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Summary

Security of wireless transmission is a great challenge in secure
communications. Classical methods are based on cryptographic
algorithms. These methods require a secret key that must be
generated securely between associated parties in communication.
Another approach to security is based on wiretap channel concept
and is applicable for wireless communications. Because of rather
small secrecy capacity of this method, it is useful for initial secret
key establishment process between communication sides. In this
paper we introduce a communication model for secret key
extraction from fading of channel and calculate the secrecy
capacity for Nakagami and Suzuki fadings which are two
complicated models having suitable matching with practical
measurements.
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1. Introduction

Nowadays, the widespread use of wireless and mobile
communications has stimulated the research on its related
subjects. One of the critical problems in wireless
communications is security of data transmission. Because
of broadcast nature of wireless communication, the
channel is accessible by al in the propagation range of
radios and this makes new challenges compared with
wired communications. Although, the overall security
architecture for a complete network covers many aspects,
but in this paper we focus on privacy of datatransmission.

Classical approaches to data privacy are based on
cryptographic methods. These methods can be divided into
two main categories as information-theoretic secure and
computationally secure. Both of these methods are consist
of a public algorithm and a private key. Therefore the key
generation and management have particular importance.

In the information-theoretic security, introduced by
Shannon [1], the mutual information between plaintext and
ciphertext determines the performance of agorithm.
Shannon showed that for perfect secrecy, the encryption
key must have entropy equal or greater than the plaintext
entropy and this requires key length at least equal to
plaintext length and makes it useless in many practical
situations. In contrast, for practical applications with
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Limited key lengths, agorithms with tremendous
cryptanalysis computations and so, computationally-
secure, are used.

But in these methods it is assumed that eavesdropper
has full access to ciphertext similar to legitimate party.
This situation is violated for wireless communication,
because the channel characteristics are non idea and a
noisy and probably erroneous transmission is occurred. So
the eavesdropper and legitimate recipient have different
copies of transmitted data. This property, motivates a new
viewpoint in secure communication which was named
wire-tap channel by Wyner [2]. In this scenario, K data
bits can be encoded into N > K bits and transmitted. The
encoder should be designed to maximize the intruder's
uncertainty about the data, subject to the condition that the
intended receiver can recover the K data bits perfectly [3].
Later Csiszar et al [4] proved that secrecy capacity can be
upper bounded with difference of mutual information
between transmitter and two receivers.

Although for wire-tap channels, perfect secrecy with
information theory definition is possible, but the secrecy
capacity is smal and is not suitable for high speed
transmission demands of current applications.

Therefore a mixed method that uses perfect secrecy
of wire-tap channel for secret key generation and then
applying this key in a high speed computationally-secure
agorithm (such as symmetric key methods) seems result
high degree of security.

In this paper we focus on calculating secrecy capacity
of wire-tap channel concept for wireless channels with fast
fading. The statistica model for fading is considered as
Nakagami and Suzuki that covers both LOS (Rician
fading) and NLOS (Rayleigh fading). We proposed the
communication model for transmitter, eavesdropper and
legitimate receiver and then caculating mutual
information based on this model for different conditions of
fading. At last secrecy capacity or the maximum number
of secret bits per channel use will be calculated.

This paper is organized as follows. In section 2 the
required backgrounds about fading and its variety’s is
presented. Then secrecy capacity of channel is defined that
will be used in next sections. In section 3 the problem is
stated according to a proposed model for communication
scenario and in section 4 the mathematical theory of
mutual information calculation for our model is presented.
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In section 5 mutual information for two common fading
probability distributions are calculated and finally in
section 6 the simulated results are presented.

2. Background
2.1 Fading channels

Fading is a fundamental feature of wireless channels
which is random fluctuations of received signal level by
temporal or spatial changes. This phenomenon is caused
by multipath effects in wireless propagation. fading can be
categorized in two major types as short term (small scale)
and long term (large scale) [S]. Short term fading is the
fast fluctuations that occur very fast in time (typically in
range of nanoseconds), but long term fadings occur in
much longer periods of time (typically in range of micro
seconds). Moreover short term fadings can be divided to
LOS (line of sight) and NLOS (non line of sight). Such
temporal fluctuations cause the channel to be modeled as a
time-variant system with /(z,7) impulse response, in which
t is time and 7t is impulse age. The fourier transform of
h(t,t) respect to 7 is frequency response of channel. This
frequency response is also time variant and showing
random behavior But in short time interval which is called
coherence time, the frequency response can be
approximated as a flat response and the width of this flat
region which called coherence bandwidth. Hence if signal
bandwidth is less than coherence band, the channel
response can be modeled as a random gain, otherwise a
tapped delay line model should be used.

