
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007 
 

 
 

1

Manuscript received  April 5, 2007 

Manuscript revised  April 25, 2007 

 
An Algorithm of Two-Phase Learning for Eleman Neural 

Network to Avoid the Local Minima Problem 
 

Zhiqiang Zhang†, Zheng Tang† 
  

†Faculty of Engineering, Toyama University, Toyama-shi, 930-8555 Japan 

Summary 
Eleman Neural Network have been efficient identification tool in 
many areas (classification and prediction fields) since they have 
dynamic memories. However, one of the problems often 
associated with this type of network is the local minima problem 
which usually occurs in the process of the learning. To solve this 
problem and speed up the process of the convergence, we 
propose an improved algorithm which includes two phases, a 
backpropagation phase and a gradient ascent phase. When 
network gets stuck in local minimum, the gradient ascent phase is 
performed in an attempt to fill up the local minimum valley by 
modifying parameter in a gradient ascent direction of the energy 
function. We apply this method to the Boolean Series Prediction 
Questions to demonstrate its validity. The simulation result 
shows that the proposed method can avoid the local minima 
problem and largely accelerate the speed of the convergence and 
get good results for the prediction tasks. 
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1. Introduction 

Eleman Neural Network (ENN) is one type of the partial 
recurrent neural network which more includes Jordan 
neural networks [1-2]. ENN consists of two-layer back 
propagation networks with an additional feedback 
connection from the output of the hidden layer to its input. 
The advantage of this feedback path is that it allows ENN 
to recognize and generate temporal patterns and spatial 
patterns. This means that after training, interrelations 
between the current input and internal states are processed 
to produce the output and to represent the relevant past 
information in the internal states [3-4]. As a result, the 
ENN has been widely used in various fields, from a 
temporal version of the Exclusive-OR function to the 
discovery of syntactic or semantic categories in natural 
language data [1]. 

However, the ENN is a local recurrent network, so 
when learning a problem it needs more hidden neurons in 
its hidden layer and more training time than actually are 
required for a solution by other methods. Furthermore, the 
ENN is less able to find the most appropriate weights for 

hidden neurons and often get into the sub-optimal areas 
because the error gradient is approximated [5]. Therefore, 
having a fair number of neurons to begin with makes it 
more likely that the hidden neurons will start out dividing 
up the input space in useful ways. Since ENN uses back 
propagation (BP) to deal with the various signals, it has 
been approved that it suffers from a sub-optimal solution 
problem [6-10]. Therefore, the same problem would occur 
in the prediction task for the ENN. 

The efficiency of the ENN is limited to low order 
system due to the insufficient memory capacity [11-12]. 
ENN had failed in identifying even second order linear 
systems as reported in the references [1, 6, 13-14], several 
approaches have been suggested in the literature to 
increase the performance of the ENN with simple 
modifications [15-19]. One of the modified methods is 
proposed by Pham and Liu on the idea which adds a 
self-connection weight (fixed between 0.0 and 1.0 before 
the training process) for the context layer. Furthermore, 
two methods about output-input feedback Eleman network 
(a context is added between output layer and input layer) 
and output-hidden feedback Eleman network (a context is 
added between output layer and hidden layer) are the 
classical improvement of the ENN [20]. The two methods 
have largely enhanced the memory capacity of the network 
and got broadly application by adding other contexts unit. 
The suggested modifications on the ENN in the literature 
mostly have been able to improve certain kinds of 
problems, but it is not clear yet which network architecture 
is best suited to dynamic system identification or 
prediction [21]. And at the same time, these methods 
usually change or add some other elements or connections 
in the network and enhance the complexity of the 
computation. However, these improved modifications 
attempt to add other feedback connections factors to the 
model that will increase the capacity of the memory in 
order to overcome the tendency to sink into local minima. 
The random perturbations of the search direction and 
various kinds of stochastic adjustment to the current set of 
weights are largely ineffective at enabling network to 
escape from local minima and make the network fail to 
converge to a global minimum within a reasonable number 
of iterations [22-23]. So the local minimum problem still is 
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a serious problem and usually occurs in various 
applications. 

