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Summary 
A class of security-critical applications with the 
requirements of timing constraints, such as wireless 
stock trading, power network scheduling, real-time 
traffic information management, etc., demand the 
support of mobile distributed real-time database 
systems. For the class of applications, mobile 
distributed real-time database systems must 
simultaneously satisfy two requirements in 
guaranteeing data security and minimizing the 
missing deadlines ratio of transactions. Multilevel 
secure database systems based on mandatory access 
control can prevent direct unlawful information flows 
between transactions. However, they can’t be free 
from illegal information transfers between 
transactions belonging to different clearance levels 
by means of the concurrency control mechanism. 
This paper presents a secure hybrid optimistic real-
time concurrency control protocol (SHORTCCP) for 
mobile distributed real-time database systems. The 
SHORTCCP not only fully considers the intrinsic 
limitations of mobile environments and the 
requirements of timing constraints of real-time 
transactions, but also makes an effective tradeoff 
between security and real-time performance by 
introducing secure influence factor and real-time 
influence factor. The experimental results show the 
SHORTCCP achieves data security without 
degrading real-time performance significantly. 
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1. Introduction 
 

From A class of security-critical applications with the 
requirements of timing constraints, such as wireless 
stock trading, power network scheduling, real-time 
traffic information management, etc., demand the 
support of mobile distributed real-time database 
systems. A mobile distributed real-time database 
system (MDRTDBS) is, in general, defined as a 
distributed real-time database system supported by a 
mobile environment. For MDRTDBSs, transactions 
and data can have timing characteristics or explicit 
timing constraints. The timing constraints of 
transactions are typically specified in the form of 
deadlines that require a transaction to be completed 
by a specified time. For soft real-time transactions, 
failure to meet a deadline can cause the results to lose 
their value, and for firm or hard real-time transactions, 
a result produced too late may be useless or harmful, 
so concurrency control and schedule strategies 
suitable for MDRTDBSs must priorly ensure the 
transactions with urgent deadlines. In a MDRTDBS, 
transactions are given priorities that are used when 
scheduling transactions and resolving data conflicts, 
and the priority assigned to a transaction is directly 
related to the deadline of the transaction. For instance, 
transactions are assigned priorities that are directly 
proportional to their deadlines in Earliest Deadline 
First (EDF) [1]. That is, the transaction with the 
nearest deadline gets the highest priority. Owing to 
the intrinsic limitations of mobile environments, such 
as mobility, frequent disconnection and limited 
bandwidth, it will became more difficult to meet 
transaction deadlines in a mobile environment.  
 

MDRTDBSs are usually applied to the safety-
critical applications. For these applications, besides 
the demand for meeting transaction deadlines, it is 
essential to prevent unlawful information flows 
between different transactions. The traditional real-
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time concurrency control protocols for single-site as 
well as (mobile) distributed real-time database 
systems, e.g., [2, 3, 4, 5, 6, 7, 8, 9,10, 11] mainly 
focus on minimizing the ratio of transactions missing 
their deadlines, and don’t consider the possible covert 
communications between transactions by means of 
the concurrency control mechanism. On the other 
hand, most secure database systems don’t take 
account of the timing constraints of transactions and 
data, so can’t guarantee the real-time performance. 
As a result, the researches on the secure real-time 
concurrency control protocols suitable for 
MDRTDBSs, which achieve data security without 
sacrificing real-time performance significantly, have 
very important significations. 

Some secure real-time concurrency control 
protocols for single site real-time database systems 
have been presented [112, 13, 14, 15, 16, 17, 18, 19], 
but these protocols hardly consider the intrinsic 
limitations of mobile distributed environments, and 
can’t make a suitable tradeoff between data security 
and real-time requirements (usually emphasizing one 
hand and softening up the other hand).  

This paper presents a secure hybrid optimistic 
real-time concurrency protocol (SHORTCC) for 
MDRTDBSs. The SHORTCC combines optimistic 
concurrency control with two-Phase Locking High 
Priority (2PLHP) in mobile distributed real-time 
transaction processing, and makes a suitable tradeoff 
between guaranteeing data security and minimizing 
the missing deadlines ratio of transactions by 
introducing secure influence factor and real-time 
influence factor. 
 
