
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

304

Combination of Replication and Scheduling in Data Grids

Nhan Nguyen Dang1,2, Sang Boem Lim2

1 University of Science and Technology,

52 Eoeun-dong, Yuseong-gu, Daejeon, Republic of Korea, 305-333

2 Korea Institute of Science and Technology Information,
52-11 Eoeun-dong, Yuseong-gu, Daejeon, Republic of Korea 305-806

Abstract. Data Grid environment is a geographically distributed
that deal with date-intensive application in scientific and
enterprise computing. Dealing with large amount of data makes
the requirement for efficiency in data access more critical. The
goal of replication is to shorten the data access not only for user
accesses but enhancing the job execution performance. In this
paper, we proposed a new approach to replication based on
organizing the data in Data Grid based on its property. In this
paper, we organized the data in to several data categories that it
belongs to. And this information is used to help improving data
replication placement strategy. We study our approach and
evaluate it through simulation. The result shows that our
algorithm has improved 30% over the current strategies.

Keywords: Data Grids, Scheduling, Replication.

1. Introduction

In the increasing demand of scientific and large-scale
business application, a large amount of data are generated
and spread for using by users around the would. Many
good examples can be listed such as High Energy Physics,
meteorology, computational genomics which processed
and resulted large amount of data. Such data cannot be
stored centralized but distributed among centre around the
world for processing. Motivation by an integrate
architecture for storage, data management and data-
intensive application execution, Data Grid is proposed as a
solution.

Data Grid is an integrating architecture that allow
connect a collection of hundreds of geographically
distributed computers and storage resources located in
different part of the world to facilitate sharing of data and
resources [6]. Size of data that needs to be accessed on the
Data Grid may be upto petabytes in the near future. The
nature of dealing with large amount of data that
geographically spread causes may challenges in Data Grid.
One of them is how the scheduling efficiently work with
the amount of data need for each job and the impact of
replication to the scheduling performance.

1.1 Motivation

Replication and scheduling problem has been studied
separately for long time, however those in Data Grid have

just recently received attention from researchers. Effective
scheduling of jobs in Data Grid has its own complicated
characteristics since it deal with large amount of input data
in the dynamic environment of Grid. The decision of
where and when to execute a job is made by considering
the job requirement and current status of The Grid, here
are computational resources, storage resources and
network resources. In Data grid, the execution
performance is greatly impacted by the data locality [7]. A
good scheduling strategy will allow shortest access to the
required data, therefore reduce the data access time. Vise
versa, replication strategy that allows place data in a wisely
manner will offer a faster access to files require by grid
jobs, hence increase the job execution’s performance.

1.2 Related Works

There are some recent works that address the problem of
scheduling and/or replication in Data Grid as well as the
combination between them. However, the realization of
importance of data locality in job scheduling problem was
first proposed by Ranganathan, K. and Foster, I. [7]. The
authors had proposed a Data Grid architecture based on 3
main components: External Scheduler (ES), Local
Scheduler (LS) and Dataset Scheduler (DS). ES receives
job submission from user, then it decides which remote site
to which to send the job depend on ES’s scheduling
strategy. LS of each site decides how to schedule all the
jobs assigned to it, on its local resources. DS keeps track of
popularity of each dataset currently available make data
replicating decision. On this architecture, the authors
developed and evaluated various replicating and
scheduling strategy to study the impact of the two systems.
The result showed the importance of data locality in
scheduling job.

Follow on, in OptorSim [2], [3], data replication is
combined with job scheduling in a two-stage optimization
mechanism. Our proposed architecture is the combination
and improvement of both above architectures. More recent
works by Chakrabati, A. and colleagues ([6], [7]) or Tang,
M et al. [9] improve the older works by integrating the
scheduling and replication strategy to improve the
scheduling performance.

Analyzing above works, the author realized there were
two shortcomings. First one is the relationship among data

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

305

and between the data and job. Instead of relying on the grid
capability, we approach the problem from the job and data
property. By replicating set of files that has high
probability to be used together into nearby resources, we
expect the job that using those file will be scheduled to that
small area. Second issue is the Dataset Scheduler - DS.
Instead of just tracking the data popularity, the DS takes its
role as an independent scheduler.

