
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

253

A Convergence of Context-Awareness and Service-Orientation in
Ubiquitous Computing

Hoijin Yoon,

Department of Computer Science and Engineering, Ewha Womans University, Seoul, Korea

Summary
Ubiquitous service needs to react to context as well as normal
input. Therefore, services in ubiquitous computing would be
implemented as context aware applications, which handle two
different types of input; one is explicit as a normal type of input
and the other is implicit as context.
However, Ubiquitous Computing requires the seamless
adaptation and extension of context aware applications. Some
approaches to fit the two requirements, the adaptation and the
extension, are based on Component-Based Software
Development paradigm instead of Service-orientation, even
though the service-orientation has the abstraction, which could
support the seamless adaptation, and it consists of loosely-
coupled services, which could support the seamless extension.
That’s because the know-how of Component-Based Software
Development has longer history and is more proved than the
service-orientation. This paper proposes a convergence of
context-awareness and service-orientation according to the
principles of service-orientation, and explains its contribution
compared to other work of combining the context awareness and
the service-orientation.
Key words:
Context-awareness, Service Oriented Architecture, Ubiquitous
Computing, Abstraction, Loosely Coupled.

1. Introduction

The real world as a Ubiquitous Computing (UC)’s domain
is more dynamic than the traditional computing domains.
That’s because ubiquitous services should react to the
context as well as to the normal input, where the ability to
adapt to the behaviors based on knowledge of its context is
called context-awareness [1]. The Context-awareness is a
critical feature where there are frequent changes of context.
A context aware application treats the context as an
implicit input as well as the normal input as an explicit
input. From the handling-context of the context aware
application, services in UC tend to be implemented as
context-aware applications.

The common approach to deal with the context
awareness is based on IF-THEN rules [2, 3]. The rules are
simple IF-THEN rules used to specify how the context-
aware applications should adapt. The famous context
aware application, for instance, Active Badge-
based "Watchdog" and PARC’s tab based "Contextual

Reminder," are the rule based systems [4]. However, from
a software engineering perspective, this rule based
programming is a failure because the systems developed in
it are not able to maintain or test, and then it is unreliable
[5]. Therefore, various new approaches instead of rule-
based systems have been proposed, and the approaches
more focus on what UC requires of the context aware
applications.

One of the requirements of UC is adaptation. There
are two types of context-aware applications; a discrete one
and a continuous one [6]. The discrete application triggers
actions at every well-defined point of time. In contrast to it,
the continuous application continuously updates the parts
that are dependent on context. This kind of actions is
called the context adaptation where the context-aware
application modifies its behaviors according to the context
changes. For supporting the adaptation, Context Toolkit
[7] proposed a layered model of developing a context
aware application. Each layer has its own abstraction level
from the sensor-biased to the application-biased. It could
be said that the abstraction is the key for supporting the
adaptation.

The other requirement of UC is extension without
rebuilding the application from the scratch. Applications
in UC are often requested to be extended for accepting
new context information. Also, they are composed or
separated each other over and over depending on the
scenario of using the context. To rescale or expand
applications could overload the adaptation, and it causes
the cost of developing context-aware applications high.
That’s why the cost-effective extension should be
considered in developing context-aware applications.
Some approaches solve the extension by composing
software components, which is more loosely-coupled than
traditional components. It said that one of the key for
solving the extension is to use the loosely-coupled.

The two requirements, the adaptation and the
extension, have been answered with Component-based
Software Development (CBSD) paradigm, which was
applied to the Context Driven Component Model [8],
Gravity [9], Multifacet [10], instead of the service-
orientation, even though the service-orientation allows a
more abstract level and more loosely-coupled component
than CBSD. That’s because the know-how of CBSD has

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

254

longer history and is more proved than the service-
orientation. This paper proposes a convergence of context-
awareness and service-orientation according to the
principles of service-orientation, and explains its
contribution compared to other work of combining the
context awareness and the service-orientation. It is
explained with principles of the service-orientation not
with the techniques or the solutions.

Section 2 explains how the principles of service-
orientation support the adaptation and the extension with
Service-oriented Architecture (SOA). Section 3 mentions
the contributions with compared to other studies of
converging context awareness and SOA, and concludes
this paper with some on-going future work.

