||ACCinf)PubM

 +ENC(SIGN(CapToken)G)K4
 +ENC(K4||ACCinf)PubG+CERTG
PubG denotes the Gateway's public key and ACCinf the
customer bank account information.

Payment Capture Phase After processing the cardholder
order, the merchant requests payment from the Gateway
by using the CapToken that they received in the
authorization response message.
Capture Request This phase starts when the merchant
generates a capture request CapReq and digitally signs it
with its private key. They then randomly generate a
symmetric key K5. The merchant then sends the following
message:
Merchant Gateway:
 ENC(SIGN(CapToken)G)K4+ENC(K4||ACCinf)PubG

 +ENC(SIGN(CapReq)G)K5

 +ENC(K5)PubG+CERTM
Capture Response When the payment Gateway receives
the capture request, it decrypts the digital envelopes of K4
and K5 (using its private key). It then uses these keys to
decrypt and verify the signatures of CapToken and
CapReq. CapToken and CapReq are employed to generate
a clearing request to the credit card issuer which is sent via
a card payment system. Once authorized, the payment
Gateway generates a capture response CapResp, digitally
signs it. It is then encrypted using a newly generated
symmetric key K6. The following message is then sent to
the merchant:
Merchant Gateway:
 ENC(SIGN(CapResp)G)K6+ENC(K6)PubG+CERTG

Analysis of SET
SET relies on the use of an online trusted party: the
Gateway. The SET protocol requires several security
mechanisms to prevent any attack on the Gateway such as

denial of service. If the Gateway becomes unavailable the
whole e-commerce infrastructure is jeopardized. To
prevent replay attacks, the Gateway has to store each
processed transaction ID and prevent any second use of
the authorization request message. As e-commerce
transactions increase, preventing replay attacks becomes
more delicate. This is a vulnerability that can be exploited
to disrupt the whole e-commerce infrastructure.

Table1 provides a summary of the protocol's computations
and communications. An integral tool within the SET
protocol is the digital signature DS. It allows one to bind
the order information OI with the payment information PI.
Moreover, it allows the merchant and the Gateway to
verify the signature without knowing the PI and OI
respectively. However, the DS becomes very costly in a
mobile environment, due to the nature of the devices and
network environment, which demands a construction of a
new tool.

Table 1: Computations in SET
Signatures Public Key

computation
Communi-
cation

Merchant 3 SG+
3 SV

2 PKE +
2 PKD

4 S + 4 R

Customer 1 SG +
2 SV

1 PKE 2 S + 2 R

Here SG and SV denote signature generation and signature
verification, respectively. S denotes a communication “send” and
R denotes a communication “receive”. PKE denotes a public key
encryption process.

Clearly SET is expensive (resourcewise) in a mobile
wireless environment; this is especially true for the
merchant. With an additional requirement of a trusted
gateway, it is clear SET would be impractical solution for
a general m-commerce protocol. That is, SET is organized
so the merchant is required to perform more computations
that the customer (client) and has a persistent internet
connectivity, assumptions that run contrary to our vision
of the necessary capabilities for merchants in the future.

2.2 Secure Wireless Payment Protocol

In the previous section we discussed the SET protocol and
how costly SET is in terms of bandwidth and
computations in a wireless environment. In this section we
will discuss a protocol that could be used in wireless
transactions. Wireless Payment Protocol [1] (WPP) was
introduced in 2000 to provide an efficient protocol for m-
commerce. However, WPP falls short on security. In 2002,
Secure Wireless Payment Protocol [2] (SWPP) was
designed to address the security weaknesses of WPP.
SWPP and WPP have the same design except for that
SWPP does implement security mechanisms such as
WTLS and digital signatures.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

224

The major phases in the SWPP protocol are:
acknowledgment order, request for payment, notification
of payment, confirmation of payment. We will describe
each of the phases in the coming sections. Based on [1],[2]
we were able to construct an outline of the major phases
and message flows in the protocol.

