
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

321

Rules and Strategies for Generating Efficient Independent
Subtransactions

Hamidah Ibrahim

Department of Computer Science, Faculty of Computer Science and Information Technology,
Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Summary
A transaction is a collection of operations that performs a single
logical function in a database application. Each transaction is a
unit of both atomicity and consistency. Thus, transactions are
required not to violate any database consistency constraints. In
most cases, the update operations in a transaction are executed
sequentially. The effect of a single operation in a transaction
potentially may be changed by another operation in the same
transaction. This implies that the sequential execution sometimes
does some redundant work. It is the transaction designer’s
responsibility to define properly the various transactions so that it
preserves the consistency of the database. In the literature, three
types of fault have been identified in transactions, namely:
inefficient, unsafe and unreliable. In this paper, we present the
strategies that can be applied to generate subtransactions to exploit
parallelism. In our work, we have identified five types of
relationship which can occur in a transaction. They are:
redundancy, subsumption, dependent, partly dependent and
independent. By analysing these relationships, the transaction can
be improved and inefficient transactions can be avoided.
Furthermore, generating subtransactions and executing them in
parallel can reduce the execution time.
Key words:
Transaction, Subtransactions, Parallel Processing

1. Introduction

A transaction is a logical unit of work on the database. It
may be an entire program, a part of a program or a single
command, and it may involve any number of operations on
the database. A transaction should always transform the
database from one consistent state to another, although we
accept that consistency may be violated while the
transaction is in progress [2, 4]. To satisfy this goal, a
transaction should have the four (ACID) properties,
namely: atomicity, consistency, isolation, and durability.
 [10] has identified three types of fault commonly found
in transactions. These faults are (i) inefficient – transactions
that contain either redundant components which incur
unnecessary execution costs, or construct which can be
replaced by others which are semantically equivalent but
cheaper, (ii) unsafe – transactions do not preserve the
consistency of the database, and (iii) unreliable –
transactions may behave in such a way that their results

either are not what the designer have in mind or do not
conform to the real world events modeled by the transaction.
 One particular problem in many advanced applications,
is the need to support long-lasting transactions. The length
of duration of a long-lasting transaction may cause serious
performance problems if it is allowed to lock resources
until it commits. This may either force other transactions to
wait for resources for an unacceptable long time, or it may
increase the likelihood of transaction abort. Aborting a
long-lasting transaction may have a negative effect on both
response time and throughput. If the long transaction has a
flat structure, a failure will cause the whole transaction to
be undone and possibly reexecuted. This is a very
expensive recovery strategy, especially if the failure
occurred after executing most of the transaction.
Decomposing the transaction into a number of
subtransactions is one way of dealing with these problems
[6].
 Although many researchers have investigated the
process of decomposing transactions into several
subtransactions to increase the performance of the system,
but the focus of the research is typically on implementing a
decomposition supplied by the database application
developer, without really focusing on the decomposition
process itself. Examples are [1, 5] and [8]. While [7] and
[9] concentrate on techniques to decompose a transaction
into several subtransactions.
 [5] has proposed a technique to map an object model to
a commercial relational database system using replication
and view materialisation and argued that update operations
become more complex due to the added redundancy in the
mapping of the large classification structures. In order to
speed them up, they exploit intra-transaction parallelism by
breaking the updates into shorter relational operations.
These are executed as ordinary independent parallel
transactions on the relational storage server.
 [8] has proposed an algorithm which is capable of
generating the finest chopping of a set of transactions but
his algorithm rely on the following assumptions: (i) a user
has access only to user-level tools and (ii) a user knows the
set of transactions that may run during certain interval.
 [1] presents an approach to improve database
performance by combining parallelism of multiple

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

322

independent transactions and parallelism of multiple
subtransactions within a transaction without really focusing
on the decomposition process.
 [9] introduced the notion of semantic histories which
not only list the sequence of steps forming the history, but
also convey information regarding the state of the database
before and after execution of each step in the history. They
have identified several properties which semantic histories
must satisfy to show that a particular decomposition
correctly models the original collection of transaction. [9]
also argued that the interleaving of the steps of a transaction
must be constrained so as to avoid inconsistencies and
proposed additional preconditions on the auxiliary variables.
Although auxiliary variables facilitate analysis, it is
expensive to implement them. Also performing additional
precondition checks involves extra run time overhead. To
avoid implementing auxiliary variables and performing
additional precondition checks, they introduce the concept
of successors sets, but the successor set descriptions are
obtained by examining the preconditions with auxiliary
variables.
 [7] has proposed a technique for partitioning
transaction to reduce the overhead of checking integrity
constraints. He has proved that every order dependent
transaction can be transformed into equivalent order
independent transactions. But in his work he only shows the
transformation rules for update operations with the
following sequences (i) insert followed by delete (ii) delete
followed by insert and (iii) insert followed by change. Also,
his technique is not capable of handling complex
transaction with update operations such as the if construct.
 In our research we focus on what constitutes a
desirable decomposition and how the developer should
obtain such a decomposition. We propose a technique that
can be applied to generate subtransactions which will
reduce the execution time by exploiting the possibility of
executing the transaction in parallel. Our technique differs
from the other techniques proposed by other researchers
since (i) the number of subtransactions and the set of update
operations derived by our technique are not fix; it depends
on several factors as highlighted in Section 4; (ii) it does
not require additional precondition checks as in [9]; (iii)
most of the previous works only consider transaction with
simple update operations such as [7] and [9]; and (iv) most
of the previous works assume that the transaction is
efficient without exploring the possibility that an optimized
transaction can be obtained by eliminating any redundant or
subsumed operation that may occur in the transaction.
Therefore, we focus on deriving efficient transactions, i.e.
transactions that are free from containing redundant and
subsumed components that can incur unnecessary execution
cost. This is achieved by applying a set of rules to a given
transaction which in most cases is an order dependent or
partly order dependent transaction. We have also enhanced
the work by [7] by introducing complete rules for mapping