This paper will be organized as follow: Section 2 will
include the proposed system model. Section 3 describes
the scheduling issue and section 4 goes in detail the
replication strategy, following by the simulation results in
Section 5. Section 6 will summarize the paper and the end
will be preferences - section 7.

2. System Architecture

The Data Grid system model for job scheduling and
replication problem is described in OptorSim – EU Data
Grid project 2. Basically, we follow that model OptorSim’s
model and architecture describe in [7] (Fig. 1). However,
we add into that model a centralized ActiveReplicator as
part of ReplicaManager and also modify the role of Data
Scheduler. There are some terms:
− LS/DS/CE/SE/RB: Local Scheduler/ DataScheduler/

ComputerElement/ StorageElement/ ResourceBroker -
[2], [7].

− RC: ReplicaCatalo-gue store the list of all replicas on
the grid.

For every predefined interval, the replicator will collect
the replica information and data usage information over the
Grid. Then it decides whether to replicate a data file.
Operation of the active replicator will be described in
section.

When a job is assigned to a LS, the DS will responsible

for all the data requests by the LS. This data request is
generated as soon as job is scheduled into LS queue. The
objective of this DS is to obtain to the local site as much

data required by a job as possible before that job is
executed.

3. Scheduling Strategy

We proposed a scheduling strategy for the RB that makes
use of Local Scheduler and Data Scheduler in each Grid
Site. The Resource Scheduling strategy based on the
estimation of cost (time) of executing a job in each grid
site. It is possible to assume that job is submitted to RB
one by one. When receiving a job submission, the RB will
estimate the time for completing executing (ETTC) a job
in a grid site i:

 (1)
This estimation equation is similar to what was introduced
in [9]. In the real case, the work of obtain QT(i) – Queuing
time in site I - is quite simple. Suppose that j-1 is the last
job in site I’s queue. We can easily realize that QT(i) =
ETTCj-1,i.. ETTCi-1,j can easily obtain if the LS allow
such a service for RB. DT(f(j), i) also can be estimated
based on the Grid status information as describe in [9].

We define a method to optimize the data obtain for job
before it is executed. Once a job j is submit to site i, all the
data files required by j (i.e. f(j)) is submitted to DS. The
data scheduler can organized the data request by queue and
processed the request based on its own strategy (e.g. first
come first serve). By communicate with NWS or MDS, the
Data Scheduler can know whether a request to a file is
ready to process Since requested file spread among various
grid site, data request can be process simultaneously. If
one file is completed, it can inform the LS so that the LS
know about the situation of data input. By using a DS, we
can optimize the data transfer time for job (DT(j)), hence
improve the job’s execution performance.

4. Dynamic Replication

We assume that data in Data Grid belongs to a field of
study, e.g. Physical, Biology, Chemical, Meteorology, etc.
They are the fist level of a hierarchical tree. Going further
down, we can divide the field to more specific, for
example biology can be divided to cell biology, molecular
of biology, cell technology, proteomics. One more step, we
can say that a gene data gd of a chicken is categorized to
Animal gene, rather than Plant genes. The reason of this
assumption is that data in one field usually rarely or cannot
be used in other fields, an experiment on animal gene
never used gene data from a tree. By doing like this, we
can form a hierarchical tree of data type. On that tree, we
can define the relationship between data in same category
and relationship between nearby categories. Through that,
we can extract a correlation between data. However, due to

Fig. 1: Data Grid Architecture

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

306

current data and scenario, we can just define a flat category
system, including a set of category. Each data entry
belongs to one system and has a close relation with data
entries in that category rather than other categories.
Because the work of replication of data takes place before
and without information about the job that used the data, if
we can gather files that have high possibility to be used
together, the performance of job execution will increase.

Our idea is gather the data that is “related” to the small
region so that the job use such data will be execute inside
that region. We believe that doing such thing will reduce
the cost to transfer data to the job execution site, therefore
improve the job execution performance. For simplicity, we
define data that are “related” are data belongs to the same
category.

In particular, the replication problem includes two
questions to be answer:

− Which data to be replicated?
− Where to put the new replica?

We will define algorithms to solve each problem that
we call Dynamic Data Replication Algorithm (DP) in
following sections.

