
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

1

Manuscript received April 5, 2007

Manuscript revised April 25, 2007

An Algorithm of Two-Phase Learning for Eleman Neural

Network to Avoid the Local Minima Problem

Zhiqiang Zhang†, Zheng Tang†

†Faculty of Engineering, Toyama University, Toyama-shi, 930-8555 Japan

Summary
Eleman Neural Network have been efficient identification tool in
many areas (classification and prediction fields) since they have
dynamic memories. However, one of the problems often
associated with this type of network is the local minima problem
which usually occurs in the process of the learning. To solve this
problem and speed up the process of the convergence, we
propose an improved algorithm which includes two phases, a
backpropagation phase and a gradient ascent phase. When
network gets stuck in local minimum, the gradient ascent phase is
performed in an attempt to fill up the local minimum valley by
modifying parameter in a gradient ascent direction of the energy
function. We apply this method to the Boolean Series Prediction
Questions to demonstrate its validity. The simulation result
shows that the proposed method can avoid the local minima
problem and largely accelerate the speed of the convergence and
get good results for the prediction tasks.

Key words:
Eleman Neural Network (ENN), Local Minima Problem, Gain
parameter; Boolean Series Prediction Questions (BSPQ)

1. Introduction

Eleman Neural Network (ENN) is one type of the partial
recurrent neural network which more includes Jordan
neural networks [1-2]. ENN consists of two-layer back
propagation networks with an additional feedback
connection from the output of the hidden layer to its input.
The advantage of this feedback path is that it allows ENN
to recognize and generate temporal patterns and spatial
patterns. This means that after training, interrelations
between the current input and internal states are processed
to produce the output and to represent the relevant past
information in the internal states [3-4]. As a result, the
ENN has been widely used in various fields, from a
temporal version of the Exclusive-OR function to the
discovery of syntactic or semantic categories in natural
language data [1].

However, the ENN is a local recurrent network, so
when learning a problem it needs more hidden neurons in
its hidden layer and more training time than actually are
required for a solution by other methods. Furthermore, the
ENN is less able to find the most appropriate weights for

hidden neurons and often get into the sub-optimal areas
because the error gradient is approximated [5]. Therefore,
having a fair number of neurons to begin with makes it
more likely that the hidden neurons will start out dividing
up the input space in useful ways. Since ENN uses back
propagation (BP) to deal with the various signals, it has
been approved that it suffers from a sub-optimal solution
problem [6-10]. Therefore, the same problem would occur
in the prediction task for the ENN.

The efficiency of the ENN is limited to low order
system due to the insufficient memory capacity [11-12].
ENN had failed in identifying even second order linear
systems as reported in the references [1, 6, 13-14], several
approaches have been suggested in the literature to
increase the performance of the ENN with simple
modifications [15-19]. One of the modified methods is
proposed by Pham and Liu on the idea which adds a
self-connection weight (fixed between 0.0 and 1.0 before
the training process) for the context layer. Furthermore,
two methods about output-input feedback Eleman network
(a context is added between output layer and input layer)
and output-hidden feedback Eleman network (a context is
added between output layer and hidden layer) are the
classical improvement of the ENN [20]. The two methods
have largely enhanced the memory capacity of the network
and got broadly application by adding other contexts unit.
The suggested modifications on the ENN in the literature
mostly have been able to improve certain kinds of
problems, but it is not clear yet which network architecture
is best suited to dynamic system identification or
prediction [21]. And at the same time, these methods
usually change or add some other elements or connections
in the network and enhance the complexity of the
computation. However, these improved modifications
attempt to add other feedback connections factors to the
model that will increase the capacity of the memory in
order to overcome the tendency to sink into local minima.
The random perturbations of the search direction and
various kinds of stochastic adjustment to the current set of
weights are largely ineffective at enabling network to
escape from local minima and make the network fail to
converge to a global minimum within a reasonable number
of iterations [22-23]. So the local minimum problem still is

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

2

a serious problem and usually occurs in various
applications.

In this paper, we propose a novel approach to
supervised learning for multilayer artificial ENN. The
learning model has two phases－a Backpropagation phase,
and a gradient ascent phase. The Backpropagation phase
performs steepest descent on a surface in weight space
whose height at any point in weight space is equal to an
error measure, and finds a set of weights minimizing the
error measure. When the Backpropagation gets stuck in
local minima, the gradient ascent phase attempts to fill up
the valley by modifying gain parameters in a gradient
ascent direction of the error measure. Thus, the two phases
are repeated until the network gets out of local minima.
The learning model has been applied into the Boolean
Series Prediction Questions (BSPQ) problems including
"11"," 111" and "00" problems. The proposed algorithm is
shown to be capable of escaping from local minima and
get better simulation results than the original ENN and
improved ENN. Since a three-layered network is capable
of forming arbitrarily close approximation to any
continuous nonlinear mapping [24-25], we use three layers
for all training network.