dependent or partly dependent transaction into transaction
where its single updates can be executed in arbitrary order.
As a result an equivalent order independent transaction is
generated. Here, equivalent means that the state produce by
executing the initial transaction (order dependent or partly
order dependent transaction) is the same as executing its
order independent transaction. An order independent
transaction has an important advantage of its update
statements being executed in parallel without considering
their relative execution orders as stated in [7].

This paper is organized as follows. In Section 2, the
basic definitions, notations and examples which are used in
the rest of the paper are set out. In Section 3, we present the
rules that can be applied to eliminate redundant and
subsumed constructs as well as to transform order
dependent or partly order dependent transaction into order
independent transaction. Also, the steps to transform a
given transaction into an optimized independent transaction
are presented. Section 4 presents several strategies that can
be adopted to generate subtransactions to be executed in
parallel. In Section 5, we analyze the generated
subtransactions and we compare them to their respective
initial transactions. Conclusions are presented in the final
Section, 6.

2. Preliminaries

Our approach has been developed in the context of
relational databases, which can be regarded as consisting of
two distinct parts, namely: an intensional part and an
extensional part. A database is described by a database
schema, D, which consists of a finite set of relation schemas,
<R1,R2,…,Rm>. A relation schema is denoted by
R(A1,A2,…,An) where R is the name of the relation
(predicate) with n-arity and Ai’s are the attributes of R. A
database instance is a collection of instances for its relation
schemas.
 A database transaction is one or a sequence of update
operations that constitutes some well-defined activity of the
enterprise of which the database is model. It is a logical unit
of work in the sense that its effect on the database is either
committed (i.e. the effects are made permanent) when it is
processed successfully in its entirety, or else undone (as if
the transaction never executed at all). In our work, only
single and conditional operations are considered. Single
operations include insertion, deletion and modification.
These operations have the following form:
• ins(R(c1,c2,…,cn)) – inserting a tuple into relation R with

values c1,c2,…,cn,
• del(R(x,…)) – deleting a tuple from relation R with

primary key value x,
• del(R(…,<delexp>,…)) – deleting a set of tuples from

relation R which satisfy delexp,
• mod(R(x,c1,…,cn):R(x,cn1,…,cnn)) – updating a tuple of

relation R whose primary key value is x, and

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

323

• mod(R(…,<modexp>,…):R(…,cn,cn+1,…)) – updating a
set of tuples of relation R which satisfy modexp,

where ci represents any constant, x is the key of relation R,
and both delexp and modexp are constants or simple
expressions. Conditional operation (control structure) has
the following format: if C then O1 else O2 where C is a
database state referring to relations and O1 and O2 are
update operations. The operational interpretation of the
above construct is: if C is true then executes O1 else
executes O2.

The structure of database transactions adopted by us is
composed of two sections, namely: the parameter section
and the transaction body as shown below:
 Transaction Transaction_Name (Parameter)
 Begin
 Transaction Body;
 End
Parameter contains parameters used by the operations in a
transaction while the transaction body consists of one or
more of the update mechanisms as discussed above.
Throughout this paper the same example Job Agency
database is used, as given in Figure 1. The example is taken
from [10].

Person(pid,pname,placed); Company(cid,cname,totsal);
Job(jid,jdescr); Placement(pid,cid,jid,sal);
Application(pid,jid); Offering(cid,jid,no_of_places)

Transaction Hire(hiree,comp,jb,sal)
Begin
 modify p in person where p.pid=hiree by [placed=true];
 if all o in offering where o.cid=comp and
o.jid=jb:o.no_of_places=1 then delete o
 else modify o by [no_of_places=no_of_places-1];
 insert [hiree,comp,jb,sal] into placement;
 delete p from application where p.pid=hiree;
 modify c in company where c.cid=comp by [totsal=totsal+sal];
End

Fig. 1 The Job Agency schema and the Hire transaction.