4.1 Replica decision

In order to decide which file needs to be replicate, we use a
metric call average number of access of the as indicated in
[9]. In replication mechanism, each replication server
maintains data accesses record. When it is time to replica
data, all replication servers send the access record to the
central replication manager. The manager will aggregate
and create a summarized access record for every unique
file identifier (FID). The result is a record NOA which
each item NOA(f) indicates the times that a file with
unique ID f is accessed on the whole grid system.

Once the average number of accesses is calculated, if a
replica of a file is accessed more than the average access,
then the file needs to be replicated. But we do not use the
original number of access in general. Instead, we calculate
the amount of data access by taking into account the file
size as a parameter when making decision.

The algorithm to decide which data file to be replicated
is described below:

− Compute average number of access:

(2)
− For every file f that satisfies:

 (3)

(NOR(f): number of replicas of f on the whole grid system
and |f| is average file size of all data files in the system)

invoking replication replacement algorithm to create a replica for
f.

Since the cost of using a file is in direct ration to file
size, our algorithm uses the average number of access with
taking into account the file size when making replication
decision. We call it Dynamic Replication Decision (DS)

4.2 Replica replacement

As above, our strategies is replicating file that belong to
the same category close to each other so that job belongs to
that category will be executed nearby. When the job is
executed nearby, the cost for file transfer will be reduce.
We call this strategy Dymamic Replication Placement
(RP)

To measure the how close a replica is to the data in the
same category, we define a new concept: Dis(Distance).

− Distance is a measurement from D to D1 for a file f
(of category C) is defined as the time to transfer all
files that belong to category C on site D1 to site D:
o If D is the same as D1, then Dis(f, D1) = 0.

o Else:

1

1

,

1

,

(,) i i

i
f D f C

D

D D

f

Dis f D
BW
∈ ∈

= ±
∑

 (5)

Dis(fD, D1) is positive/ negative (+/-) when D1 does/ does
not contain a replica of f. Why there is negative distance? It
means the further the physical distance of the two replica of
the same file, the better it is. However, it still must be close
enough to other files of the same category.

− Similarly, distance for a replica f (of category C) on
site D to all files of C is the time to transfer all files
belongs to category C on the Grid system to site D:

() (,)
i

D D i
D

Dis f Dis f D
∀

= ∑
 (7)

Dis(fD) will evaluate how close fD to other files in the same
category. A file that locates at a site with lower Dis(fD) is
said to be close to all of files its category.

To choose a site to place the newly created replica, we
evaluate the Dis(f, D) for all sites D in the Grid system.
The site which offers the lowest Dis(f, D) will be chosen to
store the new replica.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

307

Fig. 2: Performance of different replication
placement algorithms with scheduling strategies

0

5

10

15

20

25

30

35

100 200 300 400 500
N o Of J obs

DP - CCS DR - CCS DP - RS DR - RS

5. Performance Studies

In order to evaluate the performance of the replication
strategy, the OptorSim simulation tool was used. The EU
Data Grid as described in OptorSim was used for this
purpose. The grid job is submitted to the RB for every
2.5 seconds. Each computing node has a processing speed
of 0.1 second/ GB. Which job to be submitted to the RB is
randomly generated based on the job execution probability
which is predefined. The initial file distribution among the
grid sites is random. Each node has 0 or 1 Storage Element
of size 15GB to 100GB. We performed 2 kinds of test:

− Replica placement algorithm test
− Replication algorithm test

5.1 Replica placement test

The replica placement strategy was tested to measure its
performance against the random placement strategy. In this
test, we maintain only one dynamic algorithm for choosing
which data files to be replicated. The site to place the

newly created replica will be chosen randomly (DR –
Dynamic Replication Decision + Random Placement) or
by the algorithm that is described in Section 4.2 (DP –
Dynamic Replication + Dynamic Placement algorithm).
The scheduling strategies set up for this test were the
Random scheduling (RS) and Combined-cost Scheduling
(CCS). With RS, the RB choose a site for a job execution
randomly on the grid, while with CCS, site with minimum
of combination of access cost and queuing cost will be
chosen for job execution. These two scheduling strategies
are provided with OptorSim. The parameter to be varied
was number of submitted jobs.

For each combination of methods and parameters, the

mean job execution time was measured (Fig. 2). The

Dynamic Replication Decision with Placement Algorithm
(DP) is outperformed that with random placement. Another
measurement of replication placement efficiency is that
number of replicas (Fig. 3:). The figure shows with the
same replica decision strategy, that DP has fewer replicas
than that of DR, therefore the replication placement
algorithm (DP) are more efficient.

