
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

290

Manuscript received February 5, 2007

Manuscript revised February 25, 2007

Response Time Analysis of a Multi-Server Processor Sharing Model

Naoki Makimoto

University of Tsukuba, Bunkyo, Tokyo, Japan

Summary
In this paper, we investigate the response time of a multi-server
processor sharing (PS) model. A multi-server PS model is a PS
queue but the number of requests which can be processed
simultaneously is limited by a threshold. An arriving request has
to wait in the queue if the number of requests exceeds the
threshold. Assuming Markovian arrival input of requests and
general processing time distribution, we investigate how mean
response time is affected by the threshold. Through numerical
experiments for various instances, it turns out that the mean
response time geometrically converges as the threshold increases.
This property is used to derive a useful formula for capacity
planning of multi-threaded server systems. We also develop a
numerical procedure for computing the response time
distribution. We found from numerical experiments that the
processing time distribution has a strong impact on the response
time distribution.
Key words:
processor sharing, response time, queueing analysis, multi-
threaded server.

1. Introduction

When we develop a new system such as Web client-
server system, capacity planning is a one of the most
important issues to manage the system successfully. Lack
of capacity could cause a serious congestion and
instability of the system while too much capacity leads to
large cost of investment.

In this paper, we investigate the response time of a
multi-server processor sharing (PS) model. Analysis of
such model is motivated by capacity planning of a multi-
threaded server system. Figure 1 depicts a typical example
of a system which adopts multi-threaded server
architecture [5]. A request from Web clients (cellular, PC,
mobile, etc.) is transmitted to the legacy server allocated at
the back-most side. After execution of the request on the
legacy server, it will be returned to the client. The thread
is a primitive resource for all types of requests to be
processed. Specifically, an arriving request directly goes
into its own process if there is a vacant thread, otherwise it
must wait in the queue until a thread becomes available.

When developing such type of systems, it is
necessary to satisfy a prescribed quality of service (QoS).
Typical examples of QoS are such that, the mean response
time must be less than 4 seconds, and at least

90% of requests must be responded in 10 seconds. Among
other design parameters, the number of threads is the most
important parameter of the system since it determines the
load to the legacy system. Therefore, accurate evaluation
of response time is a key to choose appropriate number of
threads.

A multi-server PS model is a PS queue but the
number of requests which can be processed
simultaneously is limited by a threshold. An arriving
request has to wait in the queue if the number of requests
exceeds the threshold. Thus, this system has a feature of
both PS and ordinary queues which makes the analysis
difficult. Assuming Markovian arrival input of requests
and general processing time distribution, we first
investigate how mean response time is affected by the
threshold. Through numerical experiments for various
instances, it turns out that the mean response time
geometrically converges as the threshold increases. This
property is then used to derive a simple and useful
approximation formula for capacity planning of multi-
threaded server systems. We also develop a numerical
procedure for computing the distribution of the response
time. Through numerical experiments, we found that
among other things the processing time distribution has a
strong impact on the response time distribution.

This paper is organized as follows. In the next section,
we construct a multi-server PS model as a multi-server PS
queue. The queueing model is then described as a
continuous-time Markov process with a special structure.
A numerical method for computing the stationary
distribution is also discussed. Section 3 is concerned with
the mean response time and the response time distribution
is discussed in Section 4.

Fig. 1 An example of a multi-threaded server.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

291

2. Model Description

In this section, we construct a multi-server PS model
as a multi-server PS queue. We assume that requests arrive
to the system according to a Markovian Arrival Process
(MAP) with a representation 0 1(,)D D . Specifically, 0D is
a transition rate matrix of an underlying Markov process
without arrivals while 1D is a transition rate matrix
accompanied with a new arrival of request. We denote by
λ the mean input rate of requests. The distribution of
each processing time is of phase-type (PH) with a
representation (,)b S where b and S respectively denotes
the initial vector and transition rate matrix of an
underlying absorbing Markov process. We denote by μ
the mean processing time of a request. For detailed
description and basic properties of MAP and phase-type
distributions, we refer to Latouche and Ramaswami [4].