The transaction given in Figure 1 can be rewritten as
follows:

1: Transaction Hire(hiree,comp,jb,sal)
2: Begin
3: mod(Person(hiree,_,false):Person(hiree,_,true));
4: if Offering(comp,jb,1) then del(Offering(comp,jb,1))
 else mod(Offering(comp,jb,no_of_places):
 Offering(comp,jb,no_of_places–1));
5: ins(Placement(hiree,comp,jb,sal));
6: del(Application(hiree,_));
7: mod(Company(comp,_,totsal):
 Company(comp,_,totsal+sal));
8: End
Note: The symbol ‘_‘ indicates that the value of the
column is not necessary.

Fig. 2 The Hire transaction using our constructs.

3. Deriving Independent Transaction

In most cases, the update operations in a transaction are
executed sequentially. The effect of a single operation in a
transaction potentially may be changed by another
operation in the same transaction. This implies that the
sequential execution sometimes does some redundant work
[7]. For example the transaction T1 below is equivalent to
T2 since they produce the same database states. This
occurs when there are at least two single updates which
conflict with each other. Here two update operations are
said to conflict if they operate on the same data item [7].
Therefore it is important to syntactically and semantically
analysed the given transaction to identify the relationship
among the operations in the transaction before it is being
partitioned into subtransactions. This section focuses on the
steps of generating an optimized independent transaction.
The independent transaction will be the input to the next
phase (presented in Section 4) to generate subtransactions
so that parallelism can be exploited.
 Transaction T1(h,c,j,s,n,t1,t2)
 Begin
 ins(Placement(h,c,j,s));
 mod(Company(c,n,t1):(c,n,t2));
 del(Placement(h,c,j,s));
 End
 Transaction T2(c,n,t1,t2)
 Begin
 mod(Company(c,n,t1):(c,n,t2));
 End

We have identified five types of relationship between
operations of a transaction based on the information
presented in the operations, i.e. the types of update
operations, the relations involved and the values specified
in the operations. These relationships are presented below:

A transaction T with n operations
op1R1(A1),op2R2(A2),…,opnRn(An) is said to be redundant,
TR, if there exists at least an operation that occurs more than
once in the same transaction. This operation should be
eliminated if there are no other operations which change the
state of the relation that is involved in the redundant
operation.

Definition 1: An operation opiRi(Ai) is said to be
redundant if there exists at least an operation opjRj(Aj)
where opi = opj ∈ {ins, del, mod}, Ri = Rj and Ai = Aj. If
opi = opj, Ri = Rj and Ai = Aj, then the transaction T
contains duplicate operations and therefore redundancy
occurs.

Table 1 represents the redundancy rules that can be
applied to derive transaction with redundancy being
eliminated.
Transaction T3(h,c,j,s)
Begin
 del(Placement(h,c,j,s));
 mod(Placement(h,c,j,s):

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

324

 (h,c,j,s+100));
End

The above transaction T3 contains redundant operation and
since there are no other operations between the redundant
operations which change the state of Placement, therefore
the second operation mod(Placement(h,c,j,s):(h,c,j,s+100))
can be removed from the transaction. This is because the
modify operation is no longer required as the tuple to be
modified does not exist in the relation Placement. Here,
redundancy rule 5 of Table 1 is applied. Consider the
following example,
Transaction T4(t)
Begin
mod(Company(_,_,t<0):
 (_,_,t=0));
del(Company(_,_,t<0));

End
Applying redundancy rule 16 of Table 1 will generate the
following order independent transaction, T4’.
Transaction T4’(t)
Begin
mod(Company(_,_,t<0):
 (_,_,t=0));

End
The above del(Company(_,_,t<0)) operation is removed
from transaction T4 since there is no tuple in the relation
Company that will satisfy the condition t<0 as these tuples
have been modified by the operation
mod(Company(_,_,t<0):(_,_,t=0)).

Table 1: Rules for eliminating redundant updates

Rule Redundant updates Equivalent non-
redundant updates

1. del(R(T));mod(R(T):(S)); del(R(T))
2. del(R(t1,…));mod(R(T):(S)); del(R(t1,…))
3. del(R(T));mod(R(t1,…):(S)); del(R(T)
4. del(R(t1,…));

mod(R(t1,…):(S));
del(R(t1,…))

5. del(R(T));mod(R(T):(t1,S)); del(R(T))
6. del(R(t1,…));

mod(R(T):(t1,S));
del(R(t1,…))

7. del(R(T));
mod(R(t1,…):(t1,S));

del(R(T))

8. del(R(t1,…));
mod(R(t1,…):(t1,S));

del(R(t1,…))

9. del(R(…,ti,…));
mod(R(…,ti,…):(…,sj,…));

del(R(…,ti,…))