2. Structure of ENN

Fig. 1 shows the structure of a simple ENN. In Fig. 1, after
the hidden units are calculated, their values are used to
compute the output of the network and are also all stored
as "extra inputs" (called context unit) to be used when the
next time the network is operated, and the recurrent units
of the connect layer is same as the units form hidden layer.
Thus, the recurrent contexts provide a weighted sum of the
previous values of the hidden units as input to the hidden
units. As shown in the Fig.1, the activations are copied
from hidden layer to context layer on a one for one basis,
with fixed weight of 1.0 (w=1.0). The forward connection
weight is trainable between hidden units and context units
as others weights [1]. If self-connections are introduced to
the context unit, when the values of the self-connections
weights (a) are fixed between 0.0 and 1.0 (usually 0.5)
before the training process, it is an improved ENN
proposed by Pham and Liu [6]. When weights (a) are 0,
the network is the original ENN.

Fig. 2 is the internal learning process of the ENN by
the error back-propagation algorithm. From Fig. 2 we can
see that training such a network is not straightforward
since the output of the network depends on the inputs and
also all previous inputs to the network. So, it should trace
the previous values according to the recurrent connections.
One approach used in the machine learning is to operate
the process by time shown as Fig. 3.

Fig. 1. The Structure of the ENN

Fig. 3 shows that a long feed forward network where

by back propagation is able to calculate the derivatives of
the error (at each output unit) by unrolling the network to
the beginning. At the next time step t+1 input is
represented , here the context units contain values which
are exactly the hidden unit values at time t (and the time
t-1 , t-2 …), thus, these context units provide the network
with memory [28]. Therefore, the ENN network is
converted into a dynamical network that is efficient use of
temporal information in the input sequence, both for
classification [29-30] as well as for prediction [31-32].

Expected
output

Error backpagation

Hidden layer

Output
 layer

Input
 layer

Context

Context

Information stream
Fig. 2. Internal Process Analysis of ENN

Based on Fig. 2 and Fig.3 it is obvious that it is

identical to the feed-forward network except for the hidden
units taking inputs consisting of weighted sums of the
previous values of the hidden units. At a word, ENN is not
merely a function of its inputs but also computes some
value of its past values, able to recall it when it is required
and then it is then used again. However, these
representations of temporal context need not be literal and
they represent a memory which is highly task and
stimulus-dependent [1]. So the algorithm of the network is
almost same as the back-propagation algorithm except the
context layers which bring the memory to the network.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

3

Hidden unit,time T

Out T

Inputs,time T

Hidden unit,time T-2

Out T-2

Inputs,time T-2

Hidden unit,time T-1

Out T-1

Inputs,time T-1

Context Context Context

M

Fig. 3. Unroll the ENN Through Time

Fig. 4 is a flowchart of the proposed learning
algorithm. In the flowchart, phase I is the backpropagation
phase in weight space, and phase II is the gradient ascent
phase in gain parameter space.

 Begin

Phase I

Backpropagation Phase

Error measure is less

than error criteria

Yes

Phase II

Gradient Ascent Phase

No

End

Fig.4 Flowchart of proposed algorithm.

3. Two-Phase Learning Algorithm

3.1 Backpropagation Phase for ENN

Backpropagation ENN learning algorithm and its
variations are widely used as methods for the syntactic or
semantic categories in natural language data. The
Backpropagation algorithm for ENN tries to find a set of
weights and thresholds that minimizes an overall error
measure E

0

T

p
t

E E
=

= ∑ (1)

where p indexes over all the patterns for the training
set in the time interval [0, T]. In our paper, the time
element is updated by the next input of the pattern training
set. So we can get the following equation as following.