The number of threads is given by m . In the context
of queueing model, there are m spaces to process the
requests which share the fixed total processing capacity 1.
When there are k ()m≤ requests in process, each of them
shares equal processing capacity 1/ k . In other words, the
remaining processing time of each request in process
decreases at rate 1/ k . If an arriving request finds all
processing spaces occupied, it must wait in the queue until
one of the processing spaces becomes available. Note that
the traffic intensity of the system is equal to /ρ λ μ= .
Throughout the paper, we assume 1ρ < so that the system
is stable.

Now we construct a continuous-time Markov process
which describes time dynamics of the above system. Let

tN denote the number of requests in the system at time t ,
let tI be the phase of the MAP, and let tJ be the set of
processing phases at time t . Note that tJ is a vector of
the form 1, min(,),(, ,)

tt t N m tJ J J= K since the number of

requests in process is min(,)tN m . We set 0tJ = when
the system is empty. Then, the
triplet (, ,)t t tN I J constitutes a continuous time Markov
chain. If we order all states in a lexicographic order, the
transition rate matrix of this Markov process is given as
follows :

0 0

1 1 1

2

1m

m m

B A O
C B A

C
Q A

C B A
C B

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

O O

O

O

O O

Fig. 2 A multi-server PS queue.

All submatrices of Q are give as

1

0
0 0

1

0
0 0

(/) (/)

(/) (/)

(/) (/)

(/) (/)

k

k

k

A D I I
B D S k S k

C O S b k S b k
A D I I
B D S m S m

C O S b m S b m

= ⊗ ⊗ ⊗

= ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕

= ⊗ ⊗ ⊗
= ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕

L

L

L

L

L

L

where ⊗ and ⊕ denote Kronecker's product and sum, O
is a zero matrix, 0 1S S= − where 1 is a column vector
with all components equal to 1. Here and in what follows,
dimensions of all matrices and vectors should be
understood properly so that all expressions are well-
defined.

Let 0 1 2(, , ,)π π π π= K be the stationary distribution
of this Markov process where kπ is a vector of stationary
probabilities of the states with n requests in the system.
Since the transition rate matrix Q is of quasi-birth-death
type, π enjoys so-called matrix-geometric form [4]. That
is, we know that

,n m
n m R n mπ π −= ≥ (1)

where R is the minimal non-negative solution to the
following matrix quadratic equation

2A RB R C O+ + =

requests

PS server

1

2

m

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

292

This special structure enables us to efficiently compute π .
Specifically, we first compute R by an iteration method.
Starting with 0R O= , we compute 1 2, ,R R K by

2 1

1() , 1, 2,n nR A R C B n−
−= + = K

until 1nR − and nR are close enough. This is a simple and
numerically stable algorithm since it has been proved that

nR monotonically converges from below to R [4]. After
computing R , we then solve the finite system of linear
equations () () 0m mQπ = to compute ()

1(,)m
mπ π π= K

where

0 0

1 1 1

2

1m

m m

B A O
C B A

Q C
A

O C B RC
−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟+⎝ ⎠

O O

O

The remaining part of π is given by Eq. 1.

Once the stationary distribution π is at hand, then we
can compute performance measures of the system such as
mean response time, mean number of requests in the
system easily.

3. Mean Response Time

To see the relationship between the number of
threads and mean response time, we conducted numerical
experiments for various combinations of MAP and
processing time distribution.

The most interesting features observed from these
experiments is that the mean response time geometrically
converges to that of ordinary processor sharing system as
the number of threads m increases. To be more precise, let
RT(MAP/PH/m) denote the mean response time of
MAP/PH/m model and let

(/ /)

(/ / 1) (/ /)
MAP PH m

RT MAP PH m RT MAP PH m
Δ =

+ −

Then, we observe in most examples that

(/ /) mMAP PH m cκΔ ≈ (2)

holds as m increases for some constants c and κ . Figure 3
depicts an example in 2/ /M H m , i.e., a model with a
Poisson arrival of requests and hyper-exponential
processing time distribution. The left panel shows that the

mean response time 2(/ /)RT M H m (y-axis)
geometrically converges as the number of threads (x-axis)
increases. We can observe the geometric convergence
more explicitly in the right panel where y-axis shows

