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Summary 
The major problems that put virtual environment developers in 
difficult situations are: (1) the need to satisfy the three important 
requirements of virtual environments, namely, performance, 
presence, and usability, (2) complexity of VR objects that have 
three distinct aspects such as form, function, and behavior, and 
(3) the physical/logical gap between development and execution 
environments.  To solve the problems, this paper proposes a set 
of computer-aided tools called “PVoT (Portable Virtual reality 
systems development Tool).” PVoT is designed based on the 
methodology, called “CLEVR (Con-current and LEvel by Level 
Development of VR systems),” a comprehensive collection of 
conventional and new concepts for building VR systems with 
three major philosophies [1].  With PVoT, one can design and 
immediately validate various aspects of the virtual reality 
systems in design reducing the temporal gap.  This results in a 
highly interactive and seamless development environment.  
PVoT also collects performance data of all high-level elements 
in a given VR application and provides developers with a basis 
for performance prediction and tuning.  The effectiveness of 
CLEVR/PVoT is demonstrated with case studies and an analysis 
of the development process. 
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1. Introduction 

Developing, validating, and maintaining VR applications 
is still a very difficult process.  It is because VR 
applications have their inherent difficulties and 
complexities in comparison with other application 
software.  In addition, there is practically no 
methodologies and widely accepted tools that are 
specifically designed for the need of VR application 
development.  Most virtual environments are still 
implemented using procedural programming languages 
and tools like compilers and debuggers.  Though recent 
object-oriented applications programming interfaces (API) 
[2][3][4][5][6][7] provide abstractions for the system 
functionalities (scene graph, device handling, display, etc.), 
artists and content developers (vs. programmers) would 
like to work with “concrete” VR objects, through reuse 
and composition. 

In this paper, we first clarify the problems that 
underlie the difficulties and complexities that cause in 
building VR systems in Section 2. Section 3 reviews work 

related to our research.  Then, in Section 4 and 5, we 
introduce a methodology and tools that can help solve 
these problems and promote higher efficiency in VR 
content development.  In Section 6, the effectiveness of 
our work is illustrated with a brief analysis of the 
development process.  Section 7 demonstrates our work by 
illustrating three applications, which have been built 
and/or supported using our approach and tools.  Finally, in 
Section 8, we conclude this paper with a summary and 
discussion. 

2. Major Problems in Developing VR Systems 

In this session, we discuss three major characteristics that 
distinguish VR applications from other types of S/W.  
These characteristics are also the causes that put VR 
application developers in difficult situations, and thus 
constitute the target problems this research is trying to 
address. 

2.1 Satisfaction of Presence, Usability, and 
Performance 

The first problem is that we have to satisfy the three 
important requirements of virtual environments, namely, 
presence, usability, and performance.  It is so difficult and 
complex to concurrently maintain acceptable levels of 
these three requirements, which are often conflicting with 
each other. 

There are many elements that influence presence and 
usability.  They include sensory realism, input/output 
multi-modalities, degrees of interactivity, simulation 
fidelity, employing special effects, input devices, device-
handling routines, interaction models, etc.  Many of the 
elements also affect performance.  We should choose an 
appropriate combination of the various elements in order 
to achieve satisfactory levels of presence and usability 
while maintaining acceptable performance.  However, it 
takes too much effort and time, because many trial and 
error iterations are needed to determine the proper 
combination of the elements and minimize the 
performance degradation caused by cost of newly 
enhanced elements.  In addition, each element has its 
threshold (that is, limitations) at which higher level of the 
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element does not contribute to presence or usability any 
more. 

2.2 Three Aspects of VR Objects: Form, Function, 
and Behavior 

The next problem is the complexity that VR objects 
inherently possess.  VR objects are abstractions that 
represent the object exist in virtual environments.  Unlike 
objects in other software systems, VR objects have three 
orthogonal aspects such as form, function, and behavior 
[8]. 