0 1

T P

p p
t p

E E E
= =

= =∑ ∑ (2)

pE is defined by

21 ()
2

k k
p pj pj

j
E t o= −∑ (3)

where k
pjt is target value (desired output) of the j-th

component of the output for pattern p and k
pjo is the j-th

unit of the actual output pattern produced by the
presentation of input pattern p in the time k, and j indexes
over the output units. To get the correct generalization of
the delta rule, the BP algorithm for ENN set at

p
p ji A

ji

E
w

w
η

∂
Δ = −

∂
 (4)

Where jiw is the weight connected between unit i
and unit j. The input of each unit in a layer (except input
layer) is given by

k k
pj j ji pi ji pi

i i

net w o r uθ= + +∑ ∑ (5)

where k
pjnet is the net input to unit j in a layer

produced by the presentation of pattern p at the time k, jθ
is a threshold of the unit j and pio is the output value of
unit i for pattern p. let jir represent the forward weights
from the context layer to the hidden layer, k

piu is the
recurrent value from the hidden layer to the context layer,
but only when k

pjnet is the net input for the neuron unit in
the hidden layer, k

piu will be valid, otherwise, it will be 0.
The number of the neuron unit in the hidden layer and
context layer is same for the ENN.
The output of unit j for pattern p is specified by

()k k
pj j pjo f net′= (6)

where f(x) is a semilinear activation function which is
differentiable and nondecreasing. According to the
definition of the ENN, the output value of the hidden layer
at time k-1 is the input value for the context layer at time k,
so

1k k
pi pjo o −= (7)

The rule for changing weight (threshold) typically
used in Backpropagation is given by

k
p p p j k k

p ji p j p ik
ji p j ji

E E net
w o

w net w
η η ηδ

∂ ∂ ∂
Δ = − = − =

∂ ∂ ∂
 (8)

where
p j iwΔ is the change to be made to jiw

following presentation of pattern p and η is called the
learning rate. k

pjδ is defined as / k
p pjE net−∂ ∂ at time k.

When unit j is an output unit, then k
pjδ in the above

equation is given by

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

4

() ()k k k k
pj pj pj j pjt o f netδ ′= − (9)

And when unit j is a hidden unit, then k
pjδ is given by

 ()k k k
pj j pj pm mj

m
f net o wδ ′= ∑ (10)

where ()k
j pjf net′ is the derivative of the activation

function of unit j, mjw is the weights between output layer
and hidden layer.

But for the weight jir between context layer and
hidden layer, the adjustment of the weight is given by

k
p p pj

p ji k
ji pj ji

E E o
r

r o r
η η
∂ ∂ ∂

Δ = − = −
∂ ∂ ∂

 (11)

where k
pjo is the output value of the hidden layer for

the unit j, and we can get the following equations,
respectively.

k
p p pm k

pm mjk k
mpj pm pj

E E net
o w

o net o
η

∂ ∂ ∂
= − = −

∂ ∂ ∂ ∑ (12)

where k
pmnet is the input value of the out layer for

the unit m, mjw is the weight between hidden layer and
output layer for the unit m.

1()
() ()

k k
pj pj k k k k

j ji pi ji pi pi pj pj
i iji ji

o f net
f w o r u u f net o

r r
θ −

′∂ ∂
′ ′= = + + =

∂ ∂ ∑ ∑

(13)
where j is the input value of the hidden layer for the

unit j. So, we can get the final computation equation as
following

1()p k k k
p ji pm mj pj pj

mji

E
r w f net o

r
η η δ −∂

′Δ = − = −
∂ ∑ (14)

Where mjw are the weights between the output and
the hidden layer for the unit j. Thus, the Backpropagation
rule (referred to as the generalized delta rule) causes each
iteration to modify weights in such way as to approximate
the steepest descent. But, if the Backpropagation descends
into a minimum that achieves insufficient accuracy in the
functional approximation, it fails to learn.

To help the network escape from the local minima,
we add a gradient ascent phase in the gain space. The
details are described in the next section. First, we must
consider when a gradient ascent phase should be started. in
the backpropagation phase, the absolute value of the
change of the error measure is accumulated for every 50
corrections. Here, one weight correction corresponded to
backpropagation modification to weights for all patterns. If
the accumulation of change of E for the 50 weight
corrections was less than a very small pre-selected
constant, in our paper, it is 0.001, and the current error
measure E was larger than the error criteria (E=0.1 or
E=0.01, where E was the sum of squares error function for

the full training set.), the Backpropagation learning (Phase
I) is considered to be trapped in a local minimum. Then
the backpropagation phase stops and goes to the gradient
ascent phase.

3.2Gradient Ascend Phase for ENN

It is known to all that the Backpropagation in weight space
for ENN may lead to a convergence to either a local
minimum or a global minimum. However, there is not an
effective way for the network to reach to global minimum
from a local minimum. We propose a gradient ascent
learning method that attempts to fill up a local minimum
valley by increasing the error measure of a local minimum
in the best path. Usually, the activation function of unit j,

jf is given by a sigmoid function ()jf x with the "gain"

parameter jg .