In this paper, we propose a novel approach to 
supervised learning for multilayer artificial ENN. The 
learning model has two phases－a Backpropagation phase, 
and a gradient ascent phase. The Backpropagation phase 
performs steepest descent on a surface in weight space 
whose height at any point in weight space is equal to an 
error measure, and finds a set of weights minimizing the 
error measure. When the Backpropagation gets stuck in 
local minima, the gradient ascent phase attempts to fill up 
the valley by modifying gain parameters in a gradient 
ascent direction of the error measure. Thus, the two phases 
are repeated until the network gets out of local minima. 
The learning model has been applied into the  Boolean 
Series Prediction Questions (BSPQ) problems including 
"11"," 111" and "00" problems. The proposed algorithm is 
shown to be capable of escaping from local minima and 
get better simulation results than the original ENN and 
improved ENN. Since a three-layered network is capable 
of forming arbitrarily close approximation to any 
continuous nonlinear mapping [24-25], we use three layers 
for all training network. 
 
2. Structure of ENN 
 
Fig. 1 shows the structure of a simple ENN. In Fig. 1, after 
the hidden units are calculated, their values are used to 
compute the output of the network and are also all stored 
as "extra inputs" (called context unit) to be used when the 
next time the network is operated, and the recurrent units 
of the connect layer is same as the units form hidden layer. 
Thus, the recurrent contexts provide a weighted sum of the 
previous values of the hidden units as input to the hidden 
units. As shown in the Fig.1, the activations are copied 
from hidden layer to context layer on a one for one basis, 
with fixed weight of 1.0 (w=1.0). The forward connection 
weight is trainable between hidden units and context units 
as others weights [1]. If self-connections are introduced to 
the context unit, when the values of the self-connections 
weights (a) are fixed between 0.0 and 1.0 (usually 0.5) 
before the training process, it is an improved ENN 
proposed by Pham and Liu [6]. When weights (a) are 0, 
the network is the original ENN. 

Fig. 2 is the internal learning process of the ENN by 
the error back-propagation algorithm. From Fig. 2 we can 
see that training such a network is not straightforward 
since the output of the network depends on the inputs and 
also all previous inputs to the network. So, it should trace 
the previous values according to the recurrent connections. 
One approach used in the machine learning is to operate 
the process by time shown as Fig. 3. 
 

 
Fig. 1. The Structure of the ENN 

 
Fig. 3 shows that a long feed forward network where 

by back propagation is able to calculate the derivatives of 
the error (at each output unit) by unrolling the network to 
the beginning. At the next time step t+1 input is 
represented , here the context units contain values which 
are exactly the hidden unit values at time t ( and the time 
t-1 , t-2 …), thus, these context units provide the network 
with memory [28]. Therefore, the ENN network is 
converted into a dynamical network that is efficient use of 
temporal information in the input sequence, both for 
classification [29-30] as well as for prediction [31-32]. 
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output

Error backpagation

Hidden layer
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Input
 layer
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Context
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Fig. 2. Internal Process Analysis of ENN 

 
Based on Fig. 2 and Fig.3 it is obvious that it is 

identical to the feed-forward network except for the hidden 
units taking inputs consisting of weighted sums of the 
previous values of the hidden units. At a word, ENN is not 
merely a function of its inputs but also computes some 
value of its past values, able to recall it when it is required 
and then it is then used again. However, these 
representations of temporal context need not be literal and 
they represent a memory which is highly task and 
stimulus-dependent [1]. So the algorithm of the network is 
almost same as the back-propagation algorithm except the 
context layers which bring the memory to the network. 
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Fig. 3. Unroll the ENN Through Time 
 

Fig. 4 is a flowchart of the proposed learning 
algorithm. In the flowchart, phase I is the backpropagation 
phase in weight space, and phase II is the gradient ascent 
phase in gain parameter space. 
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No 

End 
 

 
Fig.4 Flowchart of proposed algorithm. 