2log | (/ /) |M H mΔ . Since the graph looks like almost
straight line, this implies that the relation Eq. 2 holds fairly
accurately. Note here that the slope of the straight line
corresponds to log κ . Similar relation can be observed for
most combinations of MAP and processing time
distribution. Moreover, Eq. 2 holds with reasonable
accuracy even for small m as seen in Figure 3.

Another important feature we observed from
numerical experiments is that, when requests arrive
according to a Poisson process, κ ρ≈ provides a good
approximation for the decay rate. Table 1 shows κ and ρ
for various processing time distribution and traffic
intensity ρ .

2

2 1
: (0.5,0.5),

2 4

1 0
: (0.2,0.8),

0 4

PH b S

H b S

−⎛ ⎞
= = ⎜ ⎟−⎝ ⎠

−⎛ ⎞
= = ⎜ ⎟−⎝ ⎠

κ is estimated by a regression of 2log | (/ /) |M H mΔ
with respect to m. As can be seen in the table, κ and ρ
are close independently of the processing time distribution
and ρ . Since ρ is easily computed from model parameters,
this feature can be used to develop a simple approximation
formula which is useful for capacity planning as we will
see next.

Fig. 3 2(/ /)M H mΔ and 2log | (/ /) |M H mΔ .

Table 1: κ and ρ for M/PH/m models

Model 3/M E /M PH 2/M H

ρ 0.6 0.8 0.6 0.8 0.6 0.8

κ 0.60 0.80 0.61 0.81 0.58 0.79

1 2 3 4 5
-1

-0.8

-0.6

-0.4

-0.2

0

1 2 3 4 5 6
1.5

2

2.5

3

3.5

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

293

First, we consider the case of Poisson arrivals. For
Poisson arrivals, we have the Pollaczeck-Khinchin
formula [8] for m=1

2(1)1(/ /1)

(1) 2(1)
sC

RT M PH
ρ

ρ μ ρ μ
−

= +
− −

 (3)

where sC stands for coefficient of variation (standard
deviation divided by its mean) of the processing time
distribution. On the other hand, Sakata et al. [7] proved the
following formula for m = ∞

1(/ /)
(1)

RT M PH
ρ μ

∞ =
−

 (4)

Interporating these two exact formulas by using the
geometrically decaying property with the rate ρ

(/ /) , 2,3,mM PH m c mρΔ = = K

we can identify the coefficient c as

21
2

sC
c

μ
−

=

Combining these results, we get the following
approximation for the mean response time:

2(1)1(/ /)
(1) 2(1)

m
sC

RT M PH m
ρ

ρ μ ρ μ
−

≈ +
− −

 (5)

As an application of Eq. 5 to capacity planning for

multi-threaded server, suppose that we need to choose the
number of threads m so as to satisfy

max(/ /)RT M PH m RT≤ for a given upper limit maxRT of
the mean response time. If the arrival of requests to the
target system can be viewed as a Poisson process, we can
use Eq. 5 to choose appropriate number of threads m as

max2
2(1) 1

(1)(1) logs
m RT

C
ρ μ

ρ μρ
⎧ ⎫−

= −⎨ ⎬
−− ⎩ ⎭

For Markovian arrival processes, we need to invoke

numerical computation because no explicit formulas such
as Eq. 3 and Eq. 4 are available. In the first step, we
compute RT(MAP/PH/m) for 1,m k= K where k is a pre-
determined threshold. Assuming the geometric decay Eq.
2, we then estimate c and κ from the numerical results in
the first step by regression. Although we need to choose k

a priori, the results are not different significantly from our
experience since the geometric decay is rather accurate
even for small k as we already explained before. Once c
and κ are obtained, we can use an approximation

1

1

(/ /) (/ /1)

()(/ /1)
1

m
k

k
m

RT MAP PH m RT MAP PH c

cRT MAP PH

κ

κ κ
κ

−

=

≈ +

−
= +

−

∑

to choose appropriate number of threads so as to satisfy
max(/ /)RT MAP PH m RT≤ .