10. mod(R(T):(S)); del(R(T)); mod(R(T):(S))
11. mod(R(t1,…):(S));del(R(T)); mod(R(t1,…):(S))
12. mod(R(t1,…):(S));

del(R(t1,…));
mod(R(t1,…):(S))

13. mod(R(T):(S));del(R(t1,…)); mod(R(T):(S))
14. mod(R(T):(t1,S));del(R(T)); mod(R(T):(t1,S))
15. mod(R(t1,…):(t1,S));

del(R(T));
mod(R(t1,…):
 (t1,S)

16. mod(R(…,ti,…):(…,sj,…));
del(R(…,ti,…));

mod(R(…,ti,…):
(…,sj,…));

Note for Table 1, 2, 3 and 4: T (S, respectively) is a tuple in the form of
<t1,t2,…,tn> (<s1,s2,…,sm>, respectively); S and T are different data items;
R(t1,S) is a tuple in the form of <t1,s2,…,sm>; ti,… (sj, respectively) ≡
where condition ti (sj, respectively) is true; t1 ∈ T and t1 is the primary key
value.

A transaction T with n operations

op1R1(A1),op2R2(A2),…,opnRn(An) is said to be subsumed,
TS, if there exists at least an operation whose effect is the
same as performing another operation in the same
transaction. Similar to redundant operation, this operation
should be eliminated if there are no other operations which
change the state of the relation that is involved in the
operation.

Definition 2: An operation opiRi(Ai) is said to be
subsumed when there exists at least an operation opjRj(Aj)
where opi = opj ∈ {ins, del, mod}, Ri = Rj and Ai ⊂ Aj. If
opi = opj, Ri = Rj and Ai ⊂ Aj, this indicates that performing
opjRj(Aj) will also perform opiRi(Ai).
Transaction T5(j)
Begin
mod(Placement(_,_,_,1000):
 (_,_,_,2000));
mod(Placement(_,_,j,1000):
 (_,_,_,2000));

End
The above mod(Placement(_,_,j,1000):(_,_,_,2000))
operation is subsumed by
mod(Placement(_,_,_,1000):(_,_,_,2000)) since performing
mod(Placement(_,_,_,1000):(_,_,_,2000)) will also modify
the tuple <_,_,j,1000> of Placement. Therefore
mod(Placement(_,_,j,1000):(_,_,_,2000)) should be
removed from the transaction.

Given a transaction T with update operations
op1R1(A1),op2R2(A2),…,opnRn(An), T is order dependent,
TD, if and only if the execution of the transaction following
the serialibility order as in the transaction produce an output
which will be different than the output produced by
interchanging the operations in the transaction. A
transaction T is order dependent if and only if T contains at
least two conflicting update operations. A transaction T is
partly order dependent, TPD, if and only if T contains at
least two partly conflicting updates operations. Two update
operations are said to partly conflict if one of the update
operation is operating on a data item which is part of a set
of data items operate by the other update operation.
Otherwise T is order independent, TI.

Definition 3: An operation opiRi(Ai) is said to be
dependent on operation opjRj(Aj) if and only if opi ≠ opj, Ri
= Rj, Ai = Aj and satisfy the conditions in Table 2.

Definition 4: An operation opiRi(Ai) is said to be partly
dependent on operation opjRj(Aj) if and only if opi ≠ opj, Ri
= Rj, Ai ⊂ Aj and satisfy the conditions in Table 3.

Definition 5: An operation opiRi(Ai) is said to be
independent if and only if for all operations in transaction T,
opjRj(Aj) where j = 1,…,n and j ≠ i, (i) opi ≠ opj and Ri ≠ Rj

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

325

or (ii) opi = opj and Ri ≠ Rj or (iii) opi = opj, Ri = Rj and Ai
≠ Aj.

As dependent/partly dependent operations occur only
when the relations in both operations are the same therefore
(i) and (ii) above are proved. Also, dependent/partly
dependent operations require that both type of operations
are different, therefore (iii) is also proved.

Transaction T6(h,c,j,s)
Begin
 ins(Placement(h,c,j,s));
 del(Placement(h,c,j,s));
End
Transaction T7(hiree,h,c,j,s)
Begin

 ins(Placement(h,c,j,s));
 del(Application(hiree,_));

End
Transaction T6 is order dependent while T7 is order
independent. An order independent transaction has an
important advantage of its update statements being
executed in parallel without considering their relative
execution orders. With an order independent transaction we
can consider its single updates in an arbitrary order. As
proved in [7], every order dependent transaction can be
transformed into equivalent order independent transaction.
But this is not true as discuss at the end of this section.