1()
1 jg xf x

e −=
+

 (15)

The error measure is also a function of the gain
parameters of neurons. Therefore we can increase
intentionally the error measure by modifying the gain
parameters in a gradient ascent direction of the error
measure in gain parameter space and drive the
Backpropagation out of the local minimum. We consider
the gain parameters as variables that can be modified
during the phase II as weights and thresholds in phase I.
Here suppose that a vector g corresponds to the gain
parameters of neurons. Since for the gain vector g, the
modification requires the change of the gain to be in the
positive gradient direction, we take:

()w
g E gεΔ = ∇

r (16)
where ε is a positive learning rate constant and

E∇ is the gradient of the error measure E with respect to
the gain parameter g. If the constant ε is small enough,
the change of the gain parameter g results in an increase of
the error measure (Phase II). The derivative of the error
measure with respect to the gain parameter g j of neuron j
can be easily calculated using the chain rule as following
(here we do not consider the time gene):

p
p j

j

E
g

g
ε
∂

Δ =
∂

 (17)

And now let us define jjj netgtne ×=′ , then

p j p
p j j

j j j

E n e t E
g n e t

n e t g n e t
ε ε

′∂ ∂ ∂
Δ = =

′ ′∂ ∂ ∂
 (18)

because
p p

p j j
j j

E E
g

n e t n e t
δ

∂ ∂
= − =

′∂ ∂
 (19)

p p j

j j

E
n e t g

δ∂
= −

′∂
 (20)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

5

Finally
p j

p j p j
j j

E n e t
g

g g
ε εδ
∂

Δ = = −
∂

 (21)

Here, pjδ can be computed as the same as
conventional Backpropagation, for any output unit j,

() ()pj pj pj j pjt o f netδ ′= − (22)
and for the unit that is not an output unit,

()pj j pj pm mj
m

f net o wδ ′= ∑ (23)

We take () (1) /(1)jg x
jf x e−= + as activation function, in

this case:
() (1)j pj j pj pjf net g o o′ = − (24)

Hence for an output layer unit j
() (1)pj j pj pj pj pjg t o o oδ = − − (25)

and for a hidden unit j
(1)pj j pj pj pm mj

m
g o o wδ δ= − ∑ (26)

where mjw represents the weights between hidden
layer and output layer

We can calculate the p jgΔ through the above δ
rules alike as the gradient descend phase.

In Phase II, the absolute value of the change of the
error measure E is also accumulated for every gain
correction. If the accumulated value of the error measure E
is larger than a preselected small constant, for example,
0.02 in our simulation, go to phase II.

In order to explain simply how the proposed
algorithm helps a network escape from a local minimum,
we use a two-dimensional graph of an error measure of a
neural network with a local minimum and a global
minimum, as shown in Fig.5 (a). The horizontal axis
represents the error produced by the network
corresponding to some state in weight space on the vertical
axis (to facilitate understanding, it is expressed in one
dimension). The initial network defines a point (e.g., point
A) on the slope of a specific "valley", the bottom of this
valley (point B) is found by error minimization of the
Backpropagation in the weight space (Fig.5 (b)). Then the
error measure is evaluated. If the error measure is less than
an error criterion, then stop. If connection weights cannot
be corrected even when the network has larger error values
than the error criteria, go to phase II. Phase II tends to
increase the error measure in the gradient ascent direction
of the gain space.

 Fig.5 The relationship between error measure and the weight space

After the gradient ascent phase (Phase II), the error
measure at point B is raised, and then point B becomes a
point at the slope of the "valley" in weight landscape again
(Fig.5 (c)). Then Backpropagation phase seeks a new
minimum (Point C) in weight landscape (Fig.5 (d)). Thus,
the repeats of Backpropagation phase in weight space and
the gradient ascent phase in gain space may result in a
movement out of a local minimum as shown in Fig.5 (e)(f).
In this way, phase I and II were repeated until the error
measure was less than the error criteria, which is assumed
to be a successful run, oppositely, when the iterative steps
reach an upper limit of 30000, it was assumed to be an
unsuccessful run.

4. Simulation

In order to test the effectiveness of the proposed
method, we compared its performance with those of the
original ENN algorithm (proposed by Eleman [1]) and
improved ENN algorithm (proposed by Pham and Liu [6])
on a series of BSPQ problems including "11", "111" and

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

6

"00" problems. To compare them, each algorithm was used
to train a network on a given problem with identical
starting weight values and momentum values. In our
proposed method, when the network was trapped into the
local minimum, go to Phase II and the gain parameters of
all neuron in hidden layer were modified to help the
network escape from the local minimum, which is found to
be a more effective scheme during the prediction tasks.