Form refers to the outer appearance of VR objects, 
their structure (for composite objects), other physical 
properties, and the scene structure of the virtual world.  
Function basically refers to encoding what VR objects do 
(i.e. primitive tasks) to accomplish their behavior, whether 
autonomously, or in response to some external stimuli or 
events, while behavior refers to how individual VR objects 
dynamically change and carry out different functions over 
a period of time, usually expressed through states, 
exchange of events, and inter-state transitions. 

Each of these three aspects is deeply interrelated with 
and dependent on others.  Moreover, in many cases, the 
behavior part of an object can easily become complex.  
Consequently, when a virtual world has many objects and 
their behaviors have many concurrent flows, not only 
designing and implementing them but also verifying and 
validating them would be much harder. 

However, most VR application development 
platforms are just ordinary imperative programming 
development environments that are not suited for handling 
such interrelationships and dependencies and properly 
managing the complexities of objects such as concurrency 
and synchronization. 

2.3 The Gap between Development and Execution 

What makes virtual environment construction more 
difficult is that, on top of having to tackle the traditional 
computational and logical errors, it is also an exploration 
task.  Developers must find the right combination of 
various types of constituents of the virtual environment 
like object, display and simulation details, interaction and 
modalities, etc.  In addition, as stated in the two earlier 
subsections, the developing process of a VR application 
should be iterative and incremental in order to not only 
concurrently satisfy presence, usability, and performance 
but also handle the complexity of the three aspects of VR 
objects. 

However, unlike ordinary programming tasks, for VR, 
the execution and development environments are 
difference, not just in the temporal sense, but also in the 
physical sense.  Many VR systems are unusable simply 
because the developers are literally tiered of switching 

back and forth between the development (e.g. desktop) 
and execution environments (e.g. immersive setup with 
HMD, glove, trackers, CAVE-like systems, etc.), and fails 
to fully set and configure the system for usability.  
Therefore, we need methods to reduce the gap.  Reducing 
the gap may spare us the effort of switching back and forth 
between environments and help us develop VR content of 
high quality. 

3. Related Work 

3.1 Previous Work and Software Engineering for VR 

ASADAL/PROTO[8] (which is the predecessor of 
CLEVR/PVoT) seamlessly integrates constructs to specify 
form, function, and behavior, and can be used for real time 
3D graphics or VR objects.  The specification results 
(which are composed of “Statecharts”, “DFD”, and 
“VOS”) are simulated and translated into programming 
languages.  However, the semantics of the translated code 
cannot coincide with the ones of the specifications, 
because conventional programming languages do not 
directly support the functionalities such as concurrency 
and hierarchy, which are the major features of 
“Statecharts.”  Therefore, it is not easy task to combine the 
translated code with widely used commercial/academic 
VR APIs. 

The Marigold toolset [9] was developed to fuse 
abstract modeling into the development of virtual 
environment dynamics.  The abstract models are 
constructed using an hybrid specification formalism (an 
extended Petri-net).  Using the Marigold toolset, users 
supplement the specification with code segments, and 
implementation can be produced in C/Maverik [10].  
However, these specification formalisms lack the notion 
for depth (e.g. hierarchy) or modularity, and so the 
specification can quickly become too complex to handle.  
The semantics of the Statecharts used in CLEVR/PVoT 
can handle both hierarchical abstraction and synchronized 
behavior. 

3.2 Presence and Performance Maintenance 

Most approaches to dealing with the real time performance 
requirements of VR systems have focused on reducing the 
number of objects/polygons that need to be processed by 
the graphics pipeline in any given frame [11][12][13][14].  
Many researchers considered the problem of computing 
for the part of the virtual world which is directly visible 
from a given viewpoint (in order to reduce the number of 
objects or polygons to process) exploiting the model 
structure of figuring out an occluder and their occludee 
objects/ polygons [15].  These approaches require 
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assumptions which may not be applicable to the 
construction of general VR worlds. 

This exploitation of simulation levels of detail has 
been suggested first by [16].  They used three levels of 
simulation detail for one-legged virtual robots.  They 
demonstrated how the overall performance varied by 
dynamically switching the simulation LODs.  However, 
their work did not elaborate on the engineering side of the 
approach.  The models and LOD switching techniques 
were handcrafted for the particular example. 