2.  Concurrency Control Covert Channel 
 

Most secure database systems have access 
control mechanisms based on the Bell-LaPadula 
model, which is specified in terms of subjects and 
objects [20]. An object is a data item, whereas a 
subject is an active process, such as a transaction, 
which requests access to an object. Each object in the 
system has a classification level based the security 
requirement. Similarly, each subject has a 
corresponding clearance level based on the degree to 
which it is trusted by the system. The Bell-LaPadula 
access restrictions (“read below” and “write above”) 
can prevent direct unlawful information flows 
between transactions belonging to different clearance 

levels. However, it is not sufficient to prevent indirect 
unlawful information flows, called as concurrency 
control covert channel by us, in which transactions 
can conspire for an illegal inter-level information 
transfer by means of the concurrency control 
mechanism. For example, if a low clearance level 
transaction T1 requests access to a data item 
exclusively, which has already been held by a high 
clearance level transaction T2, T1 will be delay. The 
presence or absence of the delay can be used to 
encode information by T2 that is conspiring to pass on 
information to T1. 

A secure real-time concurrency control protocol 
must be able to avoid the concurrency control covert 
channel. However, the existing real-time concurrency 
control protocols such as 2PLHP [1], Priority Ceiling 
(PC) [2], OPT-SACRIFICE [3], etc., can’t avoid the 
concurrency control covert channel. Only when a low 
clearance level transaction is blocked (delayed) by 
high clearance level transactions, can the concurrency 
control covert channel be caused, so the concurrency 
control covert channels caused by data conflicts of 
concurrent transactions can be prevented by 
improving the existing real-time concurrency control 
protocols according to the following strategy: when 
inter-level data conflict, which occurs between 
transactions belonging to different clearance levels, 
happens, the low clearance level transaction is given 
preference in the conflict resolution. In terms of the 
above strategy, low clearance level transactions can’t 
know the presence of high clearance level 
transactions, i.e., no concurrency control covert 
channel. However, this may influence the real-time 
performance and result in increasing the deadline 
miss ratio. For example, when a low clearance level 
transaction which has a low priority applies a data 
item held by a high clearance level transaction which 
has a high priority, according to the improved 
strategy the high clearance level transaction will be 
aborted to let the low clearance level transaction get 
the data resource. Thus, the high priority transaction 
is aborted by the low priority transaction, i.e. priority 
inversion is caused. Obviously, the improved strategy 
guarantees data security at the cost of sacrificing the 
real-time performance, and can’t simultaneously meet 
two requirements in guaranteeing data security and 
minimizing the missing deadlines ratio of 
transactions. 
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3. Concurrency Control Covert Channel 

 
A typical MDRTDBS consists of the mobile 

hosts (MHs), the fixed hosts (FHs), the location 
server (LS), the mobile support base stations (MSSs), 
high speed fixed network and mobile network. The 
FHs, LS and MSSs are connected by high speed 
fixed network. Each FH and MSS has a database 
server that manages the relevant database. The LS is 
responsible for managing and tracking the status and 
current location of each MH. The mobile network is 
assumed to be a radio cellular network and the entire 
service area is divided into a number of connected 
cell sites. Each MSS has a wireless communication 
interface and serves a cell site, which covers a 
definite geographical area in which MHs can 
communicate with the MSS. All database servers 
form a distributed real-time database system together 
to support the global mobile real-time transaction 
processing. Each MH transparently accesses the 
distributed database located at the fixed network via 
the MSS whose cell site covers the MH. Each 
database server has autonomy of site and supports the 
local transaction processing. In this paper, we call FH 
and MSS uniformly as FDS (fixed database server). 

A mobile distributed real-time transaction 
(MDRTT) is initiated by an MH and submitted to the 
MSS whose cell site covers the initiating MH. 
Usually, there are two ways by which an MH may 
submit its MDRTT to the MSS: 1) the entire MDRTT 
is submitted in a single request message to the MSS. 
The MSS, which acts as the coordinator, has the 
control of the execution of the MDRTT. This way 
adapts to non-interactive MDRTT and 2) The entire 
MDRTT is submitted in multi-request message to the 
MSS. A request message submits only one operation 
of the MDRTT to the MSS. The MSS handles this 
request in the fixed network and returns the result to 
the MH. This way adapts to interactive MDRTT. 

 
In our MDRTT processing model, the both ways 

above are supported. In the following of the paper, 
we mainly take the second way as an example. 