4. Response Time Distribution

So far, we have considered the mean response time of
the system. In this section, we will investigate the response
time distribution. Comparing with ordinary queueing
models, it is difficult to obtain the waiting time
distribution of a processor sharing queue because total
processing time (duration between the beginning and the
end of the process) is affected by the requests which arrive
after the process has started.

We first introduce some notations. Let , , ()n i jy x be

the tail distribution of the total processing time of a
request conditioned on that the state of the system at the
beginning of the service is (, ,)n i j . Also, let

, , , , , ()n k a b c dw x be the joint probability of the following
events: (1) waiting time of a request (we call this request
A) exceeds x, (2) k requests are waiting and arrival and
service phases are c and d when A's process starts;
conditioned on that the state of the system was (, ,)n a b
when A arrived at the system. Further, we denote by

, ,n i jξ the stationary probability at arrival epochs of

requests. Then, tail distribution of the response time can
be expressed as

, , , ,
, ,

, , , , , , , , ,
, , , ,

() ()

() ()

n i j n i j
n m i j

n i j n k a b c d m k c d
n m a b k c d

P RT x y x

w du y x u

ξ

ξ

<

+
≥

> = −

−

∑

∑ ∑
 (6)

where RT stands for a generic random variable of a
response time. Note that the first term represents the
response time when a request does not have to wait while
the second term represents the convolution of waiting time
and total service time. In what follows, we use vector

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

294

representation such as , ,() (())n ny x y x⋅ ⋅= and

0 1() ((), (), ,)y x y x y x= K .
Among three components , ()y xξ and ()w x in Eq. 6,

ξ can be easily obtained from 1
1n nDξ λ π−= once we

have computed π [4]. The key issue to compute the
response time distribution is therefore how to compute

()y x and ()w x . Since a similar approach can be applied
to both components, we will explain how to compute

()y x .
From Kolmogorov's backward equation, we see that

()y x satisfies

1'() ()y x Q y x= (7)

where

1 1

2 2 2
1

B A O
C B A

Q

O

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

O O O

O O

Eq. 7 is an extended version of the equation for M/M/1 PS
model [1]. Since the solution of the differential equations
Eq. 7 is given as

1() exp()1y x Q x=

we can construct an algorithm for computing ()y x .
Specifically, let 1 1 1P I Q ν= + where 1ν is the maximum
absolute value among all diagonal elements of 1Q . Then,

()y x can be computed by

 1 1
1

0

()
() 1

!

n
x n

n

x
y x e P

n
ν ν∞
−

=

= ∑ (8)

Since the right-hand side of Eq. 8 contains only addition
and product of nonnegative numbers, this method is
numerically stable. When implementing the algorithm, we
need to truncate 1Q at some level and truncate infinite
sum in Eq. 8. the truncation size should be chosen so that
the truncation error becomes negligible.

A similar approach is applied to compute ()w x . That
is, ()w x is also expressed as 2() exp() (0)w x Q x w= for
some block tri-diagonal matrix 2Q . Thus, we obtain

2 2
2

0

()() (0)
!

n
x n

n

xw x e P w
n

ν ν∞
−

=

= ∑ (9)

where 2 2 2P I Q ν= + and 2ν is the maximum absolute
value among all diagonal elements of 2Q . Since (0)w is
easily computed from π , ()w x can be computed in a
similar way to ()y x .

We summarize the numerical algorithm for
computing the response time distribution.

1. Compute the time stationary distribution
0 1 2(, , ,)π π π π= K as described in Section 2.

2. Compute the stationary distribution at arrival epochs
by 1

1n n Dξ λ π−= .
3. Compute the tail distribution ()y x of the total

service time from Eq. 8.
4. Compute the tail distribution ()w x of the waiting

time from Eq. 9.
5. Compute the response time tail distribution from Eq.