 
3. Two-Phase Learning Algorithm 
 
3.1 Backpropagation Phase for ENN 
 
Backpropagation ENN learning algorithm and its 
variations are widely used as methods for the syntactic or 
semantic categories in natural language data. The 
Backpropagation algorithm for ENN tries to find a set of 
weights and thresholds that minimizes an overall error 
measure E  

          
0

T
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t

E E
=

= ∑                       (1) 

where p indexes over all the patterns for the training 
set in the time interval [0, T]. In our paper, the time 
element is updated by the next input of the pattern training 
set. So we can get the following equation as following. 
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pE is defined by 
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where k
pjt  is target value (desired output) of the j-th 

component of the output for pattern p and k
pjo  is the j-th 

unit of the actual output pattern produced by the 
presentation of input pattern p in the time k, and j indexes 
over the output units. To get the correct generalization of 
the delta rule, the BP algorithm for ENN set at 
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Where jiw  is the weight connected between unit i 
and unit j. The input of each unit in a layer (except input 
layer) is given by  
 

k k
pj j ji pi ji pi

i i

net w o r uθ= + +∑ ∑          (5) 

where k
pjnet  is the net input to unit j in a layer 

produced by the presentation of pattern p at the time k, jθ  
is a threshold of the unit j and pio  is the output value of 
unit i for pattern p. let jir  represent the forward weights 
from the context layer to the hidden layer, k

piu   is the 
recurrent value from the hidden layer to the context layer, 
but only when k

pjnet  is the net input for the neuron unit in 
the hidden layer, k

piu  will be valid, otherwise, it will be 0. 
The number of the neuron unit in the hidden layer and 
context layer is same for the ENN. 
The output of unit j for pattern p is specified by 

( )k k
pj j pjo f net′=                  (6) 

where f(x) is a semilinear activation function which is 
differentiable and nondecreasing. According to the 
definition of the ENN, the output value of the hidden layer 
at time k-1 is the input value for the context layer at time k, 
so 

1k k
pi pjo o −=                    (7) 

The rule for changing weight (threshold) typically 
used in Backpropagation is given by 

k
p p p j k k

p ji p j p ik
ji p j ji

E E net
w o

w net w
η η ηδ

∂ ∂ ∂
Δ = − = − =

∂ ∂ ∂
    (8) 

where 
p j iwΔ  is the change to be made to jiw  

following presentation of pattern p and η is called the 
learning rate. k

pjδ  is defined as / k
p pjE net−∂ ∂  at time k. 

When unit j is an output unit, then k
pjδ  in the above 

equation is given by 
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( ) ( )k k k k
pj pj pj j pjt o f netδ ′= −              (9) 

And when unit j is a hidden unit, then k
pjδ  is given by 

 ( )k k k
pj j pj pm mj

m
f net o wδ ′= ∑            (10) 

where ( )k
j pjf net′  is the derivative of the activation 

function of unit j, mjw  is the weights between output layer 
and hidden layer. 

But for the weight jir  between context layer and 
hidden layer, the adjustment of the weight is given by 

k
p p pj

p ji k
ji pj ji

E E o
r

r o r
η η
∂ ∂ ∂

Δ = − = −
∂ ∂ ∂

      (11) 

where k
pjo  is the output value of the hidden layer for 

the unit j, and we can get the following equations, 
respectively. 
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where k
pmnet  is the input value of the out layer for 

the unit m, mjw  is the weight between hidden layer and 
output layer for the unit m. 
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(13)                                
where j is the input value of the hidden layer for the 

unit j. So, we can get the final computation equation as 
following 

1( )p k k k
p ji pm mj pj pj

mji

E
r w f net o

r
η η δ −∂

′Δ = − = −
∂ ∑     (14) 

Where mjw  are the weights between the output and 
the hidden layer for the unit j. Thus, the Backpropagation 
rule (referred to as the generalized delta rule) causes each 
iteration to modify weights in such way as to approximate 
the steepest descent. But, if the Backpropagation descends 
into a minimum that achieves insufficient accuracy in the 
functional approximation, it fails to learn. 