An MDRTT initiated by an MH is firstly 
preprocessed by the MH to extract the operations ST0 
executed at the MH, to establish the operations 
requests of the (MDRTT − ST0) based on the order of 
execution, and then orderly to submit these 
operations requests to the corresponding MSSs. In 

MDRTDBS, like conventional distributed database 
systems, a coordinator is required to manage the 
commitment of the MDRTT. Due to the mobility of 
an MH, the MH may suffer handoffs during the 
process of submitting the operations requests, so the 
processing of an MDRTT may involve several MSSs. 
An MDRTT begins with the operation of BEGIN TID 
and ends with the operation of COMMIT or ABORT, 
where TID represents the identification of the 
MDRTT. When an MSS receives the operation of 
BEGIN TID, it stores TID in its transaction queue and 
broadcasts the message of (TID, MNA). Here, MNA 
stands for the network address of the MSS. Other 
MSSs received this message store the message in 
their Route Table (ROT). The MSS received the 
operation of BEGIN TID is designated as the 
coordinator of the relevant MDRTT, notated by 
Co(MDRTT).  

When the coordinator of an MDRTT receives a 
data operation, if possible for it to perform this 
operation, or dispatches the operation to some FDS 
(participator) based on a scheduling strategy if 
impossible for it to perform this operation or for the 
sake of optimization. Once the related FDS 
(coordinator or participator) receives the operation 
request from the coordinator, it creates a real-time 
subtransaction (agent) for the operation request. All 
the real-time subtransactions on an FDS form the 
local transactions set processed and controlled by the 
relevant database server. 

 
Definition 1. An MDRTT is defined as the set 

of real-time subtransactions composing the MDRTT, 
i.e., MDRTT= {STi | STi is a real-time subtransaction 
composing the MDRTT, i = 0, 1, 2, …, m-1}, where 
m denotes the number of real-time subtransactions 
composing the MDRTT; ST0 denotes the real-time 
subtransaction executed at the MH which initiates the 
MDRTT; STi (i ≠ 0) denotes the real-time 
subtransactions dispatched and executed at the 
corresponding FDS; STi is defined as a 3-tuple: 
STi ::= (Oi , Ci , <i ), where  Oi denotes the operation 
set of STi which includes object operations, 
transaction operations and communication primitives; 
Ci denotes the timing constraints of STi which is 
usually denoted by the deadline of MDRTT; <i 
denotes the temporal ordering relation of Oi . 
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4. Secure  Hybrid Optimistic Real-time 
Concurrency Control Protocol 

4.1 Secure Influence Factor and Real-time 
Influence Factor 

In our secure hybrid optimistic real-time 
concurrency control protocol (SHORTCC), secure 
influence factor and real-time influence factor are 
defined to describe respectively the severity degrees, 
which violate security constraints and timing 
constraints. In the below, we use CL(T) to denote the 
clearance level of the transaction T, P(T) to denote 
the priority of T, ST to denote the set of transaction in 
the system. 

 

Definition 2. ∀ Ti, Tj ∈ST, if exist a pair of 
conflict operations which belong to Ti and Tj 
respectively, Ti and Tj are defined as a pair of conflict 
transactions, notated by (Ti CF Tj). 

 
Definition 3. Suppose Ti ∈  ST, ST1 ⊆  ST. If 

the condition, ∀Tj ∈  ST1 (Ti CF Tj ), is met, ST1 is 
said to be the Conflict Set of Ti, notated by CS(Ti). 

 
Definition 4. Suppose Ti ∈  ST, ST2 ⊆  ST. If 

the condition, ( ∀ Tj ∈  ST2 (Ti CF Tj )) ∧ ( ∀  Tj 
∈( ST− ST2) (¬  (Ti CF Tj ))), is met, ST2 is defined 
as the Maximal Conflict Set of Ti , notated by 
MCS(Ti). 

 
Definition 5. We define | f (CL(Ti))− f (CL(Tj)) | 

as Clearance Difference Degree of between Ti and Tj, 
notated by CDD(Ti, Tj). Where f is a mapping from 
the set of different clearance levels to the set of 
natural number. 

 
Definition 6. We define |P(Ti) − P(Tj)| as 

Priority Difference Degree of between Ti and Tj, 
notated by PDD(Ti, Tj). 