In this paper we assume flat fading situation.
Therefore we consider the channel fading as a simple
system with a random gain. The statistical distribution of
this random gain is dependent to LOS or NLOS situation.
For LOS conditions the Rice distribution has a good
matching and for NLOS situations the Rayleigh
distribution is suitable. For mixed conditions Nakagami
and Suzuki distributions have superior performance
because they cover both Rayleigh and Rice distributions.

2.2 Secrecy capacity

Consider a communication system as fig.1.

Bob
(Legitimate
Receiver)

Alice

(Transmitter) X—»{ Mainchannel ——Y—p

Eve

Wiretap Channel |——Z— (Eavesdropper)

Fig.1 Communication System for a Wiretap Channel manner

Assume the channel behavior is completely specified
by the conditional probability distribution P,... Note that
in Wyner's original setting [2], X, Y, and Z form a Markov
chain, i.e., P,,= P, which implies /(X;Z|Y)= 0. The
secrecy capacity Cs(P,,) of the such a channel is defined
in [4] as the maximum rate at which Alice can reliably
send information to Bob such that the rate at which Eve
obtains this information is arbitrarily small. In other
words, the secrecy capacity is the maximum number of
bits per use of the channel that Alice can send to Bob in

secrecy.
Csiszir and Korner [4] proved that
CS(PYZ|X):rr})aX[I(X;Y)_I(X;Z)] (1)

From (1) we can see the upper bound for secrecy
capacity is the difference of mutual information between
communication end points. Therefore we will calculate
this mutual information for proposed communication
model.

3. System Model

Fig. 2 shows the system architecture model. Assume
that we want to determine the upper bound secret capacity
between A and B when E is an eavesdropper who listens to
this communication. A and B simultaneously send a raised
cosine pulse to each other. We assume they are
synchronized before. As it was mentioned in section 2.1,
the fading effect is a random gain which multiplied to
signal and faded signal is received at each side. This signal
will be added by thermal noise and after match filtering
and sampling, we have y,, y; as follows,

Ya = Esa + 2,4 ()
v = Esa + 2z, 3)

The eavesdropper could receive this transmission
with a different fading as,

Ve = Esa, + 2z, 4)

In general situation, we assume that @ and a' are
correlated variables and independent condition is a special
case. We try to find out this correlation effect on upper
bound secrecy capacity. The correlation has been assumed
as,

a' =ka+n, (5)

Where k is correlation coefficient and n, is a
Gaussian noise.
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When two antennas A and B with no non-linear
components radiate identical signals, the outputs of the
antennas due to their excitation by the signal originating at
the other antenna will aso be identical. This behavior,
known as the reciprocity theorem, arises from the
reciprocity of the radiating and receiving patterns of
antennas and applies when the medium between the
antennas is linear and isotropic [6]-[7]. When wide
bandwidth waveforms are transmitted in cluttered
environments, such as homes and offices, the signa
observed by areceiving antenna at a remote location is the
composite of multiple signals that have traveled over
different paths from the transmitting antenna, each signal
experiencing different shaping and attenuation, resulting in
an output signal that differs significantly from the radiated
signal and that changes as the locations of the transceivers
is changed. In other words, the output signal contains
information about the channe through which the
transmitted waveform has propagated, and because of
reciprocity this information is a source of common
randomness that is available at both ends of the link.

If this common information taken in both side then in
each side we have a parameter that is random and base on
reciprocity of antennas is unique between the ends of the
channel. All of these features direct us to the fact that this
parameter is very suitable for secret key extraction of a
secure communication. In the other words, the
eavesdropper who tries to catch the information could not
succeed to receive the data which encrypted by measured
secret key, because it doesn’t have the secret key that had
been calculated by A and B. this is the result of different
channels between A, B and E.

The task of generating a secret key from common
information has been studied by severa authors in
particular Maurer [8][9] and Ahlswede et a [10]
discovered some fundamental bounds on the so called
secret-key rate of system models where the terminals have
access to correlated random variables due to some external
source (in this case the ‘external source' is the channel
impulse response). The results in these references show
that the secret key rate, upper bounded by the mutual
information between the envelopes detected in A and B
sides, Y,, Y respectively.

In this paper we argue about this maximum key rate
or mutual information for different fading models.