Figure : SWPP protocol

Customer

Gateway

1

2 4

4

2

4

3

1

WTLS
SSL

1- Acknowledging Order
2- Request for Payment
3- Notification of Payment
4- Confirmation of Payment

Customer
Agent

Merchant Agent

Customer Customer
Bank

Merchant Bank
Agent

Merchant

Customer

Gateway

1

2 4

4

2

4

3

1

WTLS
SSL

1- Acknowledging Order
2- Request for Payment
3- Notification of Payment
4- Confirmation of Payment

Customer
Agent

Merchant Agent

Customer Customer
Bank

Merchant Bank
Agent

Merchant

Acknowledgment Order
The protocol starts when the customer agent initiates a
WTLS class 3 (thus both client/customer and
server/merchant are authenticated) connection with the
merchant. After browsing the merchant's products, the
customer creates a list of the products that they request to
purchase in the order information OI. Note that OI is not
signed, later we will discuss what implications this will
have on the protocol’s security.
Stage 1: Customer Merchant
 OI

The merchant agent then generates the invoice, the
payment information PI and merchant payment
information MBI. The merchant then signs MBI and PI
before encrypting the result with the customer public. This
will conceal the MBI and PI data from being revealed to
anyone other than the customer bank. Stage 2 represents
the information sent by the merchant to the customer.
Again, note that Invoice is not signed.

Stage 2: Merchant Customer
 ENC(SIGN(PI+MBI+MII)PrivM)PubCB +Invoice
where PrivM denotes the merchant private key and PubCB
denoted the customer bank's public key.

Request for Payment
In this stage the customer verifies the invoice's data before
initiating a new secure WTLS communication with the
customer bank. The customer possesses a SWIM card
where all confidential data such as bank information CBI
and private keys are stored. A SWIM card is the WIM

(specifications that provide the security elements
necessary for e-commerce transactions) implementation on
the SIM card [12]. To be able to retrieve the CBI, the
customer agent requests it from the SWIM in stage 3, and
the SWIM will respond by signing CBI. The customer
then proceeds by forwarding the following:
Stage 3: Customer Customer Bank
 {ENC(SIGN(PI+MBI+MII)PrivM)PubCB} from Merchant
 SIGN(Invoice2+CBI+CID+PRN)PricvC}

Confirmation of Payment
Once the merchant bank receives the request to transfer
the funds, they verify the PI and MBI information. If
validated, the merchant bank transfers the funds to the
merchant account, signs the transaction confirmation, and
sends it to the merchant agent.

Analysis of SWPP
Observe that the Transaction ID is not necessarily unique.
The Merchant could take advantage of this by sending the
same transaction ID's to two different customers and send
the merchandise to one of them. Since the invoice does not
include the customer unique identifier, the two invoice
copies will be identical. Therefore, the merchant can
blame one of the customers for making a copy of the
invoice.

A major problem with the protocol is the transaction
commitment since the invoice is not signed. The use of
WTLS ensures integrity of the data exchanged through out
the whole connection. However, this does not prevent any
party from forging messages received if they are not
signed. The customer could buy the product then renege
having received the one he ordered. Moreover, the
merchant can sell a product and ship a different one. Thus,
any party can forge the invoice at the end of the
transaction.

In addition, the order information OI is not signed. This
could allow the merchant to forge it by changing the
product that the customer requested. Consequently, they
can ship a different product once the transaction has been
processed.

Even if the invoice was signed, another commitment
problem could arise. When the protocol is launched at
Stage 1, the customer sends a customer order to the
merchant. This results in a commitment problem i.e. a lack
of commitment from both parties. That is the merchant is
committed to selling the product, because they send the
invoice, whereas the customer is not committed to buying
it. Consequently Company A could attack the product
availability of the Company B by repeatedly sending order
requests for the product. The products will be held in
reserve until the invoices expire. Since the customer is not

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

225

committed to buying it, they can continually request the
product without necessarily buying it.

In the protocol design, we can assume that the banks are
considered to be trusted parties. In reality, this is not
completely accurate: banks should not be required to
blindly trust each other and the customer does not trust an
unsigned confirmation message from its bank. Giving
additional trust responsibilities to the bank will complicate
the protocol even more. In fact, creating a party that
assumes all financial responsibilities and trusted by all
parties at the same time will make it more vulnerable to
attacks. We feel banks should be treated the same as any
commercial entrepreneur and not require any special trust
properties.