Several researchers have studied the elusive notion of 
presence.  Most people in the VR community seem to 
agree with the definition of presence as the feeling of 
being in the VR world and on the importance of provision 
of presence as a defining quality of VR.  There have been 
many studies on elements that influence presence 
[17][18][19][20].  They may include sensory realism, 
input/output multi-modalities, degree of interactivity, 
simulation fidelity, employing special effects, etc.  Shim 
and Kim [21] proposed a concept of level of presence 
(LOP), in which we should select a set of elements and 
decide proper levels of them to maximize the overall 
presence while maintaining acceptable performance.  
However, the cost and benefit model of the elements for 
presence should be rebuilt according to VR contents. 

3.3 Interaction and Interface Design 

Another important aspect of VR is its usability.  Usability 
means that the people who use the product can do so 
quickly and easily to accomplish their own tasks [22]. 

While VR devices must be designed for maximal 
efficiency, most developers are constrained to use certain 
hardware and focus on finding the most natural and/or 
“performing” interaction methods using that hardware.  
Interaction design typically starts with task analysis, 
breaking down a high level task into number of subtasks 
until they are “primitive” enough for a simple mapping to 
a metaphoric object or physical hardware, or “generic” 
enough to apply to established interaction techniques. 

Jacob et al. [23] proposed a fine grained software 
model and a language for describing and programming 
non-WIMP (Window, Icon, Menu, Pointer) style user 
interactions.  Jocob’s model expresses user interactions as 
a combination of a graph of functional relationships 
among continuous variables (e.g. input devices) and a set 
of discrete event handlers.  Marigold’s specification 
formalism is also designed with the notion of combining 
the continuous data stream (from devices) and generating 
meaningful discrete events for user interaction. 

Major obstacles in efficient VR system design 
include such factors as rapid changes in hardware 
capabilities, availability, cost, and the absence of a mature 
methodology in interaction design.  Until an acceptable 

interaction design methodology emerges in the near future, 
a VR system design tool must consider and support a trial-
and-error style of engineering. 

3.4 APIs and Tools for Virtual Reality 

In most cases, developers of real-time graphics or 
animation programs, for instance, still proceed by creating 
visual objects on computer-aided design (CAD) systems, 
then using low-level simulation programming constructs 
or libraries to add behavior [2][3][4][5][6][7].  Such 
software packages allow relative simple encoding of the 
functional/behavioral aspect of the virtual environment, by 
hiding and abstracting out low level details and providing 
easy-to-use API’s, and usually support object-oriented 
programming, communication with popular VR devices, 
and the importation of various model file formats. 

Authoring tools for VR systems (such as the World-
Up from Sense8 [6], Lynx from Paradigm [5], Alice from 
Carnegie Mellon University [24]) generally lack behavior 
modeling flexibility.  For example, though Alice supports 
behavior specification using Python script and pre-defined 
functions and World-Up and Lynx also provide 
functionalities of adding simple behaviors, developers 
want more powerful and flexible modeling constructs.  In 
addition, because the major objective of Alice is to design 
interactive 3D graphics, it lacks support for VR specific 
features (3D multimodal interaction, rigorous performance 
issues and presence).  Above all, because authoring tools 
tend to abstract too many details, performance tuning and 
addressing presence is very difficult with these tools.  
Many developers still prefer to merely use the API in a 
creative manner, or even use very low level graphic 
system package (e.g. OpenGL, DirectX) in order to apply 
various optimization tricks. 

