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Summary 
A transaction is a collection of operations that performs a single 
logical function in a database application. Each transaction is a 
unit of both atomicity and consistency. Thus, transactions are 
required not to violate any database consistency constraints. In 
most cases, the update operations in a transaction are executed 
sequentially. The effect of a single operation in a transaction 
potentially may be changed by another operation in the same 
transaction. This implies that the sequential execution sometimes 
does some redundant work. It is the transaction designer’s 
responsibility to define properly the various transactions so that it 
preserves the consistency of the database. In the literature, three 
types of fault have been identified in transactions, namely: 
inefficient, unsafe and unreliable. In this paper, we present the 
strategies that can be applied to generate subtransactions to exploit 
parallelism. In our work, we have identified five types of 
relationship which can occur in a transaction. They are: 
redundancy, subsumption, dependent, partly dependent and 
independent. By analysing these relationships, the transaction can 
be improved and inefficient transactions can be avoided. 
Furthermore, generating subtransactions and executing them in 
parallel can reduce the execution time.  
Key words:   
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1. Introduction 
 
A transaction is a logical unit of work on the database. It 
may be an entire program, a part of a program or a single 
command, and it may involve any number of operations on 
the database. A transaction should always transform the 
database from one consistent state to another, although we 
accept that consistency may be violated while the 
transaction is in progress [2, 4]. To satisfy this goal, a 
transaction should have the four (ACID) properties, 
namely: atomicity, consistency, isolation, and durability.  
 [10] has identified three types of fault commonly found 
in transactions. These faults are (i) inefficient – transactions 
that contain either redundant components which incur 
unnecessary execution costs, or construct which can be 
replaced by others which are semantically equivalent but 
cheaper, (ii) unsafe – transactions do not preserve the 
consistency of the database, and (iii) unreliable – 
transactions may behave in such a way that their results 

either are not what the designer have in mind or do not 
conform to the real world events modeled by the transaction.  
 One particular problem in many advanced applications, 
is the need to support long-lasting transactions. The length 
of duration of a long-lasting transaction may cause serious 
performance problems if it is allowed to lock resources 
until it commits. This may either force other transactions to 
wait for resources for an unacceptable long time, or it may 
increase the likelihood of transaction abort. Aborting a 
long-lasting transaction may have a negative effect on both 
response time and throughput. If the long transaction has a 
flat structure, a failure will cause the whole transaction to 
be undone and possibly reexecuted. This is a very 
expensive recovery strategy, especially if the failure 
occurred after executing most of the transaction. 
Decomposing the transaction into a number of 
subtransactions is one way of dealing with these problems 
[6]. 
 Although many researchers have investigated the 
process of decomposing transactions into several 
subtransactions to increase the performance of the system, 
but the focus of the research is typically on implementing a 
decomposition supplied by the database application 
developer, without really focusing on the decomposition 
process itself. Examples are [1, 5] and [8]. While [7] and 
[9] concentrate on techniques to decompose a transaction 
into several subtransactions. 
 [5] has proposed a technique to map an object model to 
a commercial relational database system using replication 
and view materialisation and argued that update operations 
become more complex due to the added redundancy in the 
mapping of the large classification structures. In order to 
speed them up, they exploit intra-transaction parallelism by 
breaking the updates into shorter relational operations. 
These are executed as ordinary independent parallel 
transactions on the relational storage server. 
 [8] has proposed an algorithm which is capable of 
generating the finest chopping of a set of transactions but 
his algorithm rely on the following assumptions: (i) a user 
has access only to user-level tools and (ii) a user knows the 
set of transactions that may run during certain interval. 
 [1] presents an approach to improve database 
performance by combining parallelism of multiple 
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independent transactions and parallelism of multiple 
subtransactions within a transaction without really focusing 
on the decomposition process. 
 [9] introduced the notion of semantic histories which 
not only list the sequence of steps forming the history, but 
also convey information regarding the state of the database 
before and after execution of each step in the history. They 
have identified several properties which semantic histories 
must satisfy to show that a particular decomposition 
correctly models the original collection of transaction.  [9] 
also argued that the interleaving of the steps of a transaction 
must be constrained so as to avoid inconsistencies and 
proposed additional preconditions on the auxiliary variables. 
Although auxiliary variables facilitate analysis, it is 
expensive to implement them. Also performing additional 
precondition checks involves extra run time overhead. To 
avoid implementing auxiliary variables and performing 
additional precondition checks, they introduce the concept 
of successors sets, but the successor set descriptions are 
obtained by examining the preconditions with auxiliary 
variables. 
 [7] has proposed a technique for partitioning 
transaction to reduce the overhead of checking integrity 
constraints. He has proved that every order dependent 
transaction can be transformed into equivalent order 
independent transactions. But in his work he only shows the 
transformation rules for update operations with the 
following sequences (i) insert followed by delete (ii) delete 
followed by insert and (iii) insert followed by change. Also, 
his technique is not capable of handling complex 
transaction with update operations such as the if construct.  
 In our research we focus on what constitutes a 
desirable decomposition and how the developer should 
obtain such a decomposition. We propose a technique that 
can be applied to generate subtransactions which will 
reduce the execution time by exploiting the possibility of 
executing the transaction in parallel. Our technique differs 
from the other techniques proposed by other researchers 
since (i) the number of subtransactions and the set of update 
operations derived by our technique are not fix; it depends 
on several factors as highlighted in Section 4; (ii) it does 
not require additional precondition checks as in [9]; (iii) 
most of the previous works only consider transaction with 
simple update operations such as [7] and [9]; and (iv) most 
of the previous works assume that the transaction is 
efficient without exploring the possibility that an optimized 
transaction can be obtained by eliminating any redundant or 
subsumed operation that may occur in the transaction. 
Therefore, we focus on deriving efficient transactions, i.e. 
transactions that are free from containing redundant and 
subsumed components that can incur unnecessary execution 
cost. This is achieved by applying a set of rules to a given 
transaction which in most cases is an order dependent or 
partly order dependent transaction. We have also enhanced 
the work by [7] by introducing complete rules for mapping 