Three aspects of training algorithm performance－
"success rate" ,"iterative" and "training time" were
assessed for each algorithm. Every method will run 100
trials. And the iterative steps were two parts which were
the backpropagation phase and the gradient ascent phase
for the proposed ENN algorithm. All data of simulations
were performed out on an PC (Pentium4 2.8GHz, 1G). We
used the modified back propagation algorithm with
momentum 0.9. And the learning rate η =1.0 for the
backpropagation and ε =1.0 for the gradient ascent were
selected. The weights and thresholds were initialized
randomly from 0.0 to 1.0 and the gain parameters of all
neurons were set to 1.0 initially. In this condition, the
requested error criteria was very high, if the network reach
to this error criteria point (E=0.1 or E=0.01), all patterns in
the training set could get a tolerance of 0.05 for each target
element. And we used the well trained network to do the
final prediction about sequence P1 to test the prediction
capacity of it. For all the trials, 150 patterns were provided
to satisfy the equilibrium of the training set and at the
same time to ensure that there was enough and reasonable
running time for all algorithms.

4. 1. "11" questions

Boolean Series Prediction Questions is one of the
problems about time sequence prediction. First let us see
the definition of the BSPQ [10]. Now suppose that we
want to train a network with an input P and targets T as
defined below.

P=1 0 1 1 1 0 1 1
And

T=0 0 0 1 1 0 0 1
Here T is defined to be 0, except when two 1's occur

in P in which case T is 1 and we called this problem as
"11" problem (one kind of the BSPQ). Also when "00"or
"111" (two 0's or three 1's) occurs, it is named as the "00"
or "111" problem. Firstly, we deal with the "11" question
and analyze the effect of the memory of the Context layer
of the network. In this paper we define the prediction set
P1 randomly as stated in the 20's figures below.

P1=1 1 1 0 1 0 0 0 1 0 1 1 0 1
1 1 0 0 1 1

Firstly, we deal with the "11" question and analyze
the effect of the memory from the context layer for the
network.

Table 1 compared the simulation results of the three

algorithm, we can see that our proposed method could
almost 100% succeeded to get the convergent criterion. Of
course, the original ENN was able to predict the requested
input test, but the training success rate was slow. Further, it
succeeded only 75% when E was set to 0.1. And the
improved ENN has increased the ability of the dynamic
memorization of the network because of the
self-connection weights gene (a=0.5). Although improved
ENN could accelerate the convergent of the learning
process (iterative was less than original ENN), it could not
essentially avoid the local minima problems, the success
rate was only 68%, when error was set 0.01.

Fig.6 shows the learning characteristics for three
methods with the same initialization weight for the
network (1-5-1), when E was set to 0.1. From the
simulation results we can see that the proposed ENN
algorithm only needed about 170 iterations to be
successful, but the original ENN and the improved ENN
algorithm have not got the goal value and got into local
minima point A and B, respectively. The improved ENN
have only accelerated the process of the learning, but it
could not escape the local minima problem. But our
proposed ENN algorithm could get the convergent point
by avoiding the local minima. From the "proposed ENN"
line we can see that at time k1, after the Backpropagation
learning about 127 iterative steps, the error measure E
decreased from 3.12 to 2.22 and got stuck in a local
mimimum. Then the gradient ascent learning process
(Phase II) was performed, and error is increased from 2.22
to 2.24 (k2). Then the Backpropagation learning settled to
a new local minimum (k3). Backpropagation learning
escaped from the local minimum and converged to the
global minimum (k4).
For the prediction set P1, we can get its corresponding
expected results with below T1

T1=0 1 1 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 1

Fig. 7 is the simulation prediction result of P1 for the
"11" question with our proposed ENN algorithm. In the
Fig. 7, the two lines represented the T1 line and the
prediction results line respectively. From the Fig. 7 we can
see that the tolerance of every pattern was less than
required standard 0.05. So the network has enough ability
to do the prediction of the given task as desired.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

7

Fig.6. Training error curve of the three ENN algorithm

For the same problem, as we gradually increased the

quantity of the neuron of the hidden layer, the original
ENN and improved ENN were able to get to the
convergence point with the finite iterative steps, however,
our proposed ENN could 100% get to the error criterion by
avoiding the local minima. The results are shown in Table
2.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

prediction line
T1 line

 Fig.7. Expected Output T1 and prediction result with Proposed ENN

In order to better testify the effectiveness of the

proposed algorithm, we continued to increase the quantity
of neuron unit in the hidden layer.