Table 2 underlines the major computations and
communication that SWPP requires. As previously
described, the protocol has some security breaches that
any malicious merchant, customer or intruder could take
advantage of. In order to improve the protocol security,
the protocol should be modified and several signatures
should be added such as the merchant signing the invoice
and the customer signing the OI. Since the bank is not a
trusted party, confirmations sent by the merchant's bank
should be signed as well. This will result in the addition
of: “One signature generation and two signature
verifications for the merchant and one signature
generation and one signature verification for the
customer.” These additional computations are included in
Table 2.

Table 2 SWPP Computations and Communication
Comparison

 Signatures Public Key
computation

Communi-
cation

Merchant 2 SG* +
2 SV*

1 PKE 1 S + 2 R

Customer 2 SG* +
2 SV*

1 PKE 2 S + 2 R

Here SG and SV denote signature generation and signature
verification, respectively. S denotes a communication ``send"
and R denotes a communication ``receive". PKE denotes a public
key encryption process. ``*" denotes that additional
computations have been added to make the protocol secure.

SWPP does not address all the security requirements that
are needed. Further even if we improve the security
features of SWPP, SWPP does not address fair
commitment. Lastly, as our work will demonstrate
improvements in bandwidth can be made.

3. An Improved Simple Secure M-Commerce
Protocol (SSMCP*)

Here we address several problems concerning m-
commerce. First we address the failure to achieve a fair
commitment between the merchant and the customer. As
well, our protocol is constructed in an attempt to reduce
the amount of communications. The result is an improved
protocol SSMCP*. A concept introduced in the protocol
SSMCP* is the way the merchant receives the e-cheque
from the customer. This enhancement is the creation of a
public bank URL that is specific to each individual
customer. As opposed to the ECheq passing through the
customer to reach the merchant, the bank uploads the
ECheq to the customer designated URL, denoted by
CUSTURL, where the merchant can then download it. If
the ECheq is timestamped at a date later than the invoice
expiry date, then the transaction is canceled. This is based
on a similar procedure that was used in the WTLS
protocol where the URL for a WTLS-certificate is sent
instead of the actual certificate [4]. Those communication
steps that are required to make the SSMCP* M-commerce
transaction are displayed in Figure 3.

Protocol Description
After browsing the merchant's products, the customer
creates a list of the product requests along with their
unique identifiers. At this point, starts the secure
communication provided by the TLS/WTLS [4]. Having
TLS/WTLS protocol in lower layers will provide integrity
and authentication. In the communication between the
merchant and the client (as well as between the bank and
the customer), we will be using a TLS client
authentication or a WTLS class 3, this requires that both
the server (merchant) and the client (customer)
authenticate themselves to each other. The customer
requests to purchase the products by sending a Purchase
Request that includes the invoice request INVOICEReq
that contains the CUSTURL of the customer (see Table3 for
more details) and a customer nonce NC. The customer then
signs INVOICEReq concatenated with NC.

Table 3 Invoice Request

INVOICEREQ Description

1- Customer’s name, IDC Customer’s full name and identifier

2- Merchant’s name, IDM Merchant’s full name and identifier

3- CUSTURL Customer’s personal bank URL
where e-cheques are uploaded

4- IDPRODUCT
The unique product ID (it could be
repeated as many times as the
number of products to be
purchased)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

226

5- Timestamp Date and time of response

Stage SSMCP1: Customer: Purchase Request Merchantr
 ENC(SIGN(PI+MBI+MII)PrivM)PubCB +Invoice

Purchase Request=InvoiceReq+NC+
 SignCpriv(InvoiceReq||NC)+CERTC
We will use symbols +, as well as || to represent concatenation.

After the merchant receives the Purchase Request, the
merchant generates a merchant nonce NM and hashes the
concatenation of the nonces NM||NC (we use the symbol ||
to denote concatenation). The resulting hash h(NM||NC)
will be transaction identifier IDTrans. This will allow both
parties to be sure that the transaction ID is unique and has
never been used before. The merchant then generates the
invoice, which is constructed in a manner very similar to
the one in [2]. The invoice contains the IDTrans, the (list of
the) product Identifier(s) IDProd and a more detailed
description of the product(s) in the list (Table 4).The
merchant replies by sending the Purchase Response (Stage
SSMCP1).

