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Summary 
In this paper, we investigate the response time of a multi-server 
processor sharing (PS) model. A multi-server PS model is a PS 
queue but the number of requests which can be processed 
simultaneously is limited by a threshold. An arriving request has 
to wait in the queue if the number of requests exceeds the 
threshold. Assuming Markovian arrival input of requests and 
general processing time distribution, we investigate how mean 
response time is affected by the threshold. Through numerical 
experiments for various instances, it turns out that the mean 
response time geometrically converges as the threshold increases. 
This property is used to derive a useful formula for capacity 
planning of multi-threaded server systems. We also develop a 
numerical procedure for computing the response time 
distribution. We found from numerical experiments that the 
processing time distribution has a strong impact on the response 
time distribution. 
Key words: 
processor sharing, response time, queueing analysis, multi-
threaded server. 

1. Introduction 

When we develop a new system such as Web client-
server system, capacity planning is a one of the most 
important issues to manage the system successfully. Lack 
of capacity could cause a serious congestion and 
instability of the system while too much capacity leads to 
large cost of investment. 

In this paper, we investigate the response time of a 
multi-server processor sharing (PS) model. Analysis of 
such model is motivated by capacity planning of a multi-
threaded server system. Figure 1 depicts a typical example 
of a system which adopts multi-threaded server 
architecture [5]. A request from Web clients (cellular, PC, 
mobile, etc.) is transmitted to the legacy server allocated at 
the back-most side. After execution of the request on the 
legacy server, it will be returned to the client. The thread 
is a primitive resource for all types of requests to be 
processed. Specifically, an arriving request directly goes 
into its own process if there is a vacant thread, otherwise it 
must wait in the queue until a thread becomes available. 

When developing such type of systems, it is 
necessary to satisfy a prescribed quality of service (QoS). 
Typical examples of QoS are such that, the mean response 
time               must be less than 4 seconds, and at least 

90% of requests must be responded in 10 seconds. Among 
other design parameters, the number of threads is the most 
important parameter of the system since it determines the 
load to the legacy system. Therefore, accurate evaluation 
of response time is a key to choose appropriate number of 
threads. 

A multi-server PS model is a PS queue but the 
number of requests which can be processed 
simultaneously is limited by a threshold. An arriving 
request has to wait in the queue if the number of requests 
exceeds the threshold. Thus, this system has a feature of 
both PS and ordinary queues which makes the analysis 
difficult. Assuming Markovian arrival input of requests 
and general processing time distribution, we first 
investigate how mean response time is affected by the 
threshold. Through numerical experiments for various 
instances, it turns out that the mean response time 
geometrically converges as the threshold increases. This 
property is then used to derive a simple and useful 
approximation formula for capacity planning of multi-
threaded server systems. We also develop a numerical 
procedure for computing the distribution of the response 
time. Through numerical experiments, we found that 
among other things the processing time distribution has a 
strong impact on the response time distribution. 

This paper is organized as follows. In the next section, 
we construct a multi-server PS model as a multi-server PS 
queue. The queueing model is then described as a 
continuous-time Markov process with a special structure. 
A numerical method for computing the stationary 
distribution is also discussed. Section 3 is concerned with 
the mean response time and the response time distribution 
is discussed in Section 4. 

 

 

Fig. 1  An example of  a multi-threaded server. 
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2. Model Description 

In this section, we construct a multi-server PS model 
as a multi-server PS queue. We assume that requests arrive 
to the system according to a Markovian Arrival Process 
(MAP) with a representation 0 1( , )D D . Specifically, 0D  is 
a transition rate matrix of an underlying Markov process 
without arrivals while 1D  is a transition rate matrix 
accompanied with a new arrival of request. We denote by 
λ  the mean input rate of requests. The distribution of 
each processing time is of phase-type (PH) with a 
representation ( , )b S  where b and S respectively denotes 
the initial vector and transition rate matrix of an 
underlying absorbing Markov process. We denote by μ  
the mean processing time of a request. For detailed 
description and basic properties of MAP and phase-type 
distributions, we refer to Latouche and Ramaswami [4]. 