From the Table 3, we can see, the proposed method
could get almost 100% success rate than other two
algorithms through avoiding the local minima problems,
although the iterative steps was bigger than the improved
ENN algorithm sometimes. This is because the network's
iterative steps were increased because of the gradient
ascent phase II.

4. 2. "111" and "00" questions
As we change rules of the input sequence, we can

continue to testify the valid of our proposed ENN

algorithm. The specific parameter set of the network was
same as the "11" questions.

Table 4 is the specific comparison results from the
"111" question for the three algorithms. From Table 4 we
can see that, for the network (1-7-1), the success rate of the
proposed ENN was lower (only 90% when the error
criterion was set to 0.01) because of the insufficient
capacity with less hidden unit nodes. As the unit nodes of
the hidden was increased, our proposed ENN algorithm
could almost 100% succeed than original ENN and
improved ENN algorithms although the iterative step was
bigger than two methods. The proposed ENN has
successfully escaped from the local minima problems
through gradient ascent phase.

Table 5 is the specific comparison results from the
"00" question for the three algorithms. From Table 5 we
can see that, as the complexity of the problem was
increased, the training time and iterative steps were also
increased for three algorithms, but our proposed algorithm
was much more effective on the complicated BSPQ
problem to avoid the local minima problem.

Although the BSPQ problem is only a simple
prediction task for the ENN, the other problems are also
compatible with our proposed algorithm, such as the
detection of the wave amplitude [10]. And our algorithm is
also appropriate to the Jordan network or other partially
modified recurrent neural networks, such as the network
proposed by Shi [20].

5. Conclusion
In this paper, we proposed a supervised learning method
for Eleman Neural Network to avoid the local minima
problem. The approach was shown to be of higher
convergence to global minimum than the original ENN
learning algorithm and than the improved ENN algorithm
in network training. The algorithm has been applied to the
BSPQ problems including "11", "111"and "00" problems.
Through the analysis of the result from various Boolean
Series Predict problems we can see that the proposed
algorithm is effective at avoiding the local minima
problems and getting high success rate. Although we only
applied the algorithm into the basic ENN, we make this
improvement as a benchmark and take effort to research
application of the algorithm in the recurrent neural
network like Jordan network and fully recurrent network.

Acknowledgment
I would like to thank Professor Tang Zheng, my

supervisor, for his many suggestions and constant support
in the whole course of this research.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

8

Table 1: Experiment results for the “11” question with 5 neurons in the hidden layer

Success rate(100 trials) Iterative（average steps） Average CPU time
(second) Methods(1-5-1

network)
E=0.1 E=0.01 E=0.1 E=0.01 E=0.1 E=0.01

Original ENN 75% 66% 245 320 0.15 0.20
improved ENN 87% 65% 207 299 0.13 0.18
propose ENN 100% 100% 320 500 0.21 0.32

Table 2. Experiment results for the “11” question with 7 neurons in the hidden layer

Success rate(100 trials) Iterative（average） Average CPU time (second) Methods(1-7-1
network) E=0.1 E=0.01 E=0.1 E=0.01 E=0.1 E=0.01
Original ENN 89% 78% 375 568 0.22 0.31
Improved ENN 95% 90% 305 510 0.19 0.26
Proposed ENN 100% 100% 427 680 0.35 0.61

Table 3. Experiment results for the “11” question with 10 neurons in the hidden layer

Success rate(100 trials) Iterative（average） Average CPU time (second) Methods(1-10-1
network)

E=0.1 E=0.01 E=0.1 E=0.01 E=0.1 E=0.01

Original ENN 91% 89% 455 789 0.25 0.40
Improved ENN 95% 91% 395 589 0.20 0.37
Proposed ENN 100% 98% 578 835 0.36 0.43

 Table 4. Experiment results for the “111” question with different neuron units in the hidden layer

Success rate(100
trials) Iterative（average） Average CPU time

(second)
structure

of the
network

Items

Methods E=0.1 E=0.01 E=0.1 E=0.01 E=0.1 E=0.01

Original ENN 56% 43% 844 1009 0.52 0.70
Improved ENN 75% 60% 560 783 0.40 0.50 1-7-1

network
Proposed ENN 95% 90% 1009 1550 0.55 0.71
Original ENN 78% 74% 689 955 0.61 0.68

Improved ENN 85% 79% 508 611 0.39 0.46 1-10-1
network

Proposed ENN 100% 99% 1143 1690 0.62 0.88
Original ENN 85% 75% 811 1027 0.51 0.71