To help the network escape from the local minima, 
we add a gradient ascent phase in the gain space. The 
details are described in the next section. First, we must 
consider when a gradient ascent phase should be started. in 
the backpropagation phase, the absolute value of the 
change of the error measure is accumulated for every 50 
corrections. Here, one weight correction corresponded to 
backpropagation modification to weights for all patterns. If 
the accumulation of change of E for the 50 weight 
corrections was less than a very small pre-selected 
constant, in our paper, it is 0.001, and the current error 
measure E was larger than the error criteria (E=0.1 or 
E=0.01, where E was the sum of squares error function for 

the full training set.), the Backpropagation learning (Phase 
I) is considered to be trapped in a local minimum. Then 
the backpropagation phase stops and goes to the gradient 
ascent phase. 

 
3.2Gradient Ascend Phase for ENN 
 
It is known to all that the Backpropagation in weight space 
for ENN may lead to a convergence to either a local 
minimum or a global minimum. However, there is not an 
effective way for the network to reach to global minimum 
from a local minimum. We propose a gradient ascent 
learning method that attempts to fill up a local minimum 
valley by increasing the error measure of a local minimum 
in the best path. Usually, the activation function of unit j, 

jf  is given by a sigmoid function ( )jf x  with the "gain" 

parameter jg . 

1( )
1 jg xf x

e −=
+

               (15) 

The error measure is also a function of the gain 
parameters of neurons. Therefore we can increase 
intentionally the error measure by modifying the gain 
parameters in a gradient ascent direction of the error 
measure in gain parameter space and drive the 
Backpropagation out of the local minimum. We consider 
the gain parameters as variables that can be modified 
during the phase II as weights and thresholds in phase I. 
Here suppose that a vector g corresponds to the gain 
parameters of neurons. Since for the gain vector g, the 
modification requires the change of the gain to be in the 
positive gradient direction, we take: 

( )w
g E gεΔ = ∇

r                (16) 
where ε  is a positive learning rate constant and 

E∇  is the gradient of the error measure E with respect to 
the gain parameter g. If the constant ε  is small enough, 
the change of the gain parameter g results in an increase of 
the error measure (Phase II). The derivative of the error 
measure with respect to the gain parameter g j of neuron j 
can be easily calculated using the chain rule as following 
(here we do not consider the time gene): 

p
p j

j

E
g

g
ε
∂

Δ =
∂

               (17) 

And now let us define jjj netgtne ×=′ , then 
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Finally 
p j

p j p j
j j

E n e t
g

g g
ε εδ
∂

Δ = = −
∂

         (21) 

Here, pjδ  can be computed as the same as 
conventional Backpropagation, for any output unit j, 

( ) ( )pj pj pj j pjt o f netδ ′= −          (22) 
and for the unit that is not an output unit, 

( )pj j pj pm mj
m

f net o wδ ′= ∑             (23) 

We take ( ) (1) /(1 )jg x
jf x e−= +  as activation function, in 

this case: 
( ) (1 )j pj j pj pjf net g o o′ = −           (24) 

Hence for an output layer unit j 
( ) (1 )pj j pj pj pj pjg t o o oδ = − −                (25) 

and for a hidden unit j 
(1 )pj j pj pj pm mj

m
g o o wδ δ= − ∑        (26) 

where mjw  represents the weights between hidden 
layer and output layer  

We can calculate the p jgΔ  through the above δ  
rules alike as the gradient descend phase.  

In Phase II, the absolute value of the change of the 
error measure E is also accumulated for every gain 
correction. If the accumulated value of the error measure E 
is larger than a preselected small constant, for example, 
0.02 in our simulation, go to phase II. 

In order to explain simply how the proposed 
algorithm helps a network escape from a local minimum, 
we use a two-dimensional graph of an error measure of a 
neural network with a local minimum and a global 
minimum, as shown in Fig.5 (a). The horizontal axis 
represents the error produced by the network 
corresponding to some state in weight space on the vertical 
axis (to facilitate understanding, it is expressed in one 
dimension). The initial network defines a point (e.g., point 
A) on the slope of a specific "valley", the bottom of this 
valley (point B) is found by error minimization of the 
Backpropagation in the weight space (Fig.5 (b)). Then the 
error measure is evaluated. If the error measure is less than 
an error criterion, then stop. If connection weights cannot 
be corrected even when the network has larger error values 
than the error criteria, go to phase II. Phase II tends to 
increase the error measure in the gradient ascent direction 
of the gain space. 