The number of threads is given by m . In the context 
of queueing model, there are m spaces to process the 
requests which share the fixed total processing capacity 1. 
When there are k ( )m≤  requests in process, each of them 
shares equal processing capacity 1/ k . In other words, the 
remaining processing time of each request in process 
decreases at rate 1/ k . If an arriving request finds all 
processing spaces occupied, it must wait in the queue until 
one of the processing spaces becomes available. Note that 
the traffic intensity of the system is equal to /ρ λ μ= . 
Throughout the paper, we assume 1ρ < so that the system 
is stable.  

Now we construct a continuous-time Markov process 
which describes time dynamics of the above system. Let 

tN  denote the number of requests in the system at time t , 
let tI  be the phase of the MAP, and let tJ  be the set of 
processing phases at time t . Note that tJ  is a vector of 
the form 1, min( , ),( , , )

tt t N m tJ J J= K  since the number of 

requests in process is min( , )tN m . We set 0tJ =  when 
the system is empty. Then, the 
triplet ( , , )t t tN I J constitutes a continuous time Markov 
chain. If we order all states in a lexicographic order, the 
transition rate matrix of this Markov process is given as 
follows : 
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Fig. 2  A multi-server PS queue. 

All submatrices of Q  are give as 
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where ⊗  and ⊕  denote Kronecker's product and sum, O  
is a zero matrix, 0 1S S= −  where 1  is a column vector 
with all components equal to 1. Here and in what follows, 
dimensions of all matrices and vectors should be 
understood properly so that all expressions are well-
defined. 

Let 0 1 2( , , , )π π π π= K  be the stationary distribution 
of this Markov process where kπ  is a vector of stationary 
probabilities of the states with n  requests in the system.  
Since the transition rate matrix Q  is of quasi-birth-death 
type, π  enjoys so-called matrix-geometric form [4]. That 
is, we know that 
 

,n m
n m R n mπ π −= ≥                  (1) 

 
where R is the minimal non-negative solution to the 
following matrix quadratic equation 
 

2A RB R C O+ + =  
 

requests

PS server 

1 
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This special structure enables us to efficiently compute π . 
Specifically, we first compute R by an iteration method. 
Starting with 0R O= , we compute 1 2, ,R R K  by 

 
2 1

1( ) , 1, 2,n nR A R C B n−
−= + = K  

 
until 1nR −  and nR  are close enough. This is a simple and 
numerically stable algorithm since it has been proved that 

nR  monotonically converges from below to R  [4]. After 
computing R , we then solve the finite system of linear 
equations ( ) ( ) 0m mQπ =  to compute ( )

1( , )m
mπ π π= K  

where 
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The remaining part of  π  is given by Eq. 1. 

Once the stationary distribution π  is at hand, then we 
can compute performance measures of the system such as 
mean response time, mean number of requests in the 
system easily. 

3. Mean Response Time 

To see the relationship between the number of 
threads and mean response time, we conducted numerical 
experiments for various combinations of MAP and 
processing time distribution. 

The most interesting features observed from these 
experiments is that the mean response time geometrically 
converges to that of ordinary processor sharing system as 
the number of threads m increases. To be more precise, let 
RT(MAP/PH/m) denote the mean response time of 
MAP/PH/m model and let 

 
( / / )

( / / 1) ( / / )
MAP PH m

RT MAP PH m RT MAP PH m
Δ =

+ −
 

 
Then, we observe in most examples that 
 

( / / ) mMAP PH m cκΔ ≈                    (2) 
 

holds as m increases for some constants c and κ . Figure 3 
depicts an example in 2/ /M H m , i.e., a model with a 
Poisson arrival of requests and hyper-exponential 
processing time distribution. The left panel shows that the 

mean response time 2( / / )RT M H m (y-axis) 
geometrically converges as the number of threads (x-axis) 
increases. We can observe the geometric convergence 
more explicitly in the right panel where y-axis shows 

2log | ( / / ) |M H mΔ . Since the graph looks like almost 
straight line, this implies that the relation Eq. 2 holds fairly 
accurately. Note here that the slope of the straight line 
corresponds to log κ . Similar relation can be observed for 
most combinations of MAP and processing time 
distribution. Moreover, Eq. 2 holds with reasonable 
accuracy even for small m as seen in Figure 3. 