Table 4 Invoice
Invoice Description
1- IDTRANS The unique transaction ID
2- IDPROD The unique product ID
3-Product
description

The product detailed
description

4- Item’s number The number of items of the
product requested

5- Unit price The unit price of the product
6-Steps 2-5 could
be repeated

Repeated if the invoice
contains multiple products

7- IDM, CERTM ,

IDM is the unique merchant
identifier as it appears on the
certificate.CERTM is the url of
the merchant' s certificate

8- IDC , CERTC

IDC is the unique Client
identifier as it appears on the
certificate CERTC is the url of
the customer’s certificate

9- Timestamp Date and time of the invoice
creation

10- Expiry date Expiry date where the invoice
becomes invalid

Stage SSMCP2 Merchant:Purchase Response Customer

Purchase Response =Invoice+NM+SignMpriv(Invoice||NC||NM)

When the Purchase Response is received, the customer
verifies the invoice and the IDTrans by computing the hash
of the concatenated nonces NM||NC . Provided that all

information is verified, the customer will start a secure
communication channel with their Bank, the
communication will satisfy a WTLS class 3 connection
(both client (customer) and server (bank) are
authenticated). The customer then starts to generate the
customer payment information PIC (see Table 5).

The PIC contains the customer's detailed bank account
information. The customer then initiates Stage SSMCP3
and signs PIC||IDTrans||ECheqReq||CERTM where ECheqReq
is the request for e-cheque (see Table 6).

Table 5 Payment Information
PIC Description

1- Bank Name Customer’s bank

2- Customer’s name, IDC Customer’s full name and identifier

3- Customer’s account number Customer’s bank account number

4- Timestamp Date and time of request

Stage SSMCP3 Customer: E-cheque Request Bank

E-cheque Request=PIC+IDTrans+ECheReq+CERTM+
 SignCpriv(PIC||IDTrans||ECheReq||CERTM)

The bank verifies the customer's signature as well as their
bank account information extracted from the PIC. Provided
that all information is valid, the bank will check for fund
availability and credit the customer's account with the
corresponding transaction's amount. The bank, then,
constructs the e-cheque and digitally signs it. The bank
generates a unique e-cheque identifier IDECheq that will
prevent any replay attack by the merchant. The e-cheque,
denoted by ECheq, will be created and will contain the
IDM (extracted from the merchant certificate), CERTM,
the transaction's amount, and the ECheq expiry date (see
Table 7).

Table 6 Request for e-cheque
ECheqReq Description

1- Bank name Customer’s bank

2- IDC Customer’s unique identifier
4- Amount Amount of money for fund

transfer

5- Timestamp Date and time of request

Table 7 E-cheque

ECheq Description

1- IDECheq Unique serial number for the
token generated by the Gateway

2- IDTrans Transaction unique identifier

3- IDIssuer E-cheque’s Issuer unique
identifier

4- IDBearer E-cheque’s bearer unique
identifier

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

227

5- IDB E-cheque bearer’s bank unique
identifier

6- Amount Amount of money to be paid

7- Timestamp Date and time of request

8- Expiry Date E-cheque expiry date. When the
e-cheque expired becomes invalid

Therefore the bank stores IDTrans along with the IDECheq in
its database. It will be deleted when the ECheq has expired
or has been cashed out. If the ECheq has expired, the
bank will re-credit the customer's account with the original
transaction amount. The bank signs the ECheq as well as
the ECheqResp (see Table 8) that contains the bank
response regarding the success of the transaction.

Table 8 E-cheque Response
ECheqResp Description

1- Bank identifier Bank unique identifier

2-IDECheq E-cheque unique identifier
(optional). It will be sent just in
case the transaction is approved
by the bank

3- IDTrans Unique transaction ID

4- Response Indicates whether the transaction
was valid or not. If not it will
indicate the reasons of failure

5- Timestamp Date and time of response

Stage SSMCP4: Bank: E-cheque Response Customer

E-cheque Response =ECheqResp+ SignBpriv(ECheqResp)

The bank then constructs the ECheq and signs it. After
signing the ECheq, the bank uploads it to the customer's
URL CUSTURL in E-cheque Upload (Stage SSMCP5).