In the area of entertainment, many 3D gaming 
engines have also adopted the scripting approach [25][26].  
Scripts are usually associated with an interactive 
environment in with it is executed.  Such interactive 
programming saves a lot of time and labor.  We can 
confirm the potential utility of such an interactive kernel 
approach from the great debate about LISP vs. C as a 
prototyping language [27], but more so from the 
proliferation of many visual RAD (Rapid Application 
Development) tools for 2D WIMP user-interfaces and 
game prototyping examples.  Similar approaches in the 
area of virtual reality application have also been tried.  In 
[28][29], users can model 3D geometric objects and 
arrange objects in virtual environments using 3D 
interaction techniques.  PIP system [30] used 
“programming-by-demonstration” approach [31] for 
modeling behaviors of VR objects within the virtual 
environment.  However, the PIP system lack constructs for 
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expressing more complex behavior and VR specific 
functionalities. 

4. CLEVE Methodology 

The work described in this paper originated from a effort 
to establish a systematic engineering approach for VR 
systems called CLEVER (Concurrent and LEvel by level 
development of VR system) [1], that tackles the problems 
stated in Section 2. 

Our methodology includes a comprehensive 
collection of conventional and new concepts.  For instance, 
we employ concepts such as the simultaneous 
consideration of form, function, and behavior, hierarchical 
modeling and top-down creation of LOD (Level of Detail) 
[32], incremental execution and performance tuning, user 
task and interaction modeling, and compositional reuse of 
VR objects [33].  The basic modeling approach is to 
design VR objects (and the scenes they compose) 
hierarchically and incrementally, considering their realism, 
presence, behavioral correctness, performance, and even 
usability in a spiral manner. 

The three philosophies that underlie the CLEVR are 
(1) concurrent consideration of form, function, and 
behavior, (2) hierarchical and incremental development 
(exploration), and (3) the spiral development process that 
addresses performance, interaction modeling, and 
presence enhancements in turn. 

One of the main difficulties in VR system 
development lies in the management of complexity.  For 
instance, the application developer must “design” three 
things that are interrelated, namely “form,” “function,” 
and “behavior” at the same time.  Most VR applications 
are developed in the sequence of form design, followed by 
function/behavior programming.  The result is an 
unstructured code in which information regarding function, 
behavior, and constraints among them are all mixed in 
together, not readily visible for easy future maintenance 
and reuse.  Furthermore, construction of a virtual world 
often requires many revisions, and changing one aspect of 
the world will undoubtedly affect other aspects.  Such a 
development cycle is difficult to handle when working in a 
single level of abstraction and considering these design 
spaces in isolation.  A clear conceptual and computational 
separation among form, function, and behavior helps the 
user explore and evolve an object by considering them in a 
concurrent fashion. 

Since virtual environment construction is a design 
and explorative task, the usual hierarchical and 
incremental approach is even more fitting than for the 
conventional software that are more algorithmic in nature.  
Moreover, employing the hierarchical style in the 
incremental development process promotes a performance 
conscious design by forcing the developer to focus on the 

more critical features in the form, function/behavior in a 
top-down manner.  Intermediate models obtained from the 
hierarchical modeling approach can be used for LODs as 
well.  At each abstraction level, in order to validate the 
models (e.g. behavioral correctness, visual effect, 
performance) and carry out further refinements, they must 
be simulated or executed. 

5. An Interactive Authoring Tool: PVoT 

We have developed a computer-aided tool called “PVoT 
(Portable Virtual reality system development Tool)” to 
solve the problems stated in Section 2 and support the 
modeling strategy presented in Section 4 (see Fig. 1). 

Fig. 1  PVoT in use. (Three pvViewers are running on an immersive VR 
platform composed of three separate rendering hosts while pvIDE is 
running on a portable device.) 

The major required functionalities of the tools are: 
ways to construct and represent information regarding the 
form, function, and behavior of VR objects including 
input/output device configuration, user-interactions, and 
coalescing the information into an interactively executable 
form.  The next step is to execute these evolving 
specifications and collect performance data for validating 
the behavioral correctness and tuning the resulting 
presence, usability, and performance, and to save and 
organize different alternative model configurations for 
experimentations. 

To enable the above functionalities, we proposed an 
interactive kernel approach and PVoT object model and 
implemented them into an integrated development 
environment (IDE) with additional capabilities such as 
specification constructs, a performance monitor, and 
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markup languages for VR contents and device 
configurations.  