Tables 2 and 3 present the rules to convert dependent
and partly dependent operations (conflicting and partly
conflicting updates) into equivalent independent operations
(non-conflicting updates). In the following we will show
through examples how the rules that we have presented can
be applied to generate order independent transaction given
an order dependent or partly order dependent transaction.
Transaction T8(p,n)
Begin

 ins(Person(p,n,false));
 mod(Person(p,n,false):
 (p,n,true));
 End
Applying rule 6 of Table 2 will generate the following order
independent transaction, T8’.
Transaction T8’(p,n)
Begin
 ins(Person(p,n,true));
End
Transaction T9(t)
Begin
 mod(Company(_,_,t<0):
 (_,_,t=0));
 del(Company(_,_,t=0));
End

Applying rule 5 of Table 3 will generate the following order
independent transaction, T9’.

Transaction T9’(t)
Begin
del(Company(_,_,t<0));
del(Company(_,_,t=0));

 End

Table 2: Rules for eliminating dependent updates
Rule Dependent updates Equivalent

independent
updates

1. ins(R(T));del(R(T)); nothing
2. ins(R(T));del(R(t1,…)); nothing
3. del(R(T));ins(R(T)); nothing
4. ins(R(T));mod(R(T):(S)); ins(R(S))
5. ins(R(T));mod(R(t1,…):(S)); ins(R(S))
6. ins(R(T));mod(R(T):(t1,S)); ins(R(t1,S))
7. ins(R(T));

mod(R(t1,…):(t1,S));
ins(R(t1,S))

8. mod(R(T):(S));ins(R(T)); ins(R(S))
9. mod(R(t1,…):(t1,S));

del(R(t1,…));
del(R(t1,…));

10. mod(R(T):(t1,S));
del(R(t1,…));

del(R(t1,…));

11. del(R(T));mod(R(S):(T)); del(R(S))
12. del(R(T));

mod(R(…,sj,…):(T));
del(R(…,sj,…))

13. mod(R(S):(T));del(R(T)); del(R(S))
14. mod(R(S):(T));del(R(t1,…)); del(R(S))
15. mod(R(…,sj,…):(T));

del(R(t1,…));
del(R(…,sj,…))

16. mod(R(…,sj,…):(T));
del(R(T));

del(R(…,sj,…))

Table 3: Rules for eliminating partly dependent updates

Rule Partly dependent
updates

Equivalent
independent

updates
1. ins(R(T));

del(R(…,ti,…));
del(R(…,ti,…)

2. ins(R(T));
mod(R(…,ti,…):(t1,S));

mod(R(…,ti,…):
 (t1,S));

3. mod(R(S):(T));
del(R(…,ti,…));

del(R(S))
del(R(…,ti,…))

4. mod(R(…,sj,…):(T));
del(R(…,ti,…));

del(R(…,sj,…))
del(R(…,ti,…))

5. mod(R(…,sj,…):
 (…,ti,…));
del(R(…,ti,…));

del(R(…,sj,…))
del(R(…,ti,…))

Transaction
Company_Status(c,n,totsal)
Begin
If Company(c,n,totsal<0)then
 del(Company(c,_,_));
If Placement(_,c,_,_) and
 not Company(c,_,_)
 then ins(Company(c,_,_));

End

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

326

Here, a truth table as shown in Table 4 is derived based on
the truth values of the conditions specified in the if
construct. For each possibility, an equivalent independent
operation is generated.

Table 4: Company_Status transaction rules
Condition

1
Condition

2
Operations Rule

applied:
independent

operations
True True* del(Company(c,_,_))

ins(Company(c,_,_))
Rule 3 of
Table 2:
nothing

True False del(Company(c,_,_)) no changes
False True ins(Company(c,_,_)) no changes
False False nothing nothing

*

 Note that if Condition 1 (Company(c,n,totsal<0)) is true then definitely
Condition 2 (Placement(_,c,_,_) and not Company(c,_,_)) is false.
Identifying contradiction between conditions in the if constructs is not the
focus of this paper.

So far we have shown that given conflicting and partly

conflicting updates (dependent and partly dependent
operations) (i) equivalent independent operations can be
derived; (ii) it is equivalent to not performing at all the
conflicting updates (stated by nothing); or (iii) it is not
possible to perform the updates (as shown by Table 5).
These rules are based on the term conflicting updates which
means that two update operations operate on the same data
item or based on the term partly conflicting updates which
means that one of the update operation is operating on a
data item which is part of a set of data items operate by the
other update operation. Other sequences of update
operations which are syntactically correct but are not
included in the tables since (i) semantically they do not
make sense; (ii) no single equivalent independent operation
can be derived as shown by transaction T10; and (iii) no
equivalent independent operation can be derived as shown
by transaction T11.