Another important feature we observed from 
numerical experiments is that, when requests arrive 
according to a Poisson process, κ ρ≈  provides a good 
approximation for the decay rate. Table 1 shows κ and ρ  
for various processing time distribution and traffic 
intensity ρ . 
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κ  is estimated by a regression of 2log | ( / / ) |M H mΔ  
with respect to m. As can be seen in the table, κ  and ρ  
are close independently of the processing time distribution 
and ρ . Since ρ is easily computed from model parameters, 
this feature can be used to develop a simple approximation 
formula which is useful for capacity planning as we will 
see next. 
 

 

Fig. 3  2( / / )M H mΔ and 2log | ( / / ) |M H mΔ . 

Table 1: κ  and ρ  for M/PH/m models 

Model 3/M E  /M PH  2/M H  

ρ  0.6 0.8 0.6 0.8 0.6 0.8 

κ  0.60 0.80 0.61 0.81 0.58 0.79
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First, we consider the case of Poisson arrivals. For 
Poisson arrivals, we have the Pollaczeck-Khinchin 
formula [8] for m=1 

 

 
2( 1)1( / /1)

(1 ) 2(1 )
sC

RT M PH
ρ

ρ μ ρ μ
−

= +
− −

           (3) 

 
where sC  stands for coefficient of variation (standard 
deviation divided by its mean) of the processing time 
distribution. On the other hand, Sakata et al. [7] proved the 
following formula for m = ∞  
 

1( / / )
(1 )

RT M PH
ρ μ

∞ =
−

                    (4) 

 
Interporating these two exact formulas by using the 
geometrically decaying property with the rate ρ  
 

( / / ) , 2,3,mM PH m c mρΔ = = K  
 

we can identify the coefficient c as 
 

21
2
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c

μ
−
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Combining these results, we get the following 
approximation for the mean response time: 
 

2( 1)1( / / )
(1 ) 2(1 )

m
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ρ
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−

≈ +
− −

          (5) 

 
As an application of Eq. 5 to capacity planning for 

multi-threaded server, suppose that we need to choose the 
number of threads m so as to satisfy 

max( / / )RT M PH m RT≤ for a given upper limit maxRT of 
the mean response time. If the arrival of requests to the 
target system can be viewed as a Poisson process, we can 
use Eq. 5 to choose appropriate number of threads m as 
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2(1 ) 1
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For Markovian arrival processes, we need to invoke 

numerical computation because no explicit formulas such 
as Eq. 3 and Eq. 4 are available. In the first step, we 
compute RT(MAP/PH/m) for 1,m k= K  where k is a pre-
determined threshold. Assuming the geometric decay Eq. 
2, we then estimate c and κ  from the numerical results in 
the first step by regression. Although we need to choose k 

a priori, the results are not different significantly from our 
experience since the geometric decay is rather accurate 
even for small k as we already explained before. Once c 
and κ  are obtained, we can use an approximation 
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to choose appropriate number of threads so as to satisfy 
max( / / )RT MAP PH m RT≤ . 

4. Response Time Distribution 

So far, we have considered the mean response time of 
the system. In this section, we will investigate the response 
time distribution. Comparing with ordinary queueing 
models, it is difficult to obtain the waiting time 
distribution of a processor sharing queue because total 
processing time (duration between the beginning and the 
end of the process) is affected by the requests which arrive 
after the process has started.  

We first introduce some notations. Let , , ( )n i jy x  be 

the tail distribution of the total processing time of a 
request conditioned on that the state of the system at the 
beginning of the service is ( , , )n i j . Also, let 

, , , , , ( )n k a b c dw x  be the joint probability of the following 
events: (1) waiting time of a request (we call this request 
A) exceeds x, (2) k requests are waiting and arrival and 
service phases are c and d when A's process starts; 
conditioned on that the state of the system was ( , , )n a b  
when A arrived at the system. Further, we denote by 

, ,n i jξ the stationary probability at arrival epochs of 

requests. Then, tail distribution of the response time can 
be expressed as 

 

, , , ,
, ,

, , , , , , , , ,
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where RT stands for a generic random variable of a 
response time. Note that the first term represents the 
response time when a request does not have to wait while 
the second term represents the convolution of waiting time 
and total service time. In what follows, we use vector 
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representation such as , ,( ) ( ( ))n ny x y x⋅ ⋅= and 

0 1( ) ( ( ), ( ), , )y x y x y x= K . 
Among three components , ( )y xξ  and ( )w x  in Eq. 6, 