dependent or partly dependent transaction into transaction 
where its single updates can be executed in arbitrary order. 
As a result an equivalent order independent transaction is 
generated. Here, equivalent means that the state produce by 
executing the initial transaction (order dependent or partly 
order dependent transaction) is the same as executing its 
order independent transaction. An order independent 
transaction has an important advantage of its update 
statements being executed in parallel without considering 
their relative execution orders as stated in [7]. 

This paper is organized as follows. In Section 2, the 
basic definitions, notations and examples which are used in 
the rest of the paper are set out. In Section 3, we present the 
rules that can be applied to eliminate redundant and 
subsumed constructs as well as to transform order 
dependent or partly order dependent transaction into order 
independent transaction. Also, the steps to transform a 
given transaction into an optimized independent transaction 
are presented. Section 4 presents several strategies that can 
be adopted to generate subtransactions to be executed in 
parallel.  In Section 5, we analyze the generated 
subtransactions and we compare them to their respective 
initial transactions. Conclusions are presented in the final 
Section, 6. 
 
2. Preliminaries 
 
Our approach has been developed in the context of 
relational databases, which can be regarded as consisting of 
two distinct parts, namely: an intensional part and an 
extensional part. A database is described by a database 
schema, D, which consists of a finite set of relation schemas, 
<R1,R2,…,Rm>. A relation schema is denoted by 
R(A1,A2,…,An) where R is the name of the relation 
(predicate) with n-arity and Ai’s are the attributes of R. A 
database instance is a collection of instances for its relation 
schemas.  
 A database transaction is one or a sequence of update 
operations that constitutes some well-defined activity of the 
enterprise of which the database is model. It is a logical unit 
of work in the sense that its effect on the database is either 
committed (i.e. the effects are made permanent) when it is 
processed successfully in its entirety, or else undone (as if 
the transaction never executed at all). In our work, only 
single and conditional operations are considered. Single 
operations include insertion, deletion and modification. 
These operations have the following form:  
• ins(R(c1,c2,…,cn)) – inserting a tuple into relation R with 

values c1,c2,…,cn, 
• del(R(x,…)) – deleting a tuple from relation R with 

primary key value x,  
• del(R(…,<delexp>,…)) – deleting a set of tuples from 

relation R which satisfy delexp,  
• mod(R(x,c1,…,cn):R(x,cn1,…,cnn)) – updating a tuple of 

relation R whose primary key value is x, and 
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• mod(R(…,<modexp>,…):R(…,cn,cn+1,…)) – updating a 
set of tuples of relation R which satisfy modexp,  

where ci represents any constant, x is the key of relation R, 
and both delexp and modexp are constants or simple 
expressions. Conditional operation (control structure) has 
the following format: if C then O1 else O2 where C is a 
database state referring to relations and O1 and O2 are 
update operations. The operational interpretation of the 
above construct is: if C is true then executes O1 else 
executes O2. 

The structure of database transactions adopted by us is 
composed of two sections, namely: the parameter section 
and the transaction body as shown below: 
 Transaction Transaction_Name (Parameter) 
 Begin 
    Transaction Body; 
 End 
Parameter contains parameters used by the operations in a 
transaction while the transaction body consists of one or 
more of the update mechanisms as discussed above. 
Throughout this paper the same example Job Agency 
database is used, as given in Figure 1. The example is taken 
from [10].  
 