Fig. 3: Number of replicas in related to number of jobs

submitted

5.2 Replication algorithm test
The whole replication algorithm is evaluated against the
OptorSim’s Least Frequently Used (LFU) and LRU

0
5

10
15
20
25
30
35
40
45
50

100 200 300 400 500

No of Jobs

M
ea

n
Jo

b
Ti

m
e

(s
)

DRA+LRU LRU LFU

Fig. 4: Scheduling performance in various replication
strategies (CCS scheduling strategy is used)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

308

(Leaset Recently Used) replication. Once again, the
OptorSim’s CCS scheduling strategy is used.

In OptorSim, LRU and LFU replication strategies perform
a replication action of a file when it is required by a job.
These strategy is similar to caching, except for the created
file is registered to Replication Catalogue for later use. The
DRA strategy is combined with LRU to form a new
replicating strategy that is call DRA+LRU. DRA performs
dynamic replication algorithm over all the data files in the
Grid system for every predefined interval. However, when
a job need some input files that is located at remote site,
the files will be replicated to the job execution’s site. In
case the replicating action cannot be completed, the files
will be accessed remotely.

The simulation result (Fig. 4) shows that by combining
Dynamic Replication Algorithm with the replicating
optimizer at runtime, the performance is significantly
increased of 30%.

6. Conclusion

In this paper, we have proposed our improvement over
current Grid scheduling and replication problem. In
replication issue, we have proposed a new approach to
replication problem in Data Grid. The simulation result
showed that our replication placement strategy overcomes
the random placement strategy. Also, the dynamic
replicating algorithm makes an improvement and can be
used with OptorSim’s replication optimization. The result
is quite promising. In the future work, we will do more
simulation test and improve the replication strategy.
Meanwhile, the scheduling component needs to be
completed for integrating with replication mechanism to
perform a whole system simulation.

7. References

1. William H. Bell, et al. OptorSim - A Grid Simulator for
Studying Dynamic Data Replication Strategies.
International Journal of High Performance Computing
Applications, 17(4), 2003.

2. William H. Bell, et al. Evaluation of an Economy-Based File
Replication Strategy for a Data Grid. In International
Workshop on Agent based Cluster and Grid Computing at
CCGrid 2003, Tokyo, Japan, May 2003. IEEE Computer
Society Press.

3. David G. Cameron, et al. Evaluating Scheduling and Replica
Optimisation Strategies in OptorSim. In 4th International
Workshop on Grid Computing (Grid2003), Phoenix, Arizona,
November 17, 2003. IEEE Computer Society Press.

4. K. Ranganathan and I. Foster. Decoupling computation and
data scheduling in distributed data-intensive applications. In
Proceedings of the Eleventh IEEE Symposium on High

Performance Distributed Computing (HPDC), Edinburgh,
Scotland, July 2002.

5. David G. Cameron, et al. Replica Management in the
European DataGrid Project. Journal of Grid Computing.
2(4): 341-351 (2004)

6. H. Lamehamedi, et al., Simulation of Dynamic Data
Replication Strategies in Data Grids. In Proc. of 12th
Heterogeneous Computing Workshop (HCW2003), Nice,
France, Apr 2003. IEEE-CS Press.

7. K. Ranganathan and I. Foster. Simulation Studies of
Computation and Data Scheduling Algorithms for Data
Grids. Journal of Grid Computing, Volume 1, Number 1,
2003, pp. 53-62(10).

8. Anirban Chakrabarti, R. A. Dheepak, Shubhashis Sengupta:
Integration of Scheduling and Replication in Data Grids.
HiPC 2004: 375-385

9. Tang, M., Lee, B., Tang, X., and Yeo, C. 2006. The impact
of data replication on job scheduling performance in the
Data Grid. Future Generation Computing System 22, 3 (Feb.
2006), 254-268. DOI=
http://dx.doi.org/10.1016/j.future.2005.08.004

10. David G. Cameron, et al. , OptorSim v2.1: Installation and
User Guide, OptorSim official Sourceforge website:
http://sourceforge.net/projects/optorsim , Oct 2006.