 
Definition 7. Suppose Ti ∈  ST, MCS1(Ti) ⊆  

MCS(Ti). If the condition, (∀ Tj∈MCS1(Ti) (CL(Tj) 
> CL(Ti)))∧ (∀ Tj∈ ( MCS(Ti) − MCS1(Ti)) (CL(Tj) 
≤  CL(Ti))), is met, MCS1(Ti) is defined as the High 
Clearance Maximal Conflict Set of Ti , notated by 
HCMCS(Ti). 

 

Definition 8. Suppose Ti ∈  ST, MCS2(Ti) ⊆  
MCS(Ti). If the condition, (∀ Tj∈  MCS2(Ti) (P(Tj) < 
P(Ti))) ∧ (∀  Tj∈ ( MCS(Ti) − MCS2(Ti)) (P(Tj) ≥  
P(Ti))), is met, MCS2(Ti) is defined as the Low 
Priority Maximal Conflict Set of Ti, notated by 
LPMCS(Ti). 

 
Definition 9. We define ∑

∈HCMCS(Ti) Tj

( | f 

(CL(Ti))− f (CL(Tj)) | ) as Secure Influence Factor of 
Ti, notated by SIF(Ti). 

SIF(Ti) reflects the severity degrees of violating 
the security constraints caused by making Ti wait in 
the conflict resolution. 

 
Definition 10. We define ∑

∈LPMCS(Ti) Tj

( | P(Ti)− 

P(Tj) | ) as Real-time Influence Factor of Ti, notated 
by RIF(Ti). 

RIF(Ti) reflects the severity degrees of violating 
the timing constraints caused by aborting Ti in the 
conflict resolution. 

 

4.2  Introduction of Similarity 

Similarity is closely related to the important idea 
of imprecise computation in real-time systmes and to 
the idea of partial computation for database [10]. For 
many real-time applications, the value of a data 
object that models an entity in the real world cannot, 
in general, be perfectly precise reflection of the 
corresponding entity by reason of the delay of 
sampling the real world and writing the sampling 
value into databases. Therefore, instantaneous 
inconsistencies in limit range are usually permitted 
for real-time database systems, and the instantaneous 
inconsistencies can be recover by the update of the 
next sampling values. Obviously, The traditional 
conflict serializability criterion is too stringent for 
MDRTDBSs. Thus, we relax serializability criterion 
in our SHORTCC by introducing data similarity and 
operation similarity. 

 
Definition 11. For data object D, suppose V1(D) 

and V2(D) are two values of D. If the distance 
between V1(D) and V2(D), notated by DIS (V1(D), 
V2(D)), meets the condition: 
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DIS (V1(D), V2(D)) ≤  σ  
 

V1 (D) and V2 (D) are said to be similar, notated by 
V1(D) ≈ V2(D), where σ  is threshold value that 
depends on the application semantics, and 
 

DIS (V1(D),V2(D)) = |g(V1(D)) – g(V2(D))| 
where g is a mapping from the domain of D to the 
real number space. 
 

Definition 12. Suppose that OPi and OPj are two 
operations of concurrent transactions Ti and Tj on the 
same data object D, respectively. If VOPi(D) ≈ 
VOPj(D), then operations OPi  and  OPj  are said to be 
similar, notated by OPi≈OPj, where VOPi (D) and 
VOPj (D) are the values of D produced by the OPi  and  
OPj, respectively. 

 
Definition 13. Assume that the operations OP1, 

OP2 ,…, OPn of concurrency transactions T1, T2, … , 
Tn act on the same data object D, and VOP1 (D), VOP2 
(D), …, VOpn (D) are respectively the values of D that 
are produced by the operations OP1, OP2 ,…, OPn . If 
the following conditions is met: 

 
∀VOpi (D), VOPj (D)∈{VOP1 (D), VOP2 (D), …, VOpn 
(D) }, DIS (VOPi (D), VOPj (D)) < σ  
we define that the operation set {OP1, OP2, …, OPn } 
is similar. 
 

Definition 14. Let SDi and SDj be two different 
states of the database DB, if the following condition 
is held: 

 
∀ D∈DB ( ∃ Vi(D)∈ SDi, Vj(D)∈ SDj (Vi(D)≈
Vj(D))) 
 
then SDi and SDj are referred to as similar, notated 
by SDi≈SDj，where Vi(D) and Vj(D) are the values 
of D in SDi and SDj, respectively. 
 