2. Context-Awareness on Service-Orientation

Abstraction is the key in SOA, which has layers of
abstraction such as the application service layer, the
business service layer, and the orchestration service layer
as shown in Figure 1[11]. The application service layer
establishes the ground level foundation that exists to
express technology-specific functionality. While
application services are responsible for representing
technology and application logic, the business service
layer introduces a service concerned solely with
representing business logic, called the business service.
The orchestration service layer introduces a parent level of
abstraction, and the orchestration brings the business
process into the service layer, positioning it as a master
composition controller.

Fig.1 SOA Configuration [11]

 Through the abstraction implemented distinct service
layers described above, key SOA characteristics can be
realized. There is no official set of service orientation
principles yet. There are, however, a common set of
principles most associated with service-orientation;
Services are reusable, Services share a formal contract,
Services are loosely coupled, Services abstract underlying
logic, Services are composable, Services are autonomous,

Services are stateless, and Services are discoverable. Of
these eight, autonomy, loosely coupling, abstraction, and
the need for a formal contract can be considered the core
principles that form the baseline foundation for SOA. How
to narrow down from the eight principles to the four core
ones is explained in [11].

Table 1 Points of convergence
Context Awareness SOA core principles

Adaptation Abstraction
Loosely coupled

Need for a formal contract Extension
autonomy

The four core principles mentioned above are

supporting the adaptation and the extension needed in
context aware applications as shown in Table 1. The
points of their convergence in ubiquitous computing are
where abstraction in service-orientation supports the
adaptation in context-awareness, and where the loosely
coupled with need for a formal contract and autonomy in
SOA supports the extension in context-awareness. The
detail about them will be in Section 2.1 and Section 2.2.

2.1 Adaptation of Context-Awareness and
Abstraction of Service-Orientation

The abstraction principle supports the adaptation of
context awareness. For adapting applications to updated
context, applications consist of layers abstracted by
context sensitivity. The application service layer in Figure
1 links application services and implementation units only
by writing the link information as a service description
language, for instance, Web Service Description Language
(WSDL). It means services are abstract since they do not
embed implementation unit like codes. That’s why
application services are not specific to a technology, a
domain, or an implementation platform. This kind of
approaches has their roots in a software engineering theory
known as “separation of concerns.” This theory is based
on the notion that it is beneficial to break down a large
problem into a series of individual concerns. This allows
the logic required to solve the problem to be decomposed
into a collection of smaller, related pieces. Each piece of
logic addresses a specific concern.

SOA can be viewed as a distinct manner in which to
realize a separation of concerns [11]. This characteristic is
the abstraction. Services in SOA abstract underlying logic.
The only part of a service that is visible to the outside
world is what is exposed via the service contract.
Underlying logic, beyond what is expressed in the
descriptions that comprise the contract, is invisible and
irrelevant to service requestors. This abstraction supports

Orchestration Service
Layer

Business Service Layer
Application Service

Layer

B1 B2 B3 B4

A1 A2 A3 A4 A5 A6 A7

Process / Workflow

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

255

the adaptation needed by context awareness in ubiquitous
computing as seen in Table 1.

(a) Abstraction (b) Adaptation

Fig. 2 Adaptation through the Abstraction

Figure 2 shows how to support the adaptation through
the abstraction. SOA configuration in Figure 1 is for
implementing a business process not for an application.
Till now, SOA is generally targeting a business process
not a traditional application. Therefore, context aware
applications are mapping to the application service layer.
In Figure 2 (a), A1 has only the description of itself, and it
is linked to the specific parts like context-biased solution
by describing the relation in the service description inside
itself. As seen in Figure 2 (b), A1 can use other solutions
depending on updated context information needs simply by
modifying its link information in the description. Suppose
a business service, B4, needs both of A2 and A3, it also
does not embed the contents of the lower layers like the
application service layer or specific solutions. It only has
its own description about its using application services. If
other service, for example A4, is wanted by B4, B4 would
only update the description. All above the adaptation is
enable from the abstraction of SOA.