Table 5: Rules for eliminating dependent updates
Dependent updates Equivalent independent

updates
mod(R(T):(t1,S));ins(R(T)); nothing

Transaction T10(p,c,j)
Begin
ins(Placement(p,c,j,1000));
mod(Placement(_,_,_,1000):
 (_,_,_,2000));

End
The above transaction T10 is equivalent to the following
transaction T10’ which consists of independent operations.
Transaction T10’(p,c,j)
Begin
 ins(Placement(p,c,j,2000));
 mod(Placement(_,_,_,1000):
 (_,_,_,2000));

End

Consider the following example,
Transaction T11(t)
Begin
 del(Company(_,_,t<0));
 mod(Company(_,_,t=0):
 (_,_,t<0));
End

No equivalent order independent transaction can be derived
for the above transaction T11.

Having discussed the above definitions, the steps to
derive an independent transaction, TI are as follows:

INPUT: transaction T
OUTPUT: TI
BEGIN

Apply Definition 1 to T,
 if T is TR then T’ = TR – redundant operations
 else T’ = T.
Apply Definition 2 to T’,
 if T’ is Ts then T’ = Ts – subsumed operations.
Apply Definition 3 to T’,
 if T’ is TD then
 T’ = apply the dependent rules to TD.
Apply Definition 4 to T’,
 if T’ is TPD then
 T’ = apply the partly dependent rules to TPD.
TI = T’

END

4. Strategies for Deriving Subtransactions

Once the relationships among the operations have been
detected and the transaction has been optimised (eliminate
redundancy, subsumption and convert dependent or partly
dependent operations to independent operations), the next
step is to group the operations (independent) in the
transaction into several groups or subtransactions. Here,
several strategies can be applied so that each processor will
be given the same number/complexity of operations. We
assume that each processor has the same capability (speed).
i) Number of independent operations – in general if there
are m processors and n number of independent operations,
then each processor will be given approximately n/m
operations if n ≥ m and 1 operation if n < m (not all
processors will involve in processing the transaction). Then
assigning the update operations to the processors will be
based on: any n/m operations to the first processor, then any
n/m operations from the balance of operations to the second
processor and so on. The number of ways each processor is
given the set of update operations is given by the following
equation:

⎥
⎦

⎤
⎢
⎣

⎡
−

×
+−

−∏ −

= iprinr

irnrrn

i

1
)!)1((!

!/

0
 (1)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

327

where n is the number of update operations, p is the number
of available processors and r = n/p. Equation (1) is for case
where r is an integer value.

Example: If a transaction, T, consists of 4 update
operations denoted as 1, 2, 3, 4 and there are 2 processors
then there are 3 possible number of ways each processor is
given the set of update operations. These alternatives are
shown below:

Alternative A: {1, 2}, {3, 4}
Alternative B: {1, 3}, {2, 4}
Alternative C: {1, 4}, {2, 3}
The following table shows some of the possible

number of alternatives, a, that can be generated given the
various numbers of update operations, n, and processors, p.

n 4 6 6 8 8 9 10 10
p 2 2 3 2 4 3 2 5
a 3 10 15 35 105 280 126 945

This strategy is easy to implement and although each
processor is given approximately the same number of
update operations but not necessarily that each processor
will execute the same complexity of update operations. To
generate all possible alternatives and later choose the best
alternative is time consuming. This is because the number
of possible alternatives increases as the number of update
operations and the number of available processors increase.

Example: Referring to the example given in Figure 2,
if there are two processors, then each processor will be
given approximately 5/2 operations. The transaction can be
split as follows (note: other alternatives are also possible).
 Alternative 1: ST1{3, 6, 7} and ST2{4, 5}
 Alternative 2: ST1{3, 4, 5} and ST2{6, 7}
 Alternative 3: ST1{5, 6} and ST2{3, 4, 7}
For simplicity purposes we have simplify the presentation
of the transaction. Here STi is the name of the
subtransaction and the numbers in the set represent the
operations as in Figure 2.
ii) Complexity of independent operations – although
strategy i) will allocate on average the same number of
independent operations to all processors, but the actual
workload each processor will perform might be different
due to the complexity of the operations. For this, we
proposed complexity weight to be given to each operation
based on its complexity, as follows:

 Complexity weight (CW)
(a) Modify multiple tuples 4
(b) Delete multiple tuples 3
(c) Modify single tuple 2
(d) Insert/Delete single tuple 1
(e) Control structure (if construct) is the average of
performing the operations specified in it.
The total complexity for a transaction, TC = ∑i=1

n CW(opi)
where n is the number of independent operations (op).

Based on the total complexity, each processor will be given
a number of operations with total complexity of TC/m
where m is the number of processors.

This strategy is easy to implement and each processor
is given approximately the same complexity of update
operations and therefore the time spend to execute a
subtransaction by each processor is more or less the same.
Although each processor might be given different number
of update operations but this is not a critical factor that
influences the performance of the parallel system.