ξ  can be easily obtained from 1
1n nDξ λ π−=  once we 

have computed π  [4]. The key issue to compute the 
response time distribution is therefore how to compute 

( )y x  and ( )w x . Since a similar approach can be applied 
to both components, we will explain how to compute 

( )y x . 
From Kolmogorov's backward equation, we see that 

( )y x  satisfies 
 

1'( ) ( )y x Q y x=                             (7) 
 

where 
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Eq. 7 is an extended version of the equation for M/M/1 PS 
model [1]. Since the solution of the differential equations 
Eq. 7 is given as 
 

1( ) exp( )1y x Q x=  
 

we can construct an algorithm for computing ( )y x . 
Specifically, let 1 1 1P I Q ν= +  where 1ν  is the maximum 
absolute value among all diagonal elements of 1Q . Then, 

( )y x  can be computed by 
 

       1 1
1
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( )
( ) 1

!

n
x n
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y x e P
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Since the right-hand side of Eq. 8 contains only addition 
and product of nonnegative numbers, this method is 
numerically stable. When implementing the algorithm, we 
need to truncate 1Q  at some level and truncate infinite 
sum in Eq. 8. the truncation size should be chosen so that 
the truncation error becomes negligible. 

A similar approach is applied to compute ( )w x . That 
is, ( )w x  is also expressed as 2( ) exp( ) (0)w x Q x w=  for 
some block tri-diagonal matrix 2Q . Thus, we obtain 

 

2 2
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( )( ) (0)
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n
x n

n

xw x e P w
n
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−
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= ∑                 (9) 

 
where 2 2 2P I Q ν= +  and 2ν is the maximum absolute 
value among all diagonal elements of 2Q . Since (0)w  is 
easily computed from π , ( )w x  can be computed in a 
similar way to ( )y x . 

We summarize the numerical algorithm for 
computing the response time distribution. 

1. Compute the time stationary distribution 
0 1 2( , , , )π π π π= K  as described in Section 2. 

2. Compute the stationary distribution at arrival epochs 
by 1

1n n Dξ λ π−= . 
3. Compute the tail distribution ( )y x  of the total 

service time from Eq. 8. 
4. Compute the tail distribution ( )w x  of the waiting 

time from Eq. 9. 
5. Compute the response time tail distribution from Eq. 

6. 
In the rest of this section, we show some numerical 

results of the response time distribution. As a base case, 
we consider 2/ /M H m model with 0.6ρ =  and hyper-
exponential processing time distribution 
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0 9

b S
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Figure 4 compares the response time tail distributions 

for different number of threads 1,3,5m = . y-axis displays 
the tail probability Eq. (6) (in log scale) that the response 
time exceeds x. In a low-medium range of x, 2/ / 5M H  
has the smallest tail probability while the order is reversed 
for large x. This phenomena can be explained by the trade-
off between waiting time and total processing time. 
Intuitively, waiting time decreases as m increases since 
there are more spaces to be processed. On the other hand, 
total processing time increases as m increases since fixed 
processing capacity is shared by many requests. Thus, 

2/ / 5M H  shows better performance in the range where 
waiting time dominates over total processing time and  

2/ /1M H  shows better performance in the range where 
total service time dominates. 
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Fig. 4  Effect of the number of threads. 

 

Fig. 5  Effect of input process. 

 

Fig. 6  Effect of processing time distribution. 

Figures 5 shows the response time tail distributions of 
2 2/ / 3E H , 2/ / 3M H  and 2 2/ / 3H H . Three models have 

the same processing time distribution but the input 
processes are different. As will be expected from ordinary 
queueing analysis, the Erlang renewal input exhibits the 
shortest response time and the hyper-exponential input has 
the longest response time. However, the graph shows that 
the difference of the response time is quite small. Since the 
number of threads is 3m = , it seems that the fluctuation 
of inputs does not give a strong impact on the response 
time. 

Finally, Figure 6 shows the response time tail 
distribution of 2/ / 3M E , / / 3M M and 2/ / 3M H . Three 
models have the same Poisson input but the processing 
time distributions are different. In contrast to Figure 5, the 
response time is largely affected by the processing time 
distribution since an asymptotic of the response time tail 

distribution is in principle determined by the service time 
distribution. 
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