2.2 Extension of Context-Awareness and Loosely-
Coupled of Service-Orientation

For extension, software components associated with
context information in a context aware application need to
be composable more simply than software components of
CBSD. Unless, a whole of the context aware application
should be rebuilt from the scratch whenever new context
information is needed. The loosely coupled, one of the
principles of SOA, makes the components more
composable. Services in SOA are loosely coupled. It
means that services must be designed to interact without
the need for tight, cross-service dependencies.

The loosely coupled is caused from the need for the
formal contract and autonomy of the principles described
in Table 1. For services to interact, they need not share
anything but a formal contract that describes each service
and defines the terms of information exchange. It is the
need for the formal contract. Also, the logic governed by
a service resides within an explicit boundary. The service
has control within this boundary and is not dependent on

other services for it to execute its governance. It is the
autonomy.

From the loose coupled, context aware applications
can be reorganized according to the need of new context
information. An application service, A1 in Figure 3,
implements behaviors for context information, and it is
autonomous as a service. If the context aware application
wants to handle some more context information, it gets
other pre-built services associated with the added context.
If there are no matched services in its range of architecture,
it needs the developer to implement a new autonomous
service for the context added. Anyhow, a wanted new
service, A2 in Figure 3, is ready to compose. The services,
A1 and A2 in Figure 3, are composed by updating a formal
contract, the filled circle in Figure 3, as they share nothing
but the formal contract according to the principles of
service orientation. The formal contract can be more in the
orchestration service layer than in the business service
layer. The context-driven component model [10]
implemented this concept for the extension within CBSD
paradigm.

Fig. 3 Extension through the Loosely Coupled

2.3 Integration of UC and SOA

UC and SOA can be integrated with the orchestration
service as a central junction as seen in Figure 4. Figure 4
harmonizes UC architecture [12] of context awareness
with SOA configuration [11]. The left side of the
orchestration service in the figure is the UC architecture,
and the right side is SOA. In SOA side of Figure 4,
services located in each layer communicate each other
only through the orchestration service instead of binding
each other directly as in CBSD. In UC side of Figure 4,
the orchestration service is deployed separately from the
part, where the raw context information is sensed and
refined. The lower layer is sensor-biased, and the
orchestration is not binding directly to a sensor. It is the
orchestration service deployed in the center of Figure 4
that finds appropriate services in the SOA and requests the
service by sending messages. This section describes how
to apply the polymorphism to the mixed architecture of
Figure 4 for supporting both of the context adaptation and

A1 Service

Sensor and
Context-biased

Solution

A1 A2 A3

B4

A1 A2

B1

A3 A4

B2

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

256

the performance, which are the two considerations
mentioned in Section 1.

Fig. 4 Integration of UC and SOA

3. Contributions and Future Works

Recently, some studies coordinate the context-awareness
and the service-orientation. SOA for context aware
applications [13] and Web services enabling context aware
application [14] are published recently, and they consider
the UC environment like this paper. The former
developed four basic services used in implementing
location based services and to publish them as web
services. If a developer want to use the services, he could
subscribe them according to publish-subscribe mechanism
of Web service. The latter proposed some web services,
which handle context with its proposed context format.
Once context is described as the format, the context could
be handled with the proposed services. It is also based on
Web service mechanism.

Table 2 compares A Convergence… proposed in this
paper with two other work described above in some
factors; “SOA” in Table 2 mentions if one considers SOA
principles or not, “Adaptation” or “Extension” expresses if
one solves the adaptation or the extension needed by
context awareness or not, “Specific Application” means if
one is implementation technique for a specific application
or not.

Table 2 explains two contributions of our work as
followed.

Table 2 Comparison with Other Work

 SOA Adaptation Extension Specific
Application

SOA for Context-
aware applications X O X O

Web services
enabling context-

aware applications
X O X O

A Convergence… O O O X

First, our work has derived a solution for the
adaptation and the extension that the ubiquitous computing
requires of context-awareness, from service-orientation. Of
the requirements, the adaptation is generally more focused
than the extension by other work as shown in Table 2. Our
work tries to solve the requirements through the service
orientation, and shows that the principles of SOA support
them in Section 2 step by step.