    Fig.5 The relationship between error measure and the weight space 

After the gradient ascent phase (Phase II), the error 
measure at point B is raised, and then point B becomes a 
point at the slope of the "valley" in weight landscape again 
(Fig.5 (c)). Then Backpropagation phase seeks a new 
minimum (Point C) in weight landscape (Fig.5 (d)). Thus, 
the repeats of Backpropagation phase in weight space and 
the gradient ascent phase in gain space may result in a 
movement out of a local minimum as shown in Fig.5 (e)(f). 
In this way, phase I and II were repeated until the error 
measure was less than the error criteria, which is assumed 
to be a successful run, oppositely, when the iterative steps 
reach an upper limit of 30000, it was assumed to be an 
unsuccessful run. 
 
4. Simulation 
 

In order to test the effectiveness of the proposed 
method, we compared its performance with those of the 
original ENN algorithm (proposed by Eleman [1]) and 
improved ENN algorithm (proposed by Pham and Liu [6]) 
on a series of BSPQ problems including "11", "111" and 
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"00" problems. To compare them, each algorithm was used 
to train a network on a given problem with identical 
starting weight values and momentum values. In our 
proposed method, when the network was trapped into the 
local minimum, go to Phase II and the gain parameters of 
all neuron in hidden layer were modified to help the 
network escape from the local minimum, which is found to 
be a more effective scheme during the prediction tasks. 

Three aspects of training algorithm performance－
"success rate" ,"iterative" and "training time" were 
assessed for each algorithm. Every method will run 100 
trials. And the iterative steps were two parts which were 
the backpropagation phase and the gradient ascent phase 
for the proposed ENN algorithm. All data of simulations 
were performed out on an PC (Pentium4 2.8GHz, 1G). We 
used the modified back propagation algorithm with 
momentum 0.9. And the learning rate η =1.0 for the 
backpropagation and ε =1.0 for the gradient ascent were 
selected. The weights and thresholds were initialized 
randomly from 0.0 to 1.0 and the gain parameters of all 
neurons were set to 1.0 initially. In this condition, the 
requested error criteria was very high, if the network reach 
to this error criteria point (E=0.1 or E=0.01), all patterns in 
the training set could get a tolerance of 0.05 for each target 
element. And we used the well trained network to do the 
final prediction about sequence P1 to test the prediction 
capacity of it. For all the trials, 150 patterns were provided 
to satisfy the equilibrium of the training set and at the 
same time to ensure that there was enough and reasonable 
running time for all algorithms. 
 
4. 1. "11" questions 
 
Boolean Series Prediction Questions is one of the 
problems about time sequence prediction. First let us see 
the definition of the BSPQ [10]. Now suppose that we 
want to train a network with an input P and targets T as 
defined below. 

P=1  0  1  1  1  0  1  1 
And 

T=0  0  0  1  1  0  0  1 
Here T is defined to be 0, except when two 1's occur 

in P in which case T is 1 and we called this problem as 
"11" problem (one kind of the BSPQ ). Also when "00"or 
"111" (two 0's or three 1's) occurs, it is named as the "00" 
or "111" problem. Firstly, we deal with the "11" question 
and analyze the effect of the memory of the Context layer 
of the network. In this paper we define the prediction set 
P1 randomly as stated in the 20's figures below. 

P1=1  1  1  0  1  0  0  0  1  0  1  1  0  1  
1  1  0  0  1  1 

Firstly, we deal with the "11" question and analyze 
the effect of the memory from the context layer for the 
network. 

Table 1 compared the simulation results of the three 

algorithm, we can see that our proposed method could 
almost 100% succeeded to get the convergent criterion. Of 
course, the original ENN was able to predict the requested 
input test, but the training success rate was slow. Further, it 
succeeded only 75% when E was set to 0.1. And the 
improved ENN has increased the ability of the dynamic 
memorization of the network because of the 
self-connection weights gene (a=0.5). Although improved 
ENN could accelerate the convergent of the learning 
process (iterative was less than original ENN), it could not 
essentially avoid the local minima problems, the success 
rate was only 68%, when error was set 0.01. 