5.1 The Overview of PVoT 

PVoT is comprised of three programs (which are pvIDE, 
pvDaemon, and pvViewer) and many components (See 
Figure 2) and developed using two programming 
languages (C++, Python) and many open-source libraries 
such as OpenSceneGraph [7], VRPN [34], Open 
Dynamics Engine (ODE) [35], and Boost.Python [36]. 

 

Fig. 2  Overall structure of PVoT. 

pvIDE is an integrated development environment 
including easy-to-use graphical user interfaces (GUIs), 
script editors, a performance monitor, and parsers for two 
XML-based markup languages (PVML and PVDC).  We 
design and validate VR contents by using these tools or by 
typing up a Python script and loading it.  The resulting 
contents and device configurations use PVML and PVDC 
as their file formats respectively.  PVML (PVoT Markup 
Language) expresses only VR contents themselves 
independent of hardware-related resources.  PVDC (PVoT 
Device Configuration) conveys configuration information 
about display systems (e.g. HMDs, CAVE-like systems, 
Immersive displays) and various input devices including 
trackers, controllers, and joysticks. 

pvDaemon is a separate program, which receives a 
request to start pvViewer and information about display 
configuration (such as the type of stereo, the position and 
size of window, and the parameters for camera position 
and orientation) from pvIDE and invokes pvViewer.  
From then, pvIDE and pvViewer directly communicate 
with each other.  pvIDE translates user’s commands and 
contents of PVML and PVDC files into Python script and 
sends it to pvViewer through the network.  Note that the 
above tools are not just a development environment, but 
also an execution environment of the same virtual world. 

5.2 Interactive VR Kernel 

Through the interactive kernel, developers can 
interactively build virtual objects and deploy them in the 
execution environment directly in an interpretive way 
using a script language (we chose “Python”) without 
compilation and optimize the content along the dimensions 
of performance, interaction usability, realism, and 
presence. 

Although this interpretation method is slower than 
compilation methods, the overall performance drop is 
minimized by various optimization techniques [37], one of 
the well-known rules about this approach is the “90/10 
rule in standard code profiling” [38], which means 90% of 
the execution time is spent by 10% of the code.  As an 
analogy, contrary to many people’s belief, LISP programs 
(that are usually developed and run in an interpretive 
environment) can run as fast as their C counterparts. 

Thus, for instance, we wrote the most time critical 
part of the kernel such as the scene traversal, behavior 
simulation, and collision detection in C++ and provided 
abstraction through the Python language.  In addition, the 
performance drop attributed to using languages is no 
longer significant with the multi-Giga-hertz processors 
available nowadays. 

5.3 PVoT Object Model: POM 

The core of the PVoT’s interactive kernel is a flexible VR 
object model called “POM (PVoT Object Model),” that 
clearly segregates the aspects of form, function, and 
behavior.  As stated in the previous subsection, POM 
library is implemented using two programming languages 
(C++ and Python).  The C++ layer implements the most 
critical part of POM.  In other words, most of the form 
hierarchy, basic functions, and Statecharts simulator of 
POM classes are coded in C++.  The Python layers only 
wraps the interfaces (such as class name, member 
functions, and data members) of these classes written in 
C++. 

Fig. 3 An example scene graph and the structure of a POM object. 

In the interactive kernel, all the objects are POM 
objects and even the overall world is also a POM object.  
All VR objects are instances of pvObject which is the 
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topmost class among the POM classes, and the world is an 
instance of pvWorld, which is a subclass of pvObject (see 
Fig. 3).  Users can create (or reuse) new (or old) POM 
object by instantiating this topmost class pvObject (or 
extending it). 

As you can see in Fig. 3, a POM object has its own 
form, function, and behavior and exchanges events with 
other objects.  Each function does its own primitive tasks 
by manipulating and accessing the attributes of the same 
object’s form.  Behavior invokes functions of the same 
object according to its active states and transitions.  As a 
result, the specification of each aspect (form, function, and 
behavior) of an object is dependent on others (their 
representations are clearly segregated, however).  These 
clear representations of dependent relationships among the 
three aspects enable developers to easily detect any 
inconsistency. 