Second, our work has applied the contemporary SOA
to the convergence. Most of the solutions of SOA are
evolving into accepting the contemporary SOA from the
first-generation web service; Fiorano is launching
Aqualogic™ as the next version of Fiorano BIS™, and
IBM also releases the Websphere™ with a modeling
process using Rational Rose™. As seen in Figure 5, the
contemporary SOA is based on the principles of service
orientation described in Section 2, and it includes web
service concepts as an implementation technology. Also it
adopts WS* specifications that support the principles of
service orientation. However, the other work in Table 2
defined services within the web service boundary. Our
work proposes the convergence of context awareness and
service orientation from the level of the contemporary
SOA.

Fig. 5 Contemporary SOA

As a future work, we are studying a development
process of context aware applications targeting ubiquitous
computing. Ubiquitous systems are getting bigger and
mission-critical and the real world is getting involved in
the ubiquitous environment. Nevertheless, traditional
developments of context aware applications do not
consider software engineering approaches. This paper
shows that SOA meets the requirements of context aware
applications with the principles of contemporary SOA.
Based on this work, the development process for context-
aware applications will be specified to SOA.

References
[1] Gregory D. Abowd, “Software Engineering Issues for

Ubiquitous Computing,” in Proceedings of International
Conference on Software Engineering, 1999, pp.75-84

[2] Gu T., Pung K., Zhang D.Q., “A service-oriented
middleware for building context aware services,” Journal of
Network and Computer Applications, Vol.28, No.1, 2005,
pp.1-18

Principles of service-orientation

First-generation
Web-Service Concepts

Second-generation
WS*- Concepts

Contemporary SOA ` `

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

257

[3] Yau S.S., Karim F., “An Adaptive Middleware for Context-
Sensitive Communications for Real-time Applications in
Ubiquitous Computing Environments,” Real-Time Systems,
Vol.26, No.1, 2004, pp.29-61

[4] Schilit, B., et al., Disseminating Active Map Information to
Mobile Hosts. IEEE Networks, Vol.8, No.5, 1994, pp. 22-
32

[5] Xiafeng Li, “What’s so bad about rule-based
programming,” IEEE Software, Vol.8, No.5, 1991, pp.103-
104

[6] Brown, P.J., Bovey, J. D. and Chen, X., “Context-Aware
Applications: From the Laboratory to the Marketplace,”
IEEE Personal Communications, Vol.4, No.5, 1997, pp.58-
64

[7] Anind K. Dey and Gregory D. Abowd, "The Context
Toolkit: Aiding the Development of Context-Aware
Applications," in Proceedings of Workshop on Software
Engineering for Wearable and Pervasive Computing, 2000.

[8] Hoijin Yoon, Byoungju Choi, "The Context Driven
Component Supporting the Context Adaptation and the
Content Extension," Journal of Information Science and
Engineering, Vol. 22 No.6 pp.1485-1504, 2006

[9] Humberto Cervantes and Richard S. Hall, “Autonomous
Adaptation to Dynamic Availability Using a Service-
Oriented Component Model,” in Proceedings of the 26th
International Conference on Software Engineering
(ICSE’04), 2004

[10] Anca Rarau, Kalman Pusztai, and Ioan Salomie,
“MultiFacet Item Based Context-Aware Applications,”
International Journal of Computing & Information Sciences,
Vol. 3, No. 2, 2005, pp.10-18

[11] Thomas Erl, ‘Service Oriented Architecture - Concepts',
Prentice Hall, 2005

[12] Karen Henricksen and Jadwiga Indulska, "Developing
context-aware pervasive computing applications : Model
and approach," Pervasive and Mobile Computing, Vol.2,
No.1, pp.37-64

[13] Damiao R. Almeida, et al., “Using Service-Oriented
Architecture in Context-Aware Applications,” GEOINFO
2006.

[14] C.H. Jardim, et al., “Web services enabling context-aware
application: Lessons learned by integrating e-learning
applications, ” in Proceedings of the international
conference on next generation web services practices, 2005.

Hoijin Yoon received the B.S.
and M.S. degrees in Computer Science
and Engineering from Ewha Womans
University in 1993 and 1998,
respectively. She also received her
ph.D with the dissertation about
software component testing from Ewha.
During 2004-2005, she stayed in
Georgia Institute of Technology as a

visiting scholar. She is interested in Software Testing, Service
Oriented Architecture, and Context awareness in Ubiquitous
Computing. She has worked in Ewha Womans University as a
full-time lecturer since 2006.