Definition 15. Let SCHa be any schedule for a 
transaction set ST = {T1, T2, …, Tn} and SDa be the 
states of the database produced by SCHa. Iff 

∃ SCHb  (SDa ≈  SDb ) 
 

hold, SCHa is defined as a similar serializable 
schedule (we also say SCHa to meet similarity 
serializability), where SCHb is any serial schedule for 

ST and SDb is the database state produced by SCHb. 

4.3  Concurrency Control Protocol 

Similar to the traditional real-time optimistic 
concurrency control protocols, the SHORTCC also 
classifies the executing process of an MDRTT into 
three phases: read phase, validation phase and write 
phase. The differences from the traditional real-time 
optimistic concurrency control protocols are the 
SHORTCC adopts the locking mechanism and 
meanwhile incorporates the security check 
mechanism at the validation. 

During the read phase, all the subtransactions of 
an MDRTT called as optimistic subtransactions are 
distributed and optimistically executed on their 
participators FDSs, respectively. Once entering the 
validation phase, each of these FDSs triggers a base 
transaction for replacing the optimistic subtransaction, 
validating consistency, guaranteeing security 
constraints and committing the data locally. 

An optimistic subtransaction OPST is a 5- tuple: 
OPST ::= (PID, TID, SO, DS, TC), where PID 
denotes the identifier of its MDRTT; TID represents 
the identifier of the subtransaction; SO denotes the 
sequence of the operations of the subtransaction; DS 
denotes the data set to be accessed by the 
subtransaction; TC denotes the timing constraints of 
its MDRTT. 

For a write operation, an OPST just write a new 
value into its Write Set (WS), instead of update the 
database. For a read operation, the OPST reads the 
data required first from its WS and then from the 
database if the data required has not been in the WS, 
and records the value of data object into Read Set 
(RS). 

During the execution of an OPST, the MH may 
be disconnected from any MSS and thus the 
coordinator will fall into waiting without result. 
Further, the other OPSTs of this MDRTT will also fall 
into waiting state. In order to avoid this situation to 
occur, when the coordinator is in waiting state, it 
sends a message of detecting network link state to the 
MH every other regular time interval. If the 
coordinator makes sure that the MH has been in 
disconnection or the MDRTT has expired its deadline, 
it broadcasts a message to abort the MDRTT. After 
the corresponding participators receive the abort 
message, they abort the corresponding OPSTs 
immediately. 
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Definition 16. Let OPSTi be an optimistic 
subtransaction, the corresponding base transaction be 
BTi and ROS be the Read Operation Set of OPSTi 
and BTi. Let RDSo represent the data object set read 
by OPSTi, and RDSb represent the data object set 
read by BTi. Let RDo (r) denote the data objects read 
by the read operation r of OPSTi, and RDb(r) denote 
the data objects read by the read operation r of BTi. 
We say that there exists a Conflict of Read Set (CRS) 
if one of the following conditions is true: 

(1) RDSo≠ RDSb 

(2) (∃ r∈ROS)∧¬(Vo(RDo (r))≈ Vb(RDb(r))) 
where Vo(RDo (r) represents the values of the data 
objects read by the read operation r of OPSTi, and 
Vb(RDb(r) represents the values of the data objects 
read by the read operation r of BTi. 

Once all of OPSTi (1 ≤  i ≤m) of an MDRTT 
have finished, the MDRTT enters validation stage 
and two-phase commit protocol is adopted. The 
coordinator firstly sends a message of PREPARE to 
all the participators, and after receiving the message, 
every participator triggers the relevant base 
transaction BTi. The BTi inherits the priority of the 
corresponding MDRTT. For the all BTi on the same 
FDS, the two-phase locking high priority based on 
similarity combined with security check (2PLHP-2S 
for short) is adopted to control their concurrent 
executions, detect CRS and guarantee data security. 
For 2PLHP-2S, we design the following locks: R 
lock (read lock), X lock (write lock), and S lock 
(similarity lock) which includes SR (similarity read 
lock) and SW (similarity write lock). The lock 
compatibility matrix is shown in Table 1.  

 
Table 1. Compatibility Matrix of Lack 

Holding 
Requesting R X SR SW

R Y N Y N 
X N N N N 

SR Y Y Y Y 
SW Y Y Y Y 

 
R locks, X locks and S locks are designed for 

base transactions at validation stage. When a base 
transaction executes read operation or write operation 
on certain data object D, it has to first apply for an R 
lock or X lock on D. If CCM (concurrency control 
manager) detects no operation conflict, it grants the 

base transaction the corresponding lock; or else if the 
conflict operations are similar, CCM grants the 
transaction the corresponding SR lock or SX lock. 