Moreover, this high-level abstraction of VR objects 
leads to higher reusability in comparison to the 
conventional programming method.  When reusing 
existing POM object, we just care about what events the 
objects need or generate.  Currently, in PVoT, we can 
export and reuse a POM object or a subtree (a hierarchy 
consisting of multiple POM objects). 

Fig. 4 An example of Statecharts. (This diagram shows an example 
modeling of an interaction technique.) 

5.3.1 Form 

The current version of PVoT does not include geometric 
modeling capability.  This is because, as for form 
construction, many VR-based CAD systems have been 
developed [28][29] which are equivalent to addressing 
interactive form construction.  In this current version, 
several primitive geometries (such as cube, sphere, cone, 

and cylinder) are available for direct creation, and a 
variety of geometry file formats can be imported. 

5.3.2 Function 

The pvObject (the topmost class of POM class hierarchy) 
provide predefined primitive and useful functions (or 
methods) to save development time (similarly to Alice 
[24]).  These primitive functions include manipulation of 
the form attributes of the object, basic animation routines 
(e.g. move and turn), construction of a form hierarchy, a 
scene graph, and a behavior true, and generation of events. 

We specify the behavior part of objects using the pre-
defined functions and properties.  However, before 
inserting scripting code into state specifications of 
behavior, we can immediately see the execution results of 
functions and effects of modified properties within the 
virtual world in construction.  

Thanks to the dynamic binding feature of the Python 
language, developers can write their own functions by 
composing these primitive functions (or from scratch).  
When writing new functions, it is also possible to utilize 
rich standard libraries that Python already provides.  These 
user-defined functions can be added to the existing objects 
or classes, and also replace existing functions. 

5.3.3 Behavior 

The behavior part of an object can be specified using 
Statecharts formalism (see Fig. 4), and it manages the life-
cycle of an object from its construction to destruction.  For 
a more detailed explanation of their exact formalisms, 
please refer to [39]. 

Fig.5 Performance statistics. 
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5.4 Performance Monitor 

The “Performance” tab of pvIDE displays various 
performance statistics according to the currently selected 
object (see Fig. 5).  By inspecting this report, the source of 
bottleneck problems can be identified.  Then, the overall 
performance can be improved by solving the problems.  
Besides, we can find out which component of the system 
might be more refined to increase presence or usability, 
not bringing about performance degradation. 

In PVoT, the interactive kernel controls the overall 
system.  The kernel consists of “classes” (pvClasses, 
which are reusable POM objects), “user” (pvUser), and 
“world” (pvWorld, that is, the root node of the scene 
graph). When the kernel is selected, the performance tab 
displays the overall performance statistics which include 
frames per seconds, update (simulation) time, draw time, 
and collision detection time.  When the others are selected, 
on the other hand, more detailed high-level statistics are 
given in the performance tab. 

Fig.6 The overall development process in CLEVR/PVoT. (From the 
beginning  or mid-point of this process is iterated at each stage in the 
spiral process, which is the third philosophy of CLEVR. 

For example, as you can see in the lower table in Fig. 
5, when an object is selected, statistics about 8 items are 
displayed.  Through the above statistics and the execution 
results, the levels of the three major requirements 
(presence, usability, and performance) could be estimated.  
Then, we can proceed to tuning the three requirements.  
When we have to improve performance (that is, the 
current level of performance is not satisfactory), we can 

decide which should be considered to be simplified 
between the current node and its child nodes by comparing 
two groups of data. 

Though there have been some research studies 
quantifying the benefits of objects [11][12], these benefit 
models are not appropriate to apply to our research, 
because a complete benefit model should consider many 
subjective factors that presence and usability have. 