6.
In the rest of this section, we show some numerical

results of the response time distribution. As a base case,
we consider 2/ /M H m model with 0.6ρ = and hyper-
exponential processing time distribution

1 0

(0.1, 0.9),
0 9

b S
−⎛ ⎞

= = ⎜ ⎟−⎝ ⎠

Figure 4 compares the response time tail distributions

for different number of threads 1,3,5m = . y-axis displays
the tail probability Eq. (6) (in log scale) that the response
time exceeds x. In a low-medium range of x, 2/ / 5M H
has the smallest tail probability while the order is reversed
for large x. This phenomena can be explained by the trade-
off between waiting time and total processing time.
Intuitively, waiting time decreases as m increases since
there are more spaces to be processed. On the other hand,
total processing time increases as m increases since fixed
processing capacity is shared by many requests. Thus,

2/ / 5M H shows better performance in the range where
waiting time dominates over total processing time and

2/ /1M H shows better performance in the range where
total service time dominates.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

295

Fig. 4 Effect of the number of threads.

Fig. 5 Effect of input process.

Fig. 6 Effect of processing time distribution.

Figures 5 shows the response time tail distributions of
2 2/ / 3E H , 2/ / 3M H and 2 2/ / 3H H . Three models have

the same processing time distribution but the input
processes are different. As will be expected from ordinary
queueing analysis, the Erlang renewal input exhibits the
shortest response time and the hyper-exponential input has
the longest response time. However, the graph shows that
the difference of the response time is quite small. Since the
number of threads is 3m = , it seems that the fluctuation
of inputs does not give a strong impact on the response
time.

Finally, Figure 6 shows the response time tail
distribution of 2/ / 3M E , / / 3M M and 2/ / 3M H . Three
models have the same Poisson input but the processing
time distributions are different. In contrast to Figure 5, the
response time is largely affected by the processing time
distribution since an asymptotic of the response time tail

distribution is in principle determined by the service time
distribution.

References
[1] S. Asumussen, Applied Probability and Queues, John Wiley

and Sons, 1987.
[2] J.L. van den Berg, Sojourn Times in Feedback and

Processor Sharing Queues, CWI, 1993.
[3] E. Gelenbe and I. Mitrani, Analysis and Synthesis of

Computer Systems, Academic Press, 1980.
[4] G. Latouche and V. Ramaswami, Introduction to Matrix

Analytic Methods in Stochastic Models, SIAM, 1999.
[5] N. Makimoto and H. Sakata, A Hybrid Approach for

Performance Evaluation of Web-Legacy Client/Server
Systems, Grammar of Technology Development, Springer,
2007 (to appear).

[6] D.A. Menasce and V.A.F. Almeida, Capacity Planning for
Web Performance, Prentice Hall PTR, 1998.

[7] M. Sakata, S. Noguchi and J. Oizumi, ``Analysis of a
Processor Shared Queueing Model for Time Sharing
Systems,'' Proceedings of 2nd Hawaii International
Conference on System Sciences, pp.625-628, 1969.

[8] R. Wolf, Stochastic Modeling and the Theory of Queues,
Prentice-Hall, 1989.

Naoki Makimoto received the B.S.,
M.S. and D.S. degree in Information
Sciences from Tokyo Institute of
Technology in 1987, 1989 and 1992,
respectively. After working as a research
assistant and a lecturer in the Department
of Information Sciences, Tokyo Institute
of Technology, he joined the Department
of Systems Management, University of

Tsukuba where he is currently an associate Professor. His
research interest includes stochastic models and their
applications to performance evaluation of information systems.
He is a member of ORSJ and SIAM Japan.

0 10 20 30 40
10

-4

10
-3

10
-2

10
-1

10
0

M/E2/3
M/M/3
M/H2/3

0 10 20 30 40
10

-3

10
-2

10
-1

10
0

E2/H2/3
M/H2/3
H2/H2/3

0 10 20 30 40 50
10

-3

10
-2

10
-1

10
0

M/H2/1
M/H2/3
M/H2/5