Person(pid,pname,placed);  Company(cid,cname,totsal); 
Job(jid,jdescr);  Placement(pid,cid,jid,sal); 
Application(pid,jid);  Offering(cid,jid,no_of_places) 
 
Transaction  Hire(hiree,comp,jb,sal) 
Begin 
  modify p in person where p.pid=hiree by [placed=true]; 
  if all o in offering where o.cid=comp and 
o.jid=jb:o.no_of_places=1 then delete o  
    else modify o by [no_of_places=no_of_places-1]; 
  insert [hiree,comp,jb,sal] into placement; 
  delete p from application where p.pid=hiree; 
  modify c in company where c.cid=comp by [totsal=totsal+sal]; 
End   

Fig. 1 The Job Agency schema and the Hire transaction. 
 

The transaction given in Figure 1 can be rewritten as 
follows: 
 
1: Transaction Hire(hiree,comp,jb,sal) 
2: Begin 
3:  mod(Person(hiree,_,false):Person(hiree,_,true)); 
4:  if Offering(comp,jb,1) then del(Offering(comp,jb,1)) 
       else mod(Offering(comp,jb,no_of_places): 
       Offering(comp,jb,no_of_places–1)); 
5:  ins(Placement(hiree,comp,jb,sal)); 
6:  del(Application(hiree,_)); 
7:  mod(Company(comp,_,totsal): 
       Company(comp,_,totsal+sal));  
8: End   
Note: The symbol ‘_‘ indicates that the value of the 
column is not necessary. 

Fig. 2 The Hire transaction using our constructs. 
 

3. Deriving Independent Transaction 
 
In most cases, the update operations in a transaction are 
executed sequentially. The effect of a single operation in a 
transaction potentially may be changed by another 
operation in the same transaction. This implies that the 
sequential execution sometimes does some redundant work 
[7]. For example the transaction T1 below is equivalent to 
T2 since they produce the same database states.  This 
occurs when there are at least two single updates which 
conflict with each other. Here two update operations are 
said to conflict if they operate on the same data item [7]. 
Therefore it is important to syntactically and semantically 
analysed the given transaction to identify the relationship 
among the operations in the transaction before it is being 
partitioned into subtransactions. This section focuses on the 
steps of generating an optimized independent transaction. 
The independent transaction will be the input to the next 
phase (presented in Section 4) to generate subtransactions 
so that parallelism can be exploited. 
 Transaction T1(h,c,j,s,n,t1,t2) 
 Begin 
   ins(Placement(h,c,j,s)); 
 mod(Company(c,n,t1):(c,n,t2)); 
 del(Placement(h,c,j,s)); 
 End 
 Transaction T2(c,n,t1,t2) 
  Begin 
 mod(Company(c,n,t1):(c,n,t2)); 
 End 

We have identified five types of relationship between 
operations of a transaction based on the information 
presented in the operations, i.e. the types of update 
operations, the relations involved and the values specified 
in the operations. These relationships are presented below: 

A transaction T with n operations 
op1R1(A1),op2R2(A2),…,opnRn(An) is said to be redundant, 
TR, if there exists at least an operation that occurs more than 
once in the same transaction. This operation should be 
eliminated if there are no other operations which change the 
state of the relation that is involved in the redundant 
operation. 

Definition 1: An operation opiRi(Ai) is said to be 
redundant if there exists at least an operation opjRj(Aj) 
where opi = opj  ∈ {ins, del, mod}, Ri = Rj and Ai = Aj. If 
opi = opj, Ri = Rj and Ai = Aj, then the transaction T 
contains duplicate operations and therefore redundancy 
occurs. 

Table 1 represents the redundancy rules that can be 
applied to derive transaction with redundancy being 
eliminated. 
Transaction T3(h,c,j,s) 
Begin 
 del(Placement(h,c,j,s)); 
  mod(Placement(h,c,j,s): 
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   (h,c,j,s+100)); 
End 

The above transaction T3 contains redundant operation and 
since there are no other operations between the redundant 
operations which change the state of Placement, therefore 
the second operation mod(Placement(h,c,j,s):(h,c,j,s+100)) 
can be removed from the transaction. This is because the 
modify operation is no longer required as the tuple to be 
modified does not exist in the relation Placement. Here, 
redundancy rule 5 of Table 1 is applied. Consider the 
following example, 
Transaction T4(t) 
Begin                 
mod(Company(_,_,t<0): 
  (_,_,t=0)); 
del(Company(_,_,t<0)); 

End 
Applying redundancy rule 16 of Table 1 will generate the 
following order independent transaction, T4’. 
Transaction T4’(t) 
Begin           
mod(Company(_,_,t<0): 
  (_,_,t=0)); 

End 
The above del(Company(_,_,t<0)) operation is removed 
from transaction T4 since there is no tuple in the relation 
Company that will satisfy the condition t<0 as these tuples 
have been modified by the operation 
mod(Company(_,_,t<0):(_,_,t=0)).  