Improved ENN 90% 81% 665 749 0.47 0.49 1-12-1
network

Proposed ENN 100% 98% 1240 1432 0.66 0.73

Table 5. Experiment results for the “00” question with different neuron units in the hidden layer
Success rate(100
trials) Iterative（average） Average CPU time

(second)
structure
of the
network

Items

Methods E=0.1 E=0.01 E=0.1 E=0.01 E=0.1 E=0.01

Original ENN 78% 71% 300 455 0.21 0.35
Improved ENN 90% 84% 148 250 0.09 0.19

1-5-1
network

Proposed ENN 100% 97% 398 661 0.22 0.37
Original ENN 85% 81% 458 960 0.28 0.50

Improved ENN 95% 90% 356 601 0.22 0.39 1-7-1
network

Proposed ENN 99% 99% 600 1254 0.40 0.75
Original ENN 95% 89% 628 1095 0.43 0.6

Improved ENN 98% 92% 588 901 0.37 0.51 1-10-1
network

Proposed ENN 100% 100% 870 1138 0.69 0.85

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

9

References

[1] Jeffrey L.Eleman, "Finding Structure in Time", Cognitive

Science, 14,179-211,1990.
[2] M. I. Jordan, "Attractor dynamics and parallelism in a

connectionsist sequential machine" in Proceedings of
the 8th Conference on Cognitive Science,
pp.531-546,1986.

[3] C.W.Omlin, C.L. Giles, Extraction of rules from dicrete-time
recurrent neural networks, Neural Networks
9(1),41-52,1996.

[4] P.Stagge, B. Sendhoff, Organisation of past states in recurrent
neural networks: implicit embedding, in: M. Mohammadian
(Ed.), Computational Intelligence for Modelling, Control ¥&
Automation, IOS Press, Amsterda.pp.21-27,1999.

[5] G.Cybenko, "approximation by superposition of a sigmoid
function", Mathematics of Control, Signals, and Systems,
2,303-314,1989.

[6] D.T.Pham and X. Liu, "Identification of linear and nonlinear
dynamic systems using recurrent neural networks", Artificial
Intelligence in Engineering, Vol.8,pp.90-97,1993.

[7] Andrew SMITH," Branch prediction with Neural Networks:
Hidden layersand Recurrent Connections" , Department of
Computer Science University of California, San Diego La
Jolla, CA 92307, 2004.

[8] G.Cybenko, "approximation by superposition of a sigmoid
function", Mathematics of Control, Signals, and Systems,
2,303-314, 1989.

[9] Multilayer Network Learning Algorithm Based on Pattern
Search Method, IEICE Transaction on Fundamentals of
Electronics, Communications and Computer Science, E86-A,
1869-1875, 2003.

[10] http://www.mathworks.com
[11] C.L. Giles, C.B. Miller, D, Chen, G.Z. Sun, H.H. Chen, Y.C.

Lee, Extracting and learning an unknown grammar with
recurrent neural networks, in: J.E. Moody, S.J. Hanson. R.P.
Lippmann (Eds.), Advances in Neural Information
Processing Systems 4, Morgan Kaufmann Publishers, San
Mateo, CA, pp.317-324, 1992.

[12] R.I.Watrous, G. M. Kuhn, Induction fo finite-state automata
using second-order recurrent neural networks, in: J. E.
Moody, S. J. Hanson, R. P. Lippmann (Eds.), Advances in
Neural Information Processing System 4, Morgan Kaufmann
Publishers, San Mateo, CA, pp.317-324, 1992.

[13]A.Kalinli and D.Karaboga,"Training recurrent neural
networks by using parallel tabu search algorithm based on
crossover operation", Engineering Applications of Artificial
Intelligence, Vol. 17, pp.529-542,2004.

[14] D.T.Pham and X.Liu, "Training of Eleman networks and
dynamic system modeling", International Journal of Systems
Science, Vol.27,pp.221-226,1996.

[15]J. W. Dong, J. X. Qian and Y.X.Sun, "Recurrent neural
networks for recursive identification of nonlinear dynamic
process", in Proceedings of the IEEE International
Conference on IndustrialTechnology,pp.794-798,1994.

[16] D.P.Kwok, P. Wang, and K.Zhou,"Process identification
using a modified Eleman neural network", International
Symposium on Speech, Image Processing and Neural
Networks,pp,499-502,1994,

[17] X.Z.Gao,X.M.Gao, and S.J.Ovaska, "A modified Eleman
neural network model with application to dynamical systems
identification", in Proceedings of the IEEE International
Conference on System , Man and Cybernetics, Vol.2,
pp.1376-1381,1996.