6. Development Process in CLEVR/PVoT 

Fig. 6 shows the whole development process applying our 
methodology and tools to the design of VR content.  The 
major part of system specification in CLEVR/PVoT 
consists of scenarios, sequence diagrams, scene graphs, 
class diagrams, and explicit representation constructs of 
form, function, and behavior of objects that appear in the 
requirements. 

7. Example Applications 

This section demonstrates our work by illustrating three 
example applications, which have been built using our 
approach and tools.  They show the effectiveness of our 
method in terms of the quality of the resulting VR contents 
and reduced effort in their development and maintenance. 

7.1 Ship Simulator 

 
 
 
 
 
 
 
 
 

Fig.7 A snapshot of the ship simulator built and tested using PVoT. 

The major purpose of the “Ship Simulator” example 
application is to assist trainee to navigate in and out of the 
pier and come to an anchorage without colliding with 
other vessels or the coast.   

The specification of the Ship Simulator, according to 
the spiral process of CLEVR, will proceed first by listing 
the basic requirements, sketching the rough scenario, 
identifying the important objects and their relationships, 
and designing their basic functionalities (first stage).  Then 
additional requirements such as interaction design, 
presence enhancement, and performance tuning are dealt 
with during the next stages of specification.  
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For the example of an object “Autoship” (which is 
navigating automatically and change their orientation and 
speed when some conditions are met), at the first stage, we 
concentrated on the basic and essential functionalities of 
objects.  Fig. 8 shows the behavior specification of the 
automatically navigating AutoShips.  

 
 
 
 
 
 
 
 
 
 
 

Fig.8 The first Statecharts of AutoShip. 

Table 1: Simulation results with the 4 first-level AutoShips. 
frame rate 63.07 frames/sec
updating time 26.21 %
Drawing time 72.69 %
Collision checking time 1,1 %

 
At this stage, we can run a simple simulation to 

estimate the performance of the system and validate the 
basic requirements.  Before fixing the distribution and the 
complexity of Autoships, we arbitrary choose four as the 
number of Autoships in this estimation.  Table 1 shows the 
four performance results in terms of the frame rate and the 
ratio of each of updating time, drawing time and collision 
checking time in a frame time.  Though the drawing time 
takes up the most portions (72.69%) in a frame time, the 
overall performance is very fast (63.07 frame/sec).  We 
can now decide whether to refine the behavior or form of 
objects or increase the number of Autoships in order to 
enhance presence (or usability), because performance 
degradation caused by refinement or changes of 
distribution of objects would be permissible to some 
extent.  In the next stage, we decide to refine the behavior 
of AutoShip before adjusting the number of them. 

Now, we are ready to further refine the behavior of 
Autoships interactively as we observer the overall scene.  
The major new features added are more detailed 
movement (pitching and rolling) of vessels and collision 
detection.  In this refined specification (Fig. 9), AutoShips 
moves back for 5 seconds when they go out of the 
boundaries of the world model or when they collide with 
other vessels. 

At this stage, we can run another simulation to 
estimate the performance of the system using various 

distributions of AutoShips.  (We can postulate that, 
because there are relatively many AutoShips, it might 
dominate the load on the processor and the graphics 
board.)  Table 2 shows the performance results of three 
cases (the number of AutoShips are 4, 8, 12).  Based on 
these results, we can decide the proper number of 
Autoships by considering the requirements.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig.9 The second (refined) Statecharts of AutoShips. 

Table 2: Simulation results with various distributions of the second-level 
AutoShips. 
 4 ships 8 ships 12 ships 
frame rate (frames/sec) 43.88 29.9 19.24
updating time (%) 49.43 71.69 56.05
drawing time (%) 50.41 7.04 8.95
collision checking (%) 0.16 21.26 35.0

7.2 Ubiquitous Computing Environments Simulator 

In this application, we proposed to use PVoT to quickly 
build a virtual ubiquitous computing environment [40].  
We have created four sets of components in PVoT for this 
purpose: (1) sensors, (2) displays, (3) processing objects, 
and (4) data collection objects.  The first three types of 
objects are used for quickly prototyping and planting 
ubiquitous computing subsystem in the virtual 
environment.  They are easily reusable within PVoT and 
can be adapted as needed; its function or behavior can be 
altered easily at different levels of abstraction.  The data 
collection objects are used for collecting usability data 
such as performance measurements and survey answers.   