 
Table 1: Rules for eliminating redundant updates 

Rule Redundant updates Equivalent non-
redundant updates

1. del(R(T));mod(R(T):(S)); del(R(T)) 
2. del(R(t1,…));mod(R(T):(S)); del(R(t1,…)) 
3. del(R(T));mod(R(t1,…):(S)); del(R(T) 
4. del(R(t1,…)); 

mod(R(t1,…):(S)); 
del(R(t1,…)) 

5. del(R(T));mod(R(T):(t1,S)); del(R(T)) 
6. del(R(t1,…)); 

mod(R(T):(t1,S)); 
del(R(t1,…)) 

7. del(R(T)); 
mod(R(t1,…):(t1,S)); 

del(R(T)) 

8. del(R(t1,…)); 
mod(R(t1,…):(t1,S)); 

del(R(t1,…)) 

9. del(R(…,ti,…)); 
mod(R(…,ti,…):(…,sj,…)); 

del(R(…,ti,…)) 

10. mod(R(T):(S)); del(R(T)); mod(R(T):(S)) 
11. mod(R(t1,…):(S));del(R(T)); mod(R(t1,…):(S))
12. mod(R(t1,…):(S)); 

del(R(t1,…)); 
mod(R(t1,…):(S))

13. mod(R(T):(S));del(R(t1,…)); mod(R(T):(S)) 
14. mod(R(T):(t1,S));del(R(T)); mod(R(T):(t1,S)) 
15. mod(R(t1,…):(t1,S)); 

del(R(T)); 
mod(R(t1,…): 
  (t1,S) 

16. mod(R(…,ti,…):(…,sj,…)); 
del(R(…,ti,…)); 

mod(R(…,ti,…): 
(…,sj,…)); 

Note for Table 1, 2, 3 and 4: T (S, respectively) is a tuple in the form of 
<t1,t2,…,tn> (<s1,s2,…,sm>, respectively); S and T are different data items; 
R(t1,S) is a tuple in the form of <t1,s2,…,sm>; ti,… (sj, respectively) ≡ 
where condition ti (sj, respectively) is true; t1 ∈ T and t1 is the primary key 
value. 

 
A transaction T with n operations 

op1R1(A1),op2R2(A2),…,opnRn(An) is said to be subsumed, 
TS,  if there exists at least an operation whose effect is the 
same as performing another operation in the same 
transaction. Similar to redundant operation, this operation 
should be eliminated if there are no other operations which 
change the state of the relation that is involved in the 
operation. 

Definition 2: An operation opiRi(Ai) is said to be 
subsumed when there exists at least an operation opjRj(Aj) 
where opi = opj  ∈ {ins, del, mod}, Ri = Rj and Ai ⊂ Aj. If 
opi = opj, Ri = Rj and Ai ⊂ Aj, this indicates that performing 
opjRj(Aj) will also perform opiRi(Ai). 
Transaction T5(j) 
Begin        
mod(Placement(_,_,_,1000): 
  (_,_,_,2000));     
mod(Placement(_,_,j,1000): 
  (_,_,_,2000)); 

End 
The above mod(Placement(_,_,j,1000):(_,_,_,2000)) 
operation is subsumed by 
mod(Placement(_,_,_,1000):(_,_,_,2000)) since performing  
mod(Placement(_,_,_,1000):(_,_,_,2000)) will also modify 
the tuple <_,_,j,1000> of Placement. Therefore 
mod(Placement(_,_,j,1000):(_,_,_,2000)) should be 
removed from the transaction. 

Given a transaction T with update operations 
op1R1(A1),op2R2(A2),…,opnRn(An), T is order dependent, 
TD,  if and only if the execution of the transaction following 
the serialibility order as in the transaction produce an output 
which will be different than the output produced by 
interchanging the operations in the transaction. A 
transaction T is order dependent if and only if T contains at 
least two conflicting update operations. A transaction T is 
partly order dependent, TPD, if and only if T contains at 
least two partly conflicting updates operations. Two update 
operations are said to partly conflict if one of the update 
operation is operating on a data item which is part of a set 
of data items operate by the other update operation. 
Otherwise T is order independent, TI. 

Definition 3: An operation opiRi(Ai) is said to be 
dependent on operation opjRj(Aj) if and only if opi ≠ opj, Ri 
= Rj, Ai = Aj and satisfy the conditions in Table 2. 

Definition 4: An operation opiRi(Ai) is said to be partly 
dependent on operation opjRj(Aj) if and only if opi ≠ opj, Ri 
= Rj, Ai ⊂ Aj and satisfy the conditions in Table 3. 

Definition 5:  An operation opiRi(Ai) is said to be 
independent if and only if for all operations in transaction T, 
opjRj(Aj) where j = 1,…,n and j ≠ i, (i) opi ≠ opj and Ri ≠ Rj 
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or (ii) opi = opj and Ri ≠ Rj or (iii) opi = opj, Ri = Rj and Ai 
≠ Aj. 