Example: Referring to the example given in Figure 2,
the total complexity, TC, is 7.5. If there are two processors,
then each processor will be given a set of operations with
total complexity of 7.5/2 = 3.7 (approximately 4). The
transaction can be split as follows:
 Alternative 4: ST1{3, 4} and ST2{5, 6, 7}
 Alternative 5: ST1{3, 5, 6} and ST2{4, 7}
 Alternative 6: ST1{3, 7} and ST2{4, 5, 6}
Note that each subtransaction has the total complexity of
3.5 or 4.
iii) The location of the relation (for case of distributed
database) – this also plays an important factor to decide
how to decompose a transaction. Subtransactions can be
derived based on the relations involved in the transactions.
Those relations that are allocated at the same site and are
specified in the transaction can be grouped in the same
subtransaction. This is to minimise data transfer across the
network.

Example: Assuming that Person, Company and
Offering are allocated at site 1 and Placement, Application
and Job at site 2 then the transaction can be split as follows:
 Alternative 7: ST1{5, 6} and ST2{3, 4, 7}
Note that ST1 (ST2, respectively) can be executed locally at
site 1 (2, respectively).

This strategy focuses on a way to reduce the amount of
data transferred across the network which is important in a
distributed database. Each processor is not necessarily
given the same number and complexity of update
operations. The above strategies can be integrated, for
example if each operation has the same complexity then the
first strategy can be applied.

5. Evaluation

In this section, we will compare the initial transaction
against the subtransactions that are derived using different
strategies as presented in Section 4. Our discussion will be
based on the following parameters which can indirectly
represent the performance of the system during the
execution of the transactions/subtransactions. These
parameters are:
i) TC provides an estimate of the total complexity of the

transaction/subtransaction, which is related to the type
of update operations. This measurement indirectly
indicates the workload a processor is given, i.e. the

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

328

more complex the update operation the more time is
required by the processor to execute the operation. It is
based on the formula given in Section 4.

ii) n is the number of update operations (independent
operations) in a transaction/subtransaction.

iii) S provides a rough measurement of the amount of
nonlocal access necessary to perform the update
operations. This is measured by analyzing the number
of sites that might be involved in executing the
transaction/subtransaction.
Table 6 summarises the estimation of the complexity,

the number of update operations and the number of sites
involved during the execution of Transaction Hire and its
subtransactions that are derived using different strategies as
presented in Section 4. Referring to Table 1, we can
conclude that:

i) Applying strategy i) alone, each processor will be
given approximately the same number of update
operations but not necessarily the same complexity of
update operations (compare Alternative 1 and
Alternative 3). Also, in most cases the number of sites
involved (if the number of update operations > 1) is
more than 1.

ii) Applying strategy ii) alone, each processor will be
given approximately the same complexity of update
operations. The number of update operations is not
important as long as each processor is given
approximately the same workload. But again only
sometimes the derived subtransactions can be executed
locally.

Table 6: Estimation of the complexity of the transaction and subtransactions, the number of update operations and the number of sites involved – 2
processors

S Transaction/
subtransaction

TC n
Worst case1 Best case2 Moderate case3

Hire 7.5 5 5 1 2
Strategy i)
Alternative 1
Alternative 2
Alternative 3

ST1
5

4.5
2

ST2
2.5
3

5.5

ST1
3
3
2

ST2
2
2
3

ST1
3
3
2

ST2
2
2
3

ST1
1
1
1

ST2
1
1
1

ST1
2
2
1

ST2
2
2
1

Strategy ii)
Alternative 4
Alternative 5
Alternative 6

ST1
3.5
4
4

ST2
4

3.5
3.5

ST1
2
3
2

ST2
3
2
3

ST1
2
3
2

ST2
3
2
3

ST1
1
1
1

ST2
1
1
1

ST1
1
2
1

ST2
2
1
2

Strategy iii)
Alternative 7

ST1
2

ST2
5.5

ST1
2

ST2
3

-

-

-

-

ST1
1

ST2
1

 Note: 1 where each relation is allocated at different sites of the network
 2 where each site of the network has a copy of all the relations

3 where Person, Company and Offering are allocated at site 1 and Placement, Application and Job at site 2

iii) Applying strategy iii) alone, each subtransaction can

be executed locally but not necessarily that each
processor will be given the same complexity of
update operations (the same workload) (refer to
Alternative 7).
Therefore, the best strategy will be to combine the

above three strategies, where each subtransaction can be
executed locally and each processor is given
approximately the same complexity and the same
number of update operations. Based on the results
presented in Table 1, it is clear that executing the
subtransactions by several processors can reduce the
execution time as each processor will be given TC/m
complexity of the transaction where m is the number of
processors available. Also each processor will handle
approximately n/m number of update operations instead
of m update operations. Apart from that, for the case of
distributed database we can always minimize the number
of sites involved in executing the subtransactions and

therefore reduce the amount of data transferred across the
network. Below is the algorithm which applies the above
strategies to generate subtransactions:

INPUT: transaction TI
OUTPUT: subtransactions, STi

Let Uj(R) denotes the relation R as specified in the update
operation Uj and Sk(R) denotes the site Sk where R is located
BEGIN