Stage SSMCP5 Bank: E-cheque Upload CUSTURL

E-cheque Upload = upload ECheq+CERTB+SignBpriv(ECheq)

At the invoice expiration date, the merchant downloads
the ECheq from the URL in E-cheque Verification (Stage
SSMCP6).

Stage SSMCP 6 CUSTURL: E-cheque Verification} Merchant
E-cheque Verification = Merchant downloads
 ECheq+CERTB+SignBpriv(ECheq)

The merchant then verifies the e-cheque's information
IDTrans, IDM, amount, valid expiration date} and time
stamp and the bank signature on it. Observe that if the e-
cheque is time stamped after the invoice expiry, the
merchant has the right to cancel the transaction. The
merchant can cash the ECheq at any time before its
expiration. This stage can actually be completed by the
financial agent of the merchant. The download can
actually occur at a later time. The merchant would need to

be contacted (via some authenticated channel) by the
merchant's financial agent that the ECheq is valid. Thus a
further savings in bandwidth could be achieved by having
the financial agent download and verify the ECheq.

The entire SSMCP* protocol is illustrated in Figure 3.

Figure 3 SSMCP* protocol

Customer

Merchant
Agent

Customer
Agent

Customer
Bank

1

2

3

4

Customer URLCustomer URL6

5

--..--.. WTLS Class 3
____ Non-Secure Connection

Arbitration--judging a transaction which has a
malicious or faulty party

If two signed invoices are found with the same IDTrans,
then the merchant will be held responsible for it.
Remember the merchant is the last party to choose the
nonce. Due to the use of a cryptographic hash function it
is infeasible to produce a collision of two hashes. In the
case of potential fraud of IDTrans, each customer should
present their signed copy of the invoice to the judge. The
customer should keep the invoice as a proof of the item
purchased and its price since the merchant committed to it
by signing it. If the item shipped was somehow improper,
the customer can show the invoice to the judge. The judge
will verify the ECheq and make sure that the IDTrans
corresponds to the IDTrans on the invoice. The judge will
then verify the IDM, IDC, IDProd and the description of the
product(s) on the invoice as well as the invoice signature
(by using the public key corresponding to the IDM on the
invoice). Lastly, any replay attack by the merchant to
attempt cashing the ECheq more than once will be
detected by the bank since the ECheq has a unique
identifier IDECheq (to keep track of those ECheq that have
been cashed).

In a typical e-commerce protocol the price commitment
made by the merchant is not complete until the merchant
cashes the check, which is the formal acknowledgement of
acceptance. Realize that under our view of m-commerce,
both merchant and customer communicate using a wireless
medium, but neither may have a persistent internet

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

228

connection. Thus there may be a delay between the
cashing of the check. Such a delay, under a typical e-
commerce protocol, would cause a delay in a
“commitment”. In our view of the m-commerce, because
the protocol could be used with a merchant who does not
necessary have a persistent internet capability,
deadlines/expiration dates will need to allow some
flexibility. Consequently if the merchant has flexibility in
the expiration date, then the a merchant could purposely
delay the cashing of a customer's check, in hopes of
finding a better deal, if they do find a better deal, they can
claim the check was lost or simply let the deal expire.
Thus the merchant has an upper hand and there is no price
commitment by the merchant until the very hand. In a
court of law, there would be no material proof of the
merchant's receipt of the check. This problem has been
addressed in our protocol SSMCP*. The merchant assigns
a period of time for the customer to submit the ECheq by
determining an expiration date for the invoice. In this
manner, the merchant is unable to cancel the transaction
unless the customer uploads the ECheq after the invoice
expiration date. The fact that there is material proof of the
exact time of receipt of the ECheq (the time stamp the
bank applies to the signed ECheq) can be used to resolve
conflicts in a judiciary setting. As banks are federally
regulated institutions there is trust that the fields generated
by the bank inside ECheq are accurate. This trust is
created once one verifies the bank signature on the ECheq.

Assessing SSMCP*
A major improvement is that the new version of the
protocol removes the ability of the merchant to renege the
price of the e-cheque and delay the transaction.