Fig.6 shows the learning characteristics for three 
methods with the same initialization weight for the 
network (1-5-1), when E was set to 0.1. From the 
simulation results we can see that the proposed ENN 
algorithm only needed about 170 iterations to be 
successful, but the original ENN and the improved ENN 
algorithm have not got the goal value and got into local 
minima point A and B, respectively. The improved ENN 
have only accelerated the process of the learning, but it 
could not escape the local minima problem. But our 
proposed ENN algorithm could get the convergent point 
by avoiding the local minima. From the "proposed ENN" 
line we can see that at time k1, after the Backpropagation 
learning about 127 iterative steps, the error measure E 
decreased from 3.12 to 2.22 and got stuck in a local 
mimimum. Then the gradient ascent learning process 
(Phase II) was performed, and error is increased from 2.22 
to 2.24 (k2). Then the Backpropagation learning settled to 
a new local minimum (k3). Backpropagation learning 
escaped from the local minimum and converged to the 
global minimum (k4). 
For the prediction set P1, we can get its corresponding 
expected results with below T1 

T1=0  1  1  0  0  0  0  0  0  0  0  1  0  0  
1  1  0  0  0  1 

Fig. 7 is the simulation prediction result of P1 for the 
"11" question with our proposed ENN algorithm. In the 
Fig. 7, the two lines represented the T1 line and the 
prediction results line respectively. From the Fig. 7 we can 
see that the tolerance of every pattern was less than 
required standard 0.05. So the network has enough ability 
to do the prediction of the given task as desired. 
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Fig.6. Training error curve of the three ENN algorithm 

 
For the same problem, as we gradually increased the 

quantity of the neuron of the hidden layer, the original 
ENN and improved ENN were able to get to the 
convergence point with the finite iterative steps, however, 
our proposed ENN could 100% get to the error criterion by 
avoiding the local minima. The results are shown in Table 
2. 
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0
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1

prediction line
T1 line

 Fig.7. Expected Output T1 and prediction result with Proposed ENN 
 
In order to better testify the effectiveness of the 

proposed algorithm, we continued to increase the quantity 
of neuron unit in the hidden layer. 

From the Table 3, we can see, the proposed method 
could get almost 100% success rate than other two 
algorithms through avoiding the local minima problems, 
although the iterative steps was bigger than the improved 
ENN algorithm sometimes. This is because the network's 
iterative steps were increased because of the gradient 
ascent phase II. 

 
4. 2. "111" and "00" questions 
As we change rules of the input sequence, we can 

continue to testify the valid of our proposed ENN 

algorithm. The specific parameter set of the network was 
same as the "11" questions. 

Table 4 is the specific comparison results from the 
"111" question for the three algorithms. From Table 4 we 
can see that, for the network (1-7-1), the success rate of the 
proposed ENN was lower (only 90% when the error 
criterion was set to 0.01) because of the insufficient 
capacity with less hidden unit nodes. As the unit nodes of 
the hidden was increased, our proposed ENN algorithm 
could almost 100% succeed than original ENN and 
improved ENN algorithms although the iterative step was 
bigger than two methods. The proposed ENN has 
successfully escaped from the local minima problems 
through gradient ascent phase. 

Table 5 is the specific comparison results from the 
"00" question for the three algorithms. From Table 5 we 
can see that, as the complexity of the problem was 
increased, the training time and iterative steps were also 
increased for three algorithms, but our proposed algorithm 
was much more effective on the complicated BSPQ 
problem to avoid the local minima problem. 

Although the BSPQ problem is only a simple 
prediction task for the ENN, the other problems are also 
compatible with our proposed algorithm, such as the 
detection of the wave amplitude [10]. And our algorithm is 
also appropriate to the Jordan network or other partially 
modified recurrent neural networks, such as the network 
proposed by Shi [20]. 