 
Only when a low clearance level transaction is 

blocked by a high clearance level transaction, can the 
concurrency control covert channel be caused, so we 
give the following rules about how to decide for 
blocking or aborting the validating transaction at 
validation phase. In the following descriptions, Ti 
denotes the validating transaction; BT(Ti) denotes Ti 
is blocked; AT(Ti) denotes Ti is aborted; ω  denotes 
the weight of satisfying security constraints and (1–
ω ) denotes the weight of satisfying timing 
constraints. The value of ω can be adjusted 
dynamically according to the requirements of 
applications. 

Rule 1. If the condition ((∃Tj∈MCS(Ti) (P(Ti) 
< P(Tj)) ∧ ( ∃ Tj ∈ MCS(Ti) (C(Ti) < C(Tj))) 
∧ (ω × SIF(Ti) ≥  (1–ω )×RIF(Ti))) holds, AT(Ti). 

 
Rule 2. If the condition ((∃Tj∈MCS(Ti) (P(Ti) 

< P(Tj)) ∧ ( ∃ Tj ∈ MCS(Ti) (C(Ti) < C(Tj))) 
∧ (ω × SIF(Ti) < (1–ω )×RIF(Ti))) holds, BT(Ti). 

 
Let BTS denote the set of base transactions at a 

FDS, Ti ∈  BTS and MCS(Ti) ={ Ti, 1 ,Ti, 2 , …, Ti, m}. 
Suppose that Ti is requesting a lock on data object D, 
and each Ti, k (k=1,2,…, m) has held the lock on data 
object D. OP(Ti) denotes the Ti’s operation of 
requesting the lock on D and OP(Ti, k) denotes the Ti, 

k’s operation of holding the lock on D. We use PCS(Ti) 
to denote the operation set conflicting with OP(Ti), 
i.e. PCS(Ti) = { OP(Ti, 1),…, OP(Ti, m)}. The 2PLHP-
2S may be described as follows: 

 
IF  (P(Ti) ≥  max (P(Ti, k)))  // k=1, 2 ,..., m 

{ 
    IF ( ∀ OP(Ti, k) ∈  PCS(Ti) ( OP(Ti, k) ≈  

OP(Ti))) 
       Ti obtains the S lock that Ti is requesting; 
    ELSE 
       Ti obtains the corresponding lock (R lock or X 

    lock), and Ti, k is terminated. If Ti, k is a base 
transaction of an MDRTT, the abort 
message is sent to the coordinator of the 
MDRTT and the coordinator decides to 
terminate the MDRTT permanently or to 
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restart the MDRTT according to its 
deadline; 

     } 
  ELSE 

{ 
      IF ( ∀ OP(Ti, k) ∈  PCS(Ti) ( OP(Ti, k) ≈  
OP(Ti))) 
         Ti obtains the S lock that Ti is requesting; 
      ELSE 
       { 

IF (ω × SIF(Ti) ≥  (1–ω )×RIF(Ti)) 
         Abort Ti and send the abort message to the 

coordinator;  
     ELSE 
         Block Ti; 
    } 

} 
 
During a base transaction execution, for every 

read operation, the MRTM (mobile real-time 
transaction manager) validates if any CRS has been 
happened. If a CRS is detected, the MRTM aborts the 
base transaction and sends a message “Non-OK” to 
the coordinator. After receiving the message, the 
coordinator decides to abort the corresponding 
MDRTT and broadcasts the decision to all the related 
participators of the MDRTT, and then releases the 
corresponding system resources. After aborting an 
MDRTT, the MRTM may decide to restart it if 
possible, instead of permanently terminating it. If a 
base transaction passes the validation, the 
corresponding participator sends a message “OK” to 
the coordinator. After receiving an “OK” from all the 
participators, the coordinator sends a message of 
Global Commit to all the participators. When a 
participator receives the message of Global Commit, 
the corresponding base transaction finishes the write 
phase and sends a message of ACK to the coordinator. 