As dependent/partly dependent operations occur only 
when the relations in both operations are the same therefore 
(i) and (ii) above are proved. Also, dependent/partly 
dependent operations require that both type of operations 
are different, therefore (iii) is also proved. 

 
 

Transaction T6(h,c,j,s) 
Begin 
 ins(Placement(h,c,j,s));  
 del(Placement(h,c,j,s)); 
End 
Transaction T7(hiree,h,c,j,s) 
Begin 

 ins(Placement(h,c,j,s));  
 del(Application(hiree,_)); 

End 
Transaction T6 is order dependent while T7 is order 
independent. An order independent transaction has an 
important advantage of its update statements being 
executed in parallel without considering their relative 
execution orders. With an order independent transaction we 
can consider its single updates in an arbitrary order. As 
proved in [7], every order dependent transaction can be 
transformed into equivalent order independent transaction.  
But this is not true as discuss at the end of this section. 

Tables 2 and 3 present the rules to convert dependent 
and partly dependent operations (conflicting and partly 
conflicting updates) into equivalent independent operations 
(non-conflicting updates). In the following we will show 
through examples how the rules that we have presented can 
be applied to generate order independent transaction given 
an order dependent or partly order dependent transaction. 
Transaction T8(p,n) 
Begin 

 ins(Person(p,n,false)); 
 mod(Person(p,n,false): 
     (p,n,true)); 
 End 
Applying rule 6 of Table 2 will generate the following order 
independent transaction, T8’.   
Transaction T8’(p,n) 
Begin 
 ins(Person(p,n,true)); 
End 
Transaction T9(t) 
Begin 
  mod(Company(_,_,t<0): 
    (_,_,t=0)); 
  del(Company(_,_,t=0)); 
End 

Applying rule 5 of Table 3 will generate the following order 
independent transaction, T9’. 

Transaction T9’(t) 
Begin 
del(Company(_,_,t<0)); 
del(Company(_,_,t=0)); 

 End 
 

Table 2: Rules for eliminating dependent updates 
Rule Dependent updates Equivalent 

independent 
updates 

1. ins(R(T));del(R(T)); nothing 
2. ins(R(T));del(R(t1,…)); nothing 
3. del(R(T));ins(R(T)); nothing 
4. ins(R(T));mod(R(T):(S)); ins(R(S)) 
5. ins(R(T));mod(R(t1,…):(S)); ins(R(S)) 
6. ins(R(T));mod(R(T):(t1,S)); ins(R(t1,S)) 
7. ins(R(T)); 

mod(R(t1,…):(t1,S)); 
ins(R(t1,S)) 

8. mod(R(T):(S));ins(R(T)); ins(R(S)) 
9. mod(R(t1,…):(t1,S)); 

del(R(t1,…)); 
del(R(t1,…)); 

10. mod(R(T):(t1,S)); 
del(R(t1,…)); 

del(R(t1,…)); 

11. del(R(T));mod(R(S):(T)); del(R(S)) 
12. del(R(T)); 

mod(R(…,sj,…):(T)); 
del(R(…,sj,…))

13. mod(R(S):(T));del(R(T)); del(R(S)) 
14. mod(R(S):(T));del(R(t1,…));  del(R(S)) 
15. mod(R(…,sj,…):(T)); 

del(R(t1,…));  
del(R(…,sj,…))

16. mod(R(…,sj,…):(T)); 
del(R(T)); 

del(R(…,sj,…))

 
Table 3: Rules for eliminating partly dependent updates 

Rule Partly dependent 
updates 

Equivalent 
independent 

updates 
1. ins(R(T)); 

del(R(…,ti,…)); 
del(R(…,ti,…) 

2. ins(R(T));  
mod(R(…,ti,…):(t1,S));

mod(R(…,ti,…): 
  (t1,S)); 

3. mod(R(S):(T)); 
del(R(…,ti,…));  

del(R(S)) 
del(R(…,ti,…)) 

4. mod(R(…,sj,…):(T));  
del(R(…,ti,…));  

del(R(…,sj,…)) 
del(R(…,ti,…)) 

5. mod(R(…,sj,…): 
  (…,ti,…));  
del(R(…,ti,…)); 

del(R(…,sj,…)) 
del(R(…,ti,…)) 

 
Transaction   
Company_Status(c,n,totsal) 
Begin 
If Company(c,n,totsal<0)then 
  del(Company(c,_,_)); 
If Placement(_,c,_,_) and 
  not Company(c,_,_) 
  then ins(Company(c,_,_)); 

End 
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Here, a truth table as shown in Table 4 is derived based on 
the truth values of the conditions specified in the if 
construct. For each possibility, an equivalent independent 
operation is generated. 
 