 
5. Conclusion 
In this paper, we proposed a supervised learning method 
for Eleman Neural Network to avoid the local minima 
problem. The approach was shown to be of higher 
convergence to global minimum than the original ENN 
learning algorithm and than the improved ENN algorithm 
in network training. The algorithm has been applied to the 
BSPQ problems including "11", "111"and "00" problems. 
Through the analysis of the result from various Boolean 
Series Predict problems we can see that the proposed 
algorithm is effective at avoiding the local minima 
problems and getting high success rate. Although we only 
applied the algorithm into the basic ENN, we make this 
improvement as a benchmark and take effort to research 
application of the algorithm in the recurrent neural 
network like Jordan network and fully recurrent network. 
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Table 1: Experiment results for the “11” question with 5 neurons in the hidden layer 

Success rate(100 trials) Iterative（average steps） Average CPU time 
(second) Methods(1-5-1 

network)  
E=0.1 E=0.01 E=0.1 E=0.01 E=0.1 E=0.01 

Original ENN 75% 66% 245 320 0.15 0.20 
improved ENN 87% 65% 207 299 0.13 0.18 
propose ENN 100% 100% 320 500 0.21 0.32 

 
Table 2. Experiment results for the “11” question with 7 neurons in the hidden layer 

Success rate(100 trials) Iterative（average） Average CPU time (second) Methods(1-7-1 
network) E=0.1 E=0.01 E=0.1 E=0.01 E=0.1 E=0.01 
Original ENN 89% 78% 375 568 0.22 0.31 
Improved ENN 95% 90% 305 510 0.19 0.26 
Proposed ENN 100% 100% 427 680 0.35 0.61 

 
Table 3. Experiment results for the “11” question with 10 neurons in the hidden layer 

Success rate(100 trials) Iterative（average） Average CPU time (second) Methods(1-10-1 
network) 

E=0.1 E=0.01 E=0.1 E=0.01 E=0.1 E=0.01 

Original ENN 91% 89% 455 789 0.25 0.40 
Improved ENN 95% 91% 395 589 0.20 0.37 
Proposed ENN 100% 98% 578 835 0.36 0.43 

 
  Table 4. Experiment results for the “111” question with different neuron units in the hidden layer 

Success rate(100 
trials) Iterative（average） Average CPU time 

(second) 
structure 

of the 
network 

 
Items 

 
Methods E=0.1 E=0.01 E=0.1 E=0.01 E=0.1 E=0.01 

Original ENN 56% 43% 844 1009 0.52 0.70 
Improved ENN 75% 60% 560 783 0.40 0.50 1-7-1 

network 
Proposed ENN 95% 90% 1009 1550 0.55 0.71 
Original ENN 78% 74% 689 955 0.61 0.68 

Improved ENN 85% 79% 508 611 0.39 0.46 1-10-1 
network 

Proposed ENN 100% 99% 1143 1690 0.62 0.88 
Original ENN 85% 75% 811 1027 0.51 0.71 

Improved ENN 90% 81% 665 749 0.47 0.49 1-12-1 
network 

Proposed ENN 100% 98% 1240 1432 0.66 0.73 
 

Table 5. Experiment results for the “00” question with different neuron units in the hidden layer 
Success rate(100 
trials) Iterative（average） Average CPU time 

(second) 
structure 
of the 
network 

Items 
 

Methods E=0.1 E=0.01 E=0.1 E=0.01 E=0.1 E=0.01 

Original ENN 78% 71% 300 455 0.21 0.35 
Improved ENN 90% 84% 148 250 0.09 0.19 

1-5-1 
network  

Proposed ENN 100% 97% 398 661 0.22 0.37 
Original ENN 85% 81% 458 960 0.28 0.50 

Improved ENN 95% 90% 356 601 0.22 0.39 1-7-1 
network  

Proposed ENN 99% 99% 600 1254 0.40 0.75 
Original ENN 95% 89% 628 1095 0.43 0.6 

Improved ENN 98% 92% 588 901 0.37 0.51 1-10-1 
network 

Proposed ENN 100% 100% 870 1138 0.69 0.85 
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