Such a virtual ubiquitous computing environment can 
be effectively used for system architects to walk through 
and present various scenarios, to validate interaction 
usability and simply as software testing platforms. 

7.3 Learning VR 

In this application, PVoT has been used in the 
“Introduction to Virtual Reality” course three times since 
spring 2005.  Most students had basic understanding of 
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how to program, but had little or no experience in 
computer graphics, 3D programming API’s, dealing with 
various sensors, devices, and displays. 

PVoT helped students interactively try out and 
explore different virtual object/scene configurations and 
immediately see their impact with respect to system 
performance, interaction usability, realism, and presence.  
PVoT is designed at an abstraction level appropriate for 
even non-computer science major students to quickly learn 
and understand the need of a structured development 
approach.  Having learned the merits of the structured 
approach firsthand, the students effectively put it to use in 
the second stage of the course for implementing a more 
sophisticated class project. For a more detailed report of 
our experience, please refer to [41]. 

8. Conclusion 

The objective of this research was to solve the three major 
problems inherent to developing VR content.  Which are: 

1. The difficulty to efficiently maintain the three 
important requirements of virtual environments, 
presence, usability, and performance. 

2. It is complex to design, implement, and validate VR 
object while considering their interrelated three 
aspects form, function, and behavior. 

3. The physical/logical gap between development 
environments and execution environments bring 
about significant time and effort. 
To solve the above problems, we have presented a 

comprehensive structured methodology for building VR 
systems, called “CLEVR”, and an integrated development 
tool, called “PVoT.”  The underlying modeling 
philosophies of CLEVR are the concurrent consideration 
of form, function, and behavior, hierarchical and 
incremental development and simulation, and spiral 
modeling process.  The major feature of PVoT was the 
interactive kernel for explorative virtual world 
construction.  Developers can try out and explore different 
configurations of the constituents of the virtual 
environment and immediately see their impact (within the 
virtual world in construction) and optimize the content 
along the dimensions of performance, interaction usability, 
realism, and presence.  The kernel is based on a flexible 
object model (POM), and when used appropriately with 
off-line mark up specifications like PVML and PVDC, it 
can help fine tune the virtual world in construction fast.  
The POM reduces the inherent complexity of VR objects 
by providing an integrated and high-level object model for 
VR objects and formalizing behavior through the use of 
Statecharts.  The POM also provides high reusability of 
VR objects and each aspect of an object. 

It would be quite difficult to quantitatively show the 
utility or effectiveness of the proposed methodology and 

tools in terms of reduced cost in development and 
maintenance, due to the lack of objective metrics and the 
qualitative and even fuzzy nature of most software 
engineering studies.  In addition, applying a structured 
design method makes sense when the target system is 
relatively large and highly complex.  Enriching VR 
contents often amounts to increasing the number of objects, 
and detailing their behavior and interactions.  Accurate 
(computational, storage and graphics subsystem) cost 
models would be required to predict how the system will 
behave when a system scale up occurs. 

We claim that a structured and interactive approach 
such as CLEVR/PVoT enables and effective exploration 
of various alternatives for a domain with fairly large 
design possibilities such as VR systems (e.g. with respect 
to performance, usability, and presence).  Without the 
exact model of what constitutes a “highly present” VR 
content, choosing the final system configuration is 
basically a trial-and-error process, dependent on the 
perception of the system developer, thus always subject to 
change and further tuning.  It goes without saying that 
simply leaving at least rough specifications of the VR 
objects and their organizations, documenting the 
functional requirements and rationale of the design 
choices would prove to be beneficial in later maintenance.  
Moreover, the incremental and interactive validation of the 
model is likely to reduce the cycles of the usual trial-and-
error process of system tuning for the required 
performance and usability and change in content and 
interaction methods. 
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