Table 4: Company_Status transaction rules 
Condition 

1 
Condition 

2 
Operations Rule 

applied: 
independent 

operations 
True True* del(Company(c,_,_)) 

ins(Company(c,_,_)) 
Rule 3 of 
Table 2:  
nothing 

True False del(Company(c,_,_)) no changes 
False True ins(Company(c,_,_)) no changes 
False False nothing nothing 

* 

 Note that if Condition 1 (Company(c,n,totsal<0)) is true then definitely 
Condition 2 (Placement(_,c,_,_) and not Company(c,_,_)) is false. 
Identifying contradiction between conditions in the if constructs is not the 
focus of this paper. 

 
So far we have shown that given conflicting and partly 

conflicting updates (dependent and partly dependent 
operations) (i) equivalent independent operations can be 
derived; (ii) it is equivalent to not performing at all the 
conflicting updates (stated by nothing); or (iii) it is not 
possible to perform the updates (as shown by Table 5). 
These rules are based on the term conflicting updates which 
means that two update operations operate on the same data 
item or based on the term partly conflicting updates which 
means that one of the update operation is operating on a 
data item which is part of a set of data items operate by the 
other update operation. Other sequences of update 
operations which are syntactically correct but are not 
included in the tables since (i) semantically they do not 
make sense; (ii) no single equivalent independent operation 
can be derived as shown by transaction T10; and (iii) no 
equivalent independent operation can be derived as shown 
by transaction T11. 
 

Table 5: Rules for eliminating dependent updates 
Dependent updates Equivalent independent 

updates 
mod(R(T):(t1,S));ins(R(T)); nothing 

 
Transaction T10(p,c,j) 
Begin 
ins(Placement(p,c,j,1000));        
mod(Placement(_,_,_,1000): 
  (_,_,_,2000)); 

End 
The above transaction T10 is equivalent to the following 
transaction T10’ which consists of independent operations. 
Transaction T10’(p,c,j) 
Begin 
  ins(Placement(p,c,j,2000));         
 mod(Placement(_,_,_,1000): 
   (_,_,_,2000)); 

End 
 

Consider the following example, 
Transaction T11(t) 
Begin 
  del(Company(_,_,t<0)); 
  mod(Company(_,_,t=0): 
   (_,_,t<0)); 
End 

No equivalent order independent transaction can be derived 
for the above transaction T11. 

Having discussed the above definitions, the steps to 
derive an independent transaction, TI are as follows: 
 
INPUT:  transaction T 
OUTPUT:  TI 
BEGIN   

Apply Definition 1 to T,  
  if T is TR then T’ = TR – redundant operations  
  else T’ = T. 
Apply Definition 2 to T’,  
  if T’ is Ts then T’ = Ts – subsumed operations. 
Apply Definition 3 to T’,  
  if T’ is TD then  
  T’ = apply the dependent rules to TD. 
Apply Definition 4 to T’,  
  if T’ is TPD then  
  T’ = apply the partly dependent rules to TPD. 
TI = T’ 

END 
 
4. Strategies for Deriving Subtransactions  
 
Once the relationships among the operations have been 
detected and the transaction has been optimised (eliminate 
redundancy, subsumption and convert dependent or partly 
dependent operations to independent operations), the next 
step is to group the operations (independent) in the 
transaction into several groups or subtransactions. Here, 
several strategies can be applied so that each processor will 
be given the same number/complexity of operations. We 
assume that each processor has the same capability (speed). 
i) Number of independent operations – in general if there 
are m processors and n number of independent operations, 
then each processor will be given approximately n/m 
operations if n ≥ m and 1 operation if n < m (not all 
processors will involve in processing the transaction). Then 
assigning the update operations to the processors will be 
based on: any n/m operations to the first processor, then any 
n/m operations from the balance of operations to the second 
processor and so on. The number of ways each processor is 
given the set of update operations is given by the following 
equation: 
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where n is the number of update operations, p is the number 
of available processors and r = n/p.  Equation (1) is for case 
where r is an integer value. 

Example:  If a transaction, T, consists of 4 update 
operations denoted as 1, 2, 3, 4 and there are 2 processors 
then there are 3 possible number of ways each processor is 
given the set of update operations. These alternatives are 
shown below: 

Alternative A:  {1, 2}, {3, 4}  
Alternative B:  {1, 3}, {2, 4}  
Alternative C:  {1, 4}, {2, 3} 
The following table shows some of the possible 

number of alternatives, a, that can be generated given the 
various numbers of update operations, n, and processors, p. 
 

n 4 6 6 8 8 9 10 10 
p 2 2 3 2 4 3 2 5 
a 3 10 15 35 105 280 126 945

 
This strategy is easy to implement and although each 
processor is given approximately the same number of 
update operations but not necessarily that each processor 
will execute the same complexity of update operations. To 
generate all possible alternatives and later choose the best 
alternative is time consuming. This is because the number 
of possible alternatives increases as the number of update 
operations and the number of available processors increase.   