[18] W.Chagra, R. B. Abdennour, F.Bouani, M.Ksouri, and
G.Favier, "A comparative study on the channel modeling
using feedforward and recurrent neural network structures,"
in Proceedings of the IEEE International Conference on
System , Man and Cybernetics, Vol.4, pp.3759-3763,1998.

[19] J.E.W. Holm and N.J.H.Kotze, "training recurrent neural
networks with leapfrog," in Proceeding of the International
Conference on Industrial Electronics, pp.99-104,1998.

[20] Shi XH, Liang YC, Xu x. An improved Eleman model and
recurrent back-propagation control neural network. Journal
of software , 14(6):1110－1119,2003.

[21] Adem Kalinli and Seref Sagiroglu, "Eleman Network with
Embedded Memory for System Identification" in Journal of
Informaiton Science and Engineering 22, 1555-1668,2006.

[22] Ingman and Y. Merlis, " Local minimization escape using
thermodynamic properties of Neural Networks", Neural
Networks, vol. 4,no.3, pp.395-404,1991.

[23] Wang Chuan, Principe Jose.C, "Training neural networks
with additive noise in the desired signal", IEEE Transactions
on Neural Networks, vol. 10, no. 6, pp. 1511-1517, 1999.

[24] C.Servan-Schreiber, H. Printz and J.D.Cohen, "A network
model of neuromodulatory effects: Gain, Signal- to-noise
ratio and behavior", Science, 249,892-895, 1990.

[25]G.Cybenko, "Approximation by superposition of a sigmoid
function", Mathematics of Control, Signals, and System,
vol.2, 303-314, 1989.

[26]K.Funahashi, "On the approximate realization of continuous
mapping by neural networks", Neural Networks, vol.2,
183-192, 1989.

[27]K. Hornik, M.Stinchcombe and H.White, "Multilayer
forward networks are nuniversal approximators", Neural
Networks, vol.I, 359-366, 1989.

[28] C.Servan-Schreiber, H.Printz and J.D.Cohen, "A network
model of neuromodulatory effects: Gain, Signal- to-noise
ratio and behavior", Science, 249,892-895,1990.

[29] C.L.Giles, C.B.Miller, D,Chen, G.Z.Sun, H.H. Chen, Y.C.
Lee, Extracting and learning an unknown grammar with
recurrent neural networks, in : J. E. Moody, S.J. Hanson. R.P.
Lippmann (Eds.), Advances in Neural Information
Processing Systems 4, Morgan Kaufmann Publishers, San
Mateo, CA, pp.317-324, 1992.

[30] S. Lawrence, C.L.Giles, S.Fong, Natural language
grammatical inference with recurrent neural network, IEEE
Trans. Knowledge Data Eng. 12(1), 126-140, 2000.

[31]. J.T.Conner, D. Martin, L.E. Atlas, recurrent neural networks
and robust time series prediction, IEEE Trans. Neural
Networks 5(2) 240-253, 1994.

[32].E.W.Saad, D.V.Prokhorov, D.C.Wunsch, Comparative study
of stock trend prediction using time delay recurrent and
probabilistic neural networks, IEEE Trans, Neural Networks
9(6),1456-1470, 1998.

[33]C.Servan-Schreiber, H.Printz and J.D.Cohen, "A network
model of neuromodulatory effects: Gain, signal-to-noise
ratio, and behavior", Science, vol.249,pp.206-208,1976.

[34] T.L.Burrow, and M.Niranjan,"The use of feed forward and
recurrent neural networks for system identification",

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

10

Technical report, Cambridge University Engineering
Department, 1993.

ZhiQiang Zhang Received his
B.S degree and M.S. degree from
Shandong University, Jinan,
Shandong, China, in 2002, 2005 and
in computer science and management
science, respectively. He is currently
working for his Ph.D. degree at
Toyama University, Japan. His main
research interests are neural networks
and optimizations.

Zheng Tang Received the
B.S. degree from Zhejiang
University, Zhejiang, China in 1982
and an M.S. degree and a D.E.
degree from Tshinghua University,
Beijing, China in 1984 and 1988,
respectively. From 1988 to 1989, he
was an Instructor in the Institute of
Microelectronics at Tsinghua
University. From 1990 to 1999, he
was an associate professor in the
Department of Electrical and

Electronic Engineering, Miyazaki University, Miyazaki, Japan. In
2000, he joined Toyama University, Toyama, Japan, where he is
currently a professor in the Department of Intellectual
Information Systems. His current research interests include
intellectual information technology, neural networks, and
optimizations.