4. Mutual Information over Multipath
Ultrawideband Channels

In this section we try to present the mutua
information calculation in a multipath channel. Suppose
that the transmitter, A, sends the narrow band raised cosine
pulse with energy E to B and vice versa. Let the observed
waveform of radio k be represented by,

Vi = h(®) * s(t) + e (1) (6)

Where h(t) is the channel impulse response, s(t) is
the pulse transmitted by the other radio, n,(t) is a
Gaussian noise process with power spectral density %
and * indicates convolution.
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The nature of the ultrawideband channel is different
to that encountered in narrowband systems and deserves
some discussion. In narrowband systems, the familiar
multipath propagation model assumes the existence of a
large number of propagation paths with the same time of
arrival but uniformly distributed phase, which resultsin a
Rayleigh distributed amplitude gain by appeal to the
central limit theorem. Due to the short duration, typically
sub-nanosecond, of an ultrawideband pulse, at most a few
paths contribute to the channel impulse response at a given
delay (it is often assumed that every path is distinct) and
the amplitude is more dependent on the loss that occurs
during propagation than on interference between arrivals
[11]. The resulting probability distributions for the gains
of multipath channel paths are often modeled as log-
normal or Nakagami. The other effect of the short pulse
width is that the number of resolvable paths in a multipath
observation is much larger for ultrawideband signals than
for narrower bandwidths.

The analysis of the mutual information between the
observations of two radios observing the channel pulse
response at opposite ends of a multipath channel will begin
by considering the mutual information between the
observations due to a single propagation path, and then be
extended to multiple paths.

Here, we suppose that the channel has frequency non-
selective and dowly fading model. This assumption
implies that the multiplicative process may be regarded as
a constant during at least one signaling interval.
Consequently, if the transmitted signa is s;(t), the
received equivalent lowpass signa in one signaling
interval is[4],

y() = ae s, () + 2(t) (7)

Where z,(t) represents the complex-valued white
Gaussian noise process corrupting the signa and «
defines the channel fading effect on signal. a isarandom
variable that its distribution changed in different channels.

Let us assume that the channel fading is sufficiently
slow that the phase shift ¢ can be estimated from the
received signal without error. In that case, we can achieve
ideal coherent detection of the received signal. Thus, the
received signal can be processed by passing it through a
matched filter. After match filtering and sampling, the
received signal, the output sequence in both ends are:

Ya=aEs+ z, (8
YB = aEs + ZB (9)
Eo= "7 s2(t)dt (10)

E; is the energy of transmitted pulse and z,, zg are
white Gaussian noise sequences in side A and B,
respectively.

Now base on above assumption the mutua
information between A and B defined as the mutual
information between y, and y; [12]:

10743 Y5) = Ty, Ty POas v L0 gy (GEA2ELy (17

The equation 11 shows that for calculation of mutual
information we need to p(y,, y5), p(¥4) and p(yg) then
first we try to find these pdfs.

5. Channel fading models

Here we suppose two different distributions for «
random variable. First is Nakagami-m model [13] and the
other is Suzuki model [14]. Both of these models arein the
domain of frequency non-selective and slowly fading.

5.1 Nakagami Model

This pdf is usually used to characterize the statistics of
fading channel model. The pdf for this distribution is given
by Nakagami (1960) as,

mT'Z

2 m -1 -
PR(r)=m(%) r?m-le™q (12)

Where Q isthe second moment of R and defined as,
0= E(Rz) (13)

And the parameter m is defined as the ratio of moments,
called the fading figure,

0? 1
m—m,mZE, (14)

The nth moment of R defined as,

n F(m+%n) Q g
B === () (15
If m=1, the equation (12) reduces to Rayleigh distribution.

For values m in the range% <m <1, we obtain pdfs that

have larger tails than a Rayleigh distributed random
variable. For values of m > 1, the tail of the pdf decade
faster than that of the Rayleigh. Figure 3 shows the
Nakagami distribution for different m value.
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Fig. 3 m-Nakagami Distribution

5.2 Suzuki Model

This distribution is the combination (multiplication)
of Rayleigh and Log-normal distributions.

Consider a Rayleigh distributed random variable (
with the probability density function Pqx), and a
lognormally distributed random variable A with the
probability density function P,(x). Let us assume that { and
A are statistically independent. Furthermore, let R be a
random variable defined by the product R=A{ Then, the
probability density function Pg(7) of R is,

2
pn
E(r) = 0-0\/§€m”+7
02 = E(r?) — E(r) = g2e(@mutai) (2305 _ g)
r2 (ln(y)—mlzl)z
o 1

Pa(r) = mam Jy e e Edy  (16)

Ou

In this formula o, is the parameter of Rayleigh
distribution (variance of Gaussian components), ¢, and
m, are the variance and mean values of lognormal
distribution respectively.