Example:  Referring to the example given in Figure 2, 
if there are two processors, then each processor will be 
given approximately 5/2 operations. The transaction can be 
split as follows (note: other alternatives are also possible). 
 Alternative 1:  ST1{3, 6, 7} and ST2{4, 5} 
 Alternative 2:  ST1{3, 4, 5} and ST2{6, 7} 
 Alternative 3:  ST1{5, 6} and ST2{3, 4, 7} 
For simplicity purposes we have simplify the presentation 
of the transaction. Here STi is the name of the 
subtransaction and the numbers in the set represent the 
operations as in Figure 2. 
ii) Complexity of independent operations – although 
strategy i) will allocate on average the same number of 
independent operations to all processors, but the actual 
workload each processor will perform might be different 
due to the complexity of the operations. For this, we 
proposed complexity weight to be given to each operation 
based on its complexity, as follows:                 
             
                                          Complexity weight (CW) 
(a)  Modify multiple tuples  4 
(b)  Delete multiple tuples   3 
(c)  Modify single tuple   2 
(d)  Insert/Delete single tuple  1 
(e)  Control structure (if construct) is the average of 
performing the operations specified in it. 
The total complexity for a transaction, TC = ∑i=1

n CW(opi) 
where n is the number of independent operations (op). 

Based on the total complexity, each processor will be given 
a number of operations with total complexity of TC/m 
where m is the number of processors.  

This strategy is easy to implement and each processor 
is given approximately the same complexity of update 
operations and therefore the time spend to execute a 
subtransaction by each processor is more or less the same. 
Although each processor might be given different number 
of update operations but this is not a critical factor that 
influences the performance of the parallel system. 

Example:  Referring to the example given in Figure 2, 
the total complexity, TC, is 7.5. If there are two processors, 
then each processor will be given a set of operations with 
total complexity of 7.5/2 = 3.7 (approximately 4). The 
transaction can be split as follows: 
 Alternative 4:  ST1{3, 4} and ST2{5, 6, 7} 
 Alternative 5:  ST1{3, 5, 6} and ST2{4, 7} 
 Alternative 6:  ST1{3, 7} and ST2{4, 5, 6} 
Note that each subtransaction has the total complexity of 
3.5 or 4. 
iii) The location of the relation (for case of distributed 
database) – this also plays an important factor to decide 
how to decompose a transaction.  Subtransactions can be 
derived based on the relations involved in the transactions. 
Those relations that are allocated at the same site and are 
specified in the transaction can be grouped in the same 
subtransaction. This is to minimise data transfer across the 
network.  

Example:  Assuming that Person, Company and 
Offering are allocated at site 1 and Placement, Application 
and Job at site 2 then the transaction can be split as follows: 
 Alternative 7:  ST1{5, 6} and ST2{3, 4, 7} 
Note that ST1 (ST2, respectively) can be executed locally at 
site 1 (2, respectively). 

This strategy focuses on a way to reduce the amount of 
data transferred across the network which is important in a 
distributed database. Each processor is not necessarily 
given the same number and complexity of update 
operations. The above strategies can be integrated, for 
example if each operation has the same complexity then the 
first strategy can be applied.  

 
5. Evaluation 
 
In this section, we will compare the initial transaction 
against the subtransactions that are derived using different 
strategies as presented in Section 4. Our discussion will be 
based on the following parameters which can indirectly 
represent the performance of the system during the 
execution of the transactions/subtransactions. These 
parameters are:  
i) TC provides an estimate of the total complexity of the 

transaction/subtransaction, which is related to the type 
of update operations. This measurement indirectly 
indicates the workload a processor is given, i.e. the 
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more complex the update operation the more time is 
required by the processor to execute the operation. It is 
based on the formula given in Section 4. 

ii) n is the number of update operations (independent 
operations) in a transaction/subtransaction.  

iii) S provides a rough measurement of the amount of 
nonlocal access necessary to perform the update 
operations. This is measured by analyzing the number 
of sites that might be involved in executing the 
transaction/subtransaction. 
Table 6 summarises the estimation of the complexity, 

the number of update operations and the number of sites 
involved during the execution of Transaction Hire and its 
subtransactions that are derived using different strategies as 
presented in Section 4. Referring to Table 1, we can 
conclude that: 

i)  Applying strategy i) alone, each processor will be 
given approximately the same number of update 
operations but not necessarily the same complexity of 
update operations (compare Alternative 1 and 
Alternative 3). Also, in most cases the number of sites 
involved (if the number of update operations > 1) is 
more than 1. 

ii)  Applying strategy ii) alone, each processor will be 
given approximately the same complexity of update 
operations. The number of update operations is not 
important as long as each processor is given 
approximately the same workload. But again only 
sometimes the derived subtransactions can be executed 
locally.  