In the below, we prove that the SHORTCC can 
guarantee a schedule to meet similarity serializability. 
Let SCH be any schedule of a transaction set in the 
system. There exists the following theorem: 

 
Theorem 1. If SCH obeys SHORTCC, SCH is a 

similar serializable schedule. 
Proof: (1) Suppose G = (V, E) is the precedence 

graph of SCH where V = {T1 , T2 ,…, Tn }, E = {(Ti 
→Tj ) | Ti, Tj ∈V, OPi and OPj which belong to Ti 
and Tj respectively are a pair of conflict operations 

and OPi is executed before OPj}. Let G1 = (V, E1) is 
the directed graph that is gotten by throwing away 
the directed edges of G that are caused by conflict 
operations of similarity. Obviously, G1 is acyclic 
according to 2PL (two-phase locking). 

 
(2) Take out a directed edge e from (E - E1) and 

join e into G1. Obviously, e is caused by a pair of 
conflict operations of similarity. Suppose this pair of 
conflict operations are OPk from Tk and OPm from Tm, 
namely e = (Tk  →Tm ). If G1 becomes cyclic, owing 
to OPk ≈ OPm, the database state caused by 
exchanging the executing order of OPk and OPm is 
similar with the original database state. So the ring in 
G1 can be eliminated and thus the similarity of the 
database state is assured. 

 
(3) Repeat step (2), until (E - E1) becomes 

empty. 
 
(4) Through the above steps, we can assure that 

the final G1 is acyclic. Suppose the certain schedule 
corresponding to the final G1 is SCH1. Obviously, 
SCH1 is conflict serializablity. 

(5) Because the database state produced by SCH 
is similar to the database state produced by SCH1, 
SCH is a similar serializable schedule. 

5.  Experiments and Results 

The simulation experiments are based on ARTs-
II, which is a distributed real-time database system 
test bed developed by our lab. We improve ARTs-II 
in order to support mobile distributed real-time 
transactions. In our simulation system, each MH has 
a transaction generator, a transaction manager, a 
message server, a handoff handler and a 
disconnection handler. Each FDS is a local database 
system consisting of a scheduler, a concurrency  

Table 2. Model parameters and their baseline values 

control manager, a message server, a ready queue, a 
block queue and a local database (LDB). The global 
database (GDB) is modeled as a collection of data 
pages that are uniformly distributed across all the 
sites. Transactions make requests for data pages and 
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concurrency control is implemented at page level.  At 
each node, transactions arrive in an independent 
Poisson rate. Each transaction is modeled as a 
sequence of operations. The processing of an 
operation involves use of the CPU and access to data 
items. Transactions are queued in the ready queue for 
CPU. The queuing discipline is earliest deadline first 
(EDF). The deadline of a transaction T is set using 
the following formula: Deadline (T) = AT(T) + Slack 
×  ET(T), where AT(T) is the arrival time of T; Slack 
is the slack time assigned to T, which is a uniformly 
distributed random variable within a specified range; 
ET(T) denotes an estimated execution time of T. The 
baseline setting of the values for parameters is shown 
in Table 2. 

In our experiments, we firstly compare the real-

time performance of our SHORTCC with that of the 
real-time concurrency control protocol DHP2PL (the 
distributed version of HP2PL). Then, we study how 
the different values of ω  (the weight of satisfying 
security constraints) influence data security for 
SHORTCC at fixed arrival rate of transactions. The 
main performance metrics used for the evaluations 
are the ratio of transactions missing their deadlines 
denoted as TMDR, which is defined as the number of 
deadline-missing transactions over the total number 
of transactions generated in the system, and total 
average number of low clearance level transactions 
blocked by high clearance level transaction per 5 
seconds, notated as NLCB. Here, TMDR reflects the 
real-time performance, and NLCB reflects the 
severity degree of violating the security constraints. 
Further, we use HCTMDR to denote the TMDR of 
high clearance level transactions, which is defined as 
the number of deadline-missing low clearance level 
transactions over the total number of transactions 
generated in the system, and LCTMDR to denote the 
TMDR of low clearance level transactions, which is 
defined as the number of deadline-missing high 
clearance level transactions over the total number of 
transactions generated in the system. Here, high 
clearance level includes level 4, level 5 and level 6, 
and low clearance level includes level 1, level 2 and 
level 3. Obviously, there exists the following 
equation: TMDR = HCTMDR + LCTMDR. 