The following Fig. 4 shows Suzuki distribution
respect to a = 040y,

Fig. 4 Suzuki Distribution

As was mentioned before, we should find mutual
distribution of y,, ¥, then we use the concepts of random
variables. Suppose that

Ya = aEs + 24 = g1(@, 24, 2g) (17)
g = aEs + zg = g,(a, 2y, 2) (18)
Ve = a = g3(a,z,,2p) (19)

Y. is supplementary random variable for completion
of equations.

To find the density function py v,y .(Va, V5, Yc), base
on [15] we have,

pYAYBYC(yAvyBryC) =

1
T@zzp)i Pazazs (@ 241 25) (20)
Where
991 991 991
60( aZA aZB
— agz 692 agz
J(@,2y,25) = e 32 2
09s 995 995
60( aZA aZB
E; 1 0
=& 0 1= @1
1 0 0
a=Yyc
{ZA:yA_ESy ‘ (22)
zp =Yg — Esyc
Then,

pYAYBYC(yAvyBryC) = Pazzg e Ya—Esye,yg —
Esyc) (23)

It is obvious that the random variable a is
independent of z4, z; and the random variables z,, zg are
independent too then p,,, ., (, 24, z5) = P (@)D, (24P, (25).

PYAYBYC(}’A:}’B»}’C) = Pa(YC)PzA Va —
ESYC)sz (}’B - ESYC) (24)

Now we could find the mutual density function of
Ya, Yg as follow,
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Py vy Varys) = fooo pYAYBYC(YAJyB:yC)dyC (25)

We could find thep,, ,, p,, the same asp, ,,,, and we
could write:

Py, 0a) = [, Pac)Ps, a — Esye)dye (26)
Pys V8) = Jy PaVe)P2s 8 — Esye)dye (27)

First we calculate equation 25 when a has m-
Nakagami distribution and z,, zz have zero mean Gaussian

distribution with variance o7, = NZ—A and o7, = %
__2 (m\"™ 2m-1 _ma? _
Fola) = F(m)(ﬂ) azt e 4=
Aya?mleBie (29)
2
1 A 2
pZA(ZA) = \/We Ng = Aze—BZZA (29)
A
2
1 B 2
pZB(ZB) = \/nTe Np — A3e—BzzB (30)
B

Equation 25 has complicated answer in public
condition then for simplification we solve it anaytically
for m=2 and for the other figures, we compute it with
computer simulations (Mont Carlo method). For m=2 the
equation 25 simplifiesto,

Py vy Va, VE) = 2222 e¢(2Va(b? + 4a) +
16a2
bZ
a 2y(1 — __b
bmea(6a + b?)(1 — erf ( ) (31)
Where

a =B; + EZ(B, + B3) (32)
b = 2E;(B2ya + B3ys) (33
¢ = Byy4 + B3yi (34)

Dy, Py; have the same form as (31) but the
parameters a, b and ¢ are different.

Because of complexity of Suzuki distribution, we
don't find analytic results and only done computer
simulation.

6. Simulation Results

The simulation has been done base on equations 23-27 and
finally the mutual information computed by (6). We try to
show the effect of SNR on mutual information, it means
that we increase the amplitude of transmitted pulse and
hold the power of noise constant then calculate the mutual
information for this increasing. Here we define SNR =
2Es/Nyand Ny = N, = Ny = 1.

Figure 3 shows the mutual information in bit for
Nakagami distribution. As the figure shows the mutual
information decrease when m increases but the difference
is small for low SNRs and it is increases by SNR (large
SNR). For m=2, simulation results show very close
approximation to analytic results.

Mutual Information (bits)

éNR(dB‘;
Fig. 5 Mutua Information for m-Nakagami distribution

Figure 4 shows mutual information for Suzuki distribution
wherea = 40, The results show that mutual information
increases where a increase. Approximately al the plots
have the same incline and the difference is a DC shift in
vertical position. Greater value of “a” shows the wider
Log-norma and Rayleigh distribution which multiply and
make Suzuki distribution. For small value of “& the
distribution approaches to delta function and this
consideration implies the results.

Fig. 6 Mutual Information for Suzuki distribution a = g,0,

Figures 7 to 9 shows the effect of eavesdropper
channel correlation on upper bound key rate. The
correlation has been supposed as (5). Fig. 7 is for m=1
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when « is Rayleigh distributed and Fig. 8 and 9 for m=2
and 5, respectively. The results show the smaller values
when the correlation coefficient, k, approachesto 1.
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Fig. 7 Upper bounded Secret Key Rate, m=1
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Fig. 9 Upper bounded Secret Key Rate, m=5

7. Conclusion

A practical communication model for secret key extraction
from fading of channel is proposed. Based on this model,
two types of fading in form of Nakagami and Suzuki was
evauated. For Nakagami fading both analytica and
numerical results in secrecy capacity was presented but in
Suzuki case only numerical results was mentioned. These
results show maximum secret bits per each channel use.
The obtained capacity rates show this method of key
establishment is practical in wireless applications but the
proper coding method that achieves capacity rate is a open
prablem.
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