 
 

Table 6: Estimation of the complexity of the transaction and subtransactions, the number of update operations and the number of sites involved – 2 
processors 

S Transaction/ 
subtransaction 

TC n 
Worst case1 Best case2 Moderate case3 

Hire 7.5 5 5 1 2 
Strategy i)  
Alternative 1 
Alternative 2 
Alternative 3 

ST1 
5 

4.5 
2 

ST2 
2.5 
3 

5.5 

ST1 
3 
3 
2 

ST2 
2 
2 
3 

ST1
3 
3 
2 

ST2 
2 
2 
3 

ST1
1 
1 
1 

ST2
1 
1 
1 

ST1
2 
2 
1 

ST2 
2 
2 
1 

Strategy ii) 
Alternative 4 
Alternative 5 
Alternative 6 

ST1 
3.5 
4 
4 

ST2 
4 

3.5 
3.5 

ST1 
2 
3 
2 

ST2 
3 
2 
3 

ST1
2 
3 
2 

ST2 
3 
2 
3 

ST1
1 
1 
1 

ST2
1 
1 
1 

ST1
1 
2 
1 

ST2 
2 
1 
2 

Strategy iii) 
Alternative 7 

ST1 
2 

ST2 
5.5 

ST1 
2 

ST2 
3 

 
- 

 
- 

 
- 

 
- 

ST1
1 

ST2 
1 

 Note:  1 where each relation is allocated at different sites of the network 
 2 where each site of the network has a copy of all the relations 

3 where Person, Company and Offering are allocated at site 1 and Placement, Application and Job at site 2   
 

 
iii) Applying strategy iii) alone, each subtransaction can 

be executed locally but not necessarily  that  each  
processor  will be  given the same complexity of 
update operations (the same workload) (refer to 
Alternative 7). 
Therefore, the best strategy will be to combine the 

above three strategies, where each subtransaction can be 
executed locally and each processor is given 
approximately the same complexity and the same 
number of update operations. Based on the results 
presented in Table 1, it is clear that executing the 
subtransactions by several processors can reduce the 
execution time as each processor will be given TC/m 
complexity of the transaction where m is the number of 
processors available. Also each processor will handle 
approximately n/m number of update operations instead 
of m update operations. Apart from that, for the case of 
distributed database we can always minimize the number 
of sites involved in executing the subtransactions and 

therefore reduce the amount of data transferred across the 
network. Below is the algorithm which applies the above 
strategies to generate subtransactions: 
 
INPUT:  transaction TI 
OUTPUT:  subtransactions, STi 
 
Let Uj(R) denotes the relation R as specified in the update 
operation Uj and Sk(R) denotes the site Sk where R is located 
BEGIN 

FOR each update operation, Uj, in TI  DO 
IF Uj(R) ∩ Sk(R) ≠ {}, THEN STk  Uj(R)  

FOR each STm and STn where m ≠ n DO 
BEGIN 

Let OP = STm ∩ STn 
STm = STm – OP 
 
STn = STn – OP 

IF OP = {} THEN exit() 
IF OP = {op} THEN 
BEGIN 

Calculate TC for STm, TC(STm) 
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Calculate TC for STn, TC(STn) 
IF TC(STm) > TC(STn) THEN STn = STn ∪ {op}  
ELSE STm = STm ∪ {op}   

END 
IF OP ={op1, op2, …, opj}, THEN  
BEGIN 

  Calculate TC for OP, TC(OP) 
    ATC = TC(OP)/2 

Get CW(op1) 
TempTC = CW(op1) 
TempST = {op1} 
FOR i = 2 to j DO 
BEGIN 
 Get CW(opi) 
 TempTC = TempTC + CW(opi) 

IF TempTC > ATC THEN exit() 
TempST = TempST ∪ {opi} 

END  
STm = STm ∪ TempST 

 STn = STn ∪ {OP – TempST} 
END 

END 
END 
 
6. Conclusion 
 

Designing efficient, safe and reliable transactions is 
a difficult task. This paper presents technique that can 
improve and produce efficient transaction by detecting 
the relationships between the operations in the 
transaction. Redundant and subsumed operations will be 
detected and removed from the transaction. Also, 
dependent operations are converted into equivalent 
independent operations. Since the independent 
operations can be executed in arbitrary order, therefore 
the transaction can be divided into several smaller 
transactions (subtransactions). Several strategies to split 
a transaction into subtransactions have been presented in 
this paper. These strategies are based on the number of 
independent operations, the complexity of the 
independent operations and the physical location of the 
relations which are involved in the transaction. 
Executing the subtransactions by several processors can 
reduce the execution time.  
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