The performance results are shown in Fig.1–
Fig.4. Fig.1 illustrates the ratio of low clearance level 
transactions missing their deadlines (LCTMDR) for 
DHP2PL and SHORTCC at ω =0.5. When arrival 
rate of transactions is below 25, The DHP2PL 
slightly gets an advantage over the SHORTCC. The 
reason is that for SHORTCC, when a low clearance 
level transaction conflicts with a high clearance level 
transaction, the low clearance level transaction is 
usually aborted and restarted in order to be free from 
the concurrency control covert channel. However, 
after an arrival rate of 25, The SHORTCC has an 
advantage over DHP2PL slightly. This can be 
illustrated by that when arrival rate of transactions 
increases, many conflict operations between low 
clearance level transactions and high clearance level 
transactions may be similar, thereby avoiding abort 
and restarting. As shown in Fig.2 (ω =0.5), when 
arrival rate of transactions enhances, HCTMDR of 
both DHP2PL and SHORTCC increase, but the 
performance of SHORTCC obviously gets an 

Paramete
rs 

Baseline 
Values Descriptions 

NMH 10 Number of mobile hosts 
NFH 5 Number of fixed hosts 

NMSS 5 Number of mobile support 
bases 

LDB 200 
pages  Size of LDB at each FDS

PDis 0.05 Probability of disconnect 
PHoff 0.02 Probability of handoff 

TS 
4 to 6 

operation
s 

Transaction size 

Rate [5, 40] Arrival rate of transactions

PU 0.4 Probability of update 
operations 

ThinkTi
me 0 

Time interval which MH 
waits for transmitting the 
next transaction after the 
former has committed 

Slack U [2.0, 
6.0] 

Slack factor which is a 
uniformly distributed 
random variable in the 
range [2.0, 6.0] 

NCL 6 
Number of different 
clearance levels (level 
1~level 6) 

RDCL 1/6 Ratio of different clearance 
level transactions 

PS 0.4 
Similarity probability 
between operations of 
different transactions 
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advantage over DHP2PL. The main reasons are the 
introduction of similarity serializability and high 
clearance level transactions will not be aborted due to 
the concurrency control covert channel. Fig.3 
illustrates the total average number of low clearance 
level transactions blocked by high clearance level 
transaction per 5 seconds (NLCB) for DHP2PL and 
SHORTCC at ω =0.5. Obviously, SHORTCC excels 
DHP2PL prominently in NLCB. From Fig.1- Fig.3, 
we can know that the SHORTCC achieves data 
security without sacrificing real-time performance 
significantly.  
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Fig.1.  LCTMDR comparison for DHP2PL and SHORTCC 
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Fig.2. HCTMDR comparison for DHP2PL and SHORTCC 
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Fig.3. NCLB comparison for DHP2PL and SHORTCC 
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Fig.4. Influence on NCLB of different values ofω  
 

Fig.4 illustrates how ω  influences the NLCB of 
SHORTCC at the fixed arrival rate of transactions 
(25trans/sec). As shown in Fig.4, the NLCB increases 
with the enlargement of ω .   

6. Conclusion 

A secure mobile distributed real-time database 
system has to simultaneously satisfy the two goals of 
guaranteeing data security and minimizing the 
deadline miss ratio for admitted transactions. 
However, these two goals can conflict with each 
other and to achieve one goal is to sacrifice the other. 
This paper presents a secure hybrid optimistic real-
time concurrency protocol (SHORTCC). Unlike the 
traditional optimistic concurrency control protocols, 
the SHORTCC adopts locking mechanism to 
guarantee data consistency and introduces security 
check to achieve data security at the validation phase. 
In order to improve the concurrency, the SHORTCC 
relaxes serializability criterion by introducing data 
similarity and operation similarity. During the 
security check, if exists the possibility of violating 
the security constraints, the decision of blocking or 
aborting the validating transaction is made by 
comparing the total severity degrees of violating the 
security constraints, which are caused by blocking 
the validating transaction, with the total severity 
degrees of violating the timing constraints, which are 
caused by aborting the validating transaction. 
According to the application requirement, the 
SHORTCC can make a suitable tradeoff between 
security and real-time performance by adjusting the 
value of ω  (weight of satisfying security constraints).  
Simulation experiments show that the SHORTCC not 
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only achieves data security, but also guarantees high 
real-time performance and does a favor to meet the 
deadline requirement of transaction in mobile 
environment. 
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