Table 9 provides a comparison between SSMCP*, SET
and SWPP and highlights the major communication's and
computation's improvements. In addition, the protocol
replaces sending the entire certificates by sending their
URL which reduces bandwidth.

Table 9 Comparison between E-commerce
 Merchant

Comp.
Merchant
Comm.

Customer
Comp.

Customer
Comm

SET 3 SG+3 SV
+2 PKE
+2 PKD

4 S+4 R 1 SG
+2 SV
+ 1 PKE

2 S+2 R

SWPP 2 SG+2 SV
+1 PKE

1 S+2 R 2SG+2SV
+ 1 PKE

2 S+2 R

SSMCP* 1 SG+2 SV 1 S+1 R 2SG+2SV 2 S+2 R
Here SG and SV denote signature generation and signature
verification, respectively. S denotes a communication ``send"
and R denotes a communication ``receive". PKE and PKD
denote a public key encryption and decryption, respectively.

SET is considered to be a secure protocol; however its
efficiency can fall short in a mobile environment.
SSMCP* presents a better fit in such an environment by

eliminating the need of the costly (in terms of resources)
dual signatures. Another major improvement is that SET
requires the online involvement of a trusted party: the
Gateway. The Gateway has to keep track of all transaction
processed to prevent replay attacks. On the other hand in
SSMCP*, banks have to store the transaction ID until the
e-cheque is cashed only.

Furthermore, SSMCP* provides several security
improvements over SWPP. In fact, transaction ID is not
guaranteed to be unique in SWPP creating several security
issues as described in previous sections. Another security
issue with SWPP is that the protocol does not prevent
customer's replay attacks.

Suggested cryptographic tools

An m-commerce transaction, because it involves finances,
will require one to choose a suitably secure (size) digital
signature key. In the RSA cryptosystem, the public key is
(e,N) such that modulus N=p * q, where p and q are
distinct primes.The private key is d such e * d =1 mod
φ(N) where φ(N) =(p-1)(q-1). The security of RSA is
related to the difficulty of factoring, and the essential
cryptographic computation is an exponentiation modulo
the composite N. The signing computation will involve the
use of the exponent d and the verification will utilize e.
The problem concerning the size of e and the size of d has
been well researched [3]. The public key e may be selected
to be small, but in order to avoid serious attacks [3], the
private key (signing key) d needs to be large and will be
approximately the same size as N. Today a 1024 bit RSA
modulus is considered secure, but financial institutions
require significantly stronger keys, so one would probably
choose a 2048 or 3072 bit RSA key for an m-commerce
transaction.

Elliptic curve cryptography ECC is often viewed as a
panacea for the problems of a low-complexity device
implementing public key cryptography (due to limited
computing resources and bandwidth). An elliptic curve is
determined by the collection of all ordered pairs, from a
finite field that satisfy a particular equation, together with
the point of infinity. For example, when using the field
GF(2n), the equation y2+xy=x3+ax2 +b determines an
elliptic curve, where a and b are fixed field elements
which would be characterized as elliptic curve parameters.
The curve is constructed so that it has a subgroup of large
prime order. An addition can be defined on the elliptic
curve, and the basic cryptographic computation is to
compute the scalar multiple kP=P+P+…+P of a point P
which belongs to the elliptic curve. The public-key is a
scalar multiple of a point kP, and the private key is the
scalar k. The keysize for an ECC cryptosystem does not
need to be anywhere near as large as an RSA key. The
ECDSA is a federally approved ECC digital signature