FOR each update operation, Uj, in TI DO
IF Uj(R) ∩ Sk(R) ≠ {}, THEN STk Uj(R)

FOR each STm and STn where m ≠ n DO
BEGIN

Let OP = STm ∩ STn
STm = STm – OP

STn = STn – OP

IF OP = {} THEN exit()
IF OP = {op} THEN
BEGIN

Calculate TC for STm, TC(STm)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 2007

329

Calculate TC for STn, TC(STn)
IF TC(STm) > TC(STn) THEN STn = STn ∪ {op}
ELSE STm = STm ∪ {op}

END
IF OP ={op1, op2, …, opj}, THEN
BEGIN

 Calculate TC for OP, TC(OP)
 ATC = TC(OP)/2

Get CW(op1)
TempTC = CW(op1)
TempST = {op1}
FOR i = 2 to j DO
BEGIN
 Get CW(opi)
 TempTC = TempTC + CW(opi)

IF TempTC > ATC THEN exit()
TempST = TempST ∪ {opi}

END
STm = STm ∪ TempST

 STn = STn ∪ {OP – TempST}
END

END
END

6. Conclusion

Designing efficient, safe and reliable transactions is
a difficult task. This paper presents technique that can
improve and produce efficient transaction by detecting
the relationships between the operations in the
transaction. Redundant and subsumed operations will be
detected and removed from the transaction. Also,
dependent operations are converted into equivalent
independent operations. Since the independent
operations can be executed in arbitrary order, therefore
the transaction can be divided into several smaller
transactions (subtransactions). Several strategies to split
a transaction into subtransactions have been presented in
this paper. These strategies are based on the number of
independent operations, the complexity of the
independent operations and the physical location of the
relations which are involved in the transaction.
Executing the subtransactions by several processors can
reduce the execution time.

References
[1] Christof, H. and Gerhard, W. “Inter- and Intra-Transaction

Parallelism in Database Systems”, Proceedings of the 14th
Speedup Workshop on Parallel and Vector Computing,
Zurich (Switzerland), 1993.

[2] Connolly, T.M. and Begg, C.E. “Database Systems: A
Practical Approach to Design”, Implementation and
Management, Addison-Wesley, 2002.

[3] Ibrahim, H. “Rules for Deriving Efficient Independent
Transaction”, Proceedings of the 2nd IEEE International
Conference on Information & Communication
Technologies: from Theory to Applications (ICTTA’06),
Damascus (Syria), 24-28 April 2006, pages 1061-1066.

[4] Ibrahim, H. “Extending Transactions with Integrity Rules
for Maintaining Database Integrity”, Proceedings of
International Conference on Information and Knowledge
Engineering (IKE’02), Edited by Hamid R. Arabnia,
Youngsong Mun and Bhanu Prasad, Computer Science
Research, Education and Application Tech. (CSREA)
Press, Las Vegas (USA), 24-27 June 2002, pages 341-347.

[5] Michael, R., Moira, C. N., and Hans-Jorg, S. “Intra-
Transaction Parallelism in the Mapping of an Object
Model to a Relational Multi-Processor System”,
Proceedings of the 22nd Very Large Databases (VLDB)
Conference, Bombay (India), 1996, pages 1-12.

[6] Open Distributed Systems (ODS) Group. “A Reader in
Transaction Processing”,
http://www.cs.uit.no/forskning/ODS/ODSProjects/adtrans/
ReaderTrans.html.

[7] Sang, H.L., Lawrence J.H., Myoung, H.K., and Yoon-Joon
L. “Enforcement of Integrity Constraints against
Transactions with Transition Axioms”, 16th. Annual
International Computer Software and Applications, 1992,
pages 162-167.

[8] Shasha, D., Llirbat, F., Simon, E., and Valduriez, P.
“Transaction Chopping: Algorithms and Performances
Studies”, Journal of ACM Transaction Database Systems,
Vol. 20, No. 3, 1995, pages 325-363.

[9] Sushil, J., Indrakshi, R., and Paul, “A. Implementing
Semantic-Based Decomposition of Transactions”, CAiSE
1997, 1997, pages 75-88.

[10] Wang, X.Y. “The Development of a Knowledge-Based
Transaction Design Assistant”, PhD Thesis, Department
of Computing Mathematics, University of Wales College
of Cardiff, Cardiff (UK), 1992.

* This work was supported by the Malaysian Ministry of
Science, Technology and Innovation (MOSTI) under
grant number 04-02-04-0797 EA001.

Hamidah Ibrahim is currently an
associate professor at the Faculty of
Computer Science and Information
Technology, Universiti Putra Malaysia.
She obtained her PhD in computer
science from the University of Wales
Cardiff, UK in 1998. Her current
research interests include databases,

transaction processing, and knowledge-based systems.