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

229

scheme [7]. For an elliptic curve defined over the Galois
field GF(2n), a suitable sized n (for precise details of the
elliptic curve see [7]) for an elliptic curve equivalent (in
terms of security) to a RSA modulus of 2048 bits is
n=233 bits, and a suitable sized n for an elliptic curve
equivalent to a RSA modulus of 3072 bits is n=283 bits.
Table 10 describes the computational time for computing
the most time consuming operation of RSA and ECC, for
RSA it represents a modular exponentiation and for ECC
it represents the time to compute a scalar multiple of a
point. It demonstrates that ECC would provide significant
time improvement over RSA. In addition to the
computational complexity advantage that ECC holds over
RSA, there is also a bandwidth advantage. An ECDSA
signature consists of an ordered pair (r,s) where both r and
s belong to the finite field. For example, the elliptic curve
defined over GF(2233) is an equivalent to an RSA modulus
of 2048 bits and the elliptic curve defined over GF(2283) is
an equivalent to an RSA modulus of 3072 bits. Thus the
elliptic curve signature will be significantly smaller than
the RSA signature. In the former case, ECC defined over
GF(2233), 466 bits are required for an ECC signature
which is equivalent to a 2048 bit RSA signature. Thus
there will be bandwidth savings in the signature. There
will be additional bandwidth improvement when one
considers the size of an ECC certificate versus an RSA
certificate (transmission of public-key certificates is a
necessity). For example, when transmitting an elliptic
curve point, one can use point compression to transmit the
point, a result which reduces the bandwidth complexity by
a half [6].

Lastly, with ECC cryptosystem one can standardize the
security level as well as the elliptic curve. Thus one can
optimize the implementation and tailor it for the given
parameters, whereas in RSA no two parties can reuse the
same modulus of their private-key/public key selection.

Consequently, the ECDSA is the signature algorithm that
we recommend for use in our protocol, and we
recommend the use of ECC for any of the necessary
public-key cryptographic operations.

Table 10 RSA vs ECC comparison at same security level
RSA N vs
ECC GF(2n)

RSA N ECC over
GF(2n)

N=2048 bits
n=233 bits

2081 millisecs 57.58 millisecs

N=3072 bits
n = 283 bits

7540 millisecs 114.37 millisecs

4. Conclusion

In this paper, we have defined a low-complexity m-
commerce protocol that is constructed in such a way that it

minimizes both bandwidth as well as computational
complexity for both the merchant and the consumer. The
realization that we will have low-complexity merchants in
the future is important, and the limitations of low-
complexity merchants have not been addressed in other e-
commerce protocols. Lastly, we have provided
comparisons of our protocol SSMCP* with other e-
commerce protocols.

References

[1] Allen C., Dierks T. The TLS Protocol Version 1.0,
RFC2246 http://www.faqs.org/rfcs/rfc2246.html January
1999
[2] Beadle H., Gonzalez R., Safavi-Naini R., Bakhtiari S.
“A Review of Internet Payments Schemes”, In
Proceedings of the Australian Telecommunication
Networks and Applications Conference (ATNAC’96),
Melbourne, Australia, December 1996, pp.486-94
[3] Boneh, D. “Twenty years of attacks on the RSA
cryptosystem”. In Notices of the American Mathematical
Society (AMS), Vol. 46, No. 2, pp. 203– 213, 1999.
[4] Fourati A., Ben Ayed H., Kamoun F., and Benzekri A..
“A SET Based Approach to Secure the Payment in Mobile
Commerce”. 27th Annual IEEE Conference on Local
Computer Networks (LCN’02), Nov 2002, pp. 136-140.
[5] Hall J., Killbank S., Barbeau M., Kranakis E. WPP: A
Secure PaymentProtocol for Supporting Credit- and Debit-
Card International Conference on Telecommunications,
Romania, Bucharest, June 4-7, 2001
[6] King, B. “A Point Compression Method for Elliptic
Curves Defined over GF(2n)”. Workshop on Public Key
Cryptography 2004, LNCS, Springer-Verlag, pp. 333-345
[7] NIST. “Recommended elliptic curves for federal use”.
http://www.nist.gov.
[8] Stallings W. Cryptography and Network Security,
Prentice-Hall, New Jersey. 1999.
[9] Wang H., Kranakis E. “Secure Wireless Payment
Protocol”. International Conference on Wireless Networks
2003. pp. 576-582.
[10] WAP Forum WAP WTLS: Wireless Application
Protocol Wireless Transport Layer Security Specification
http://www.openmobilealliance.org/tech/affiliates/wap/wa
p-261-wtls-20010406-a.pdf
[11] Stinson D. Cryptography. Theory and Practice. CRC
Press. Boston. 2002.
[12] Friis-Hansen S., Stavenow B., “Secure Electronic
Transactions-The Mobile Phone Continues”, Ericsson
Review, no. 4, 2001.
http://www.ericsson.com/about/publications/review/2001
04/files/2001041.Nake

