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Summary 
Modeling of network-faults based time-sequence data by 
piecewise constant intensity function has been carried out using a 
heuristic approach that employs both Markov Chain Monte Carlo 
approach (MCMC) and Dynamic Programming algorithm (DPA) 
methodologies. The results for synthetic as well as for real data 
show that both MCMC and DPA have close agreement between 
predicted and actual values. Remarkable speedup (4 to 5 times) 
has been observed by augmentation of the heuristic method. Due 
to higher efficiency the proposed approach is well suited for 
cases with larger data sets requiring near-optimal solution.  
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1. Introduction 

Random event sequences are encountered in a wide 
variety of applications, e.g., telecommunications networks, 
server logs and patient treatments. Events are normally 
tagged by event type and time of occurrence. In a typical 
situation, an event sequence may consist of hundreds of 
thousands of events. Telecommunications networks grow 
rapidly with the availability of devices based on newer 
technologies. 

Modern communications devices send signals to 
management software over the network. These devices 
report their status and alarms to network management 
software for central monitoring. Alarms are indicators of 
various problems in the network [6]. This data often goes 
through correlation filters. It contains hundreds of 
different event types.  

The characteristics of the data change as the result of 
changes in the network structure. Automatic methods to 
detect changes in intensities between stable periods are of 
interest for such data analysis. Detection of change points 
allows compression of very long sequences of alarm data, 
which can later be correlated to original alarm data to find 
interaction patterns.  

Detection of change in the density of event 
occurrences as a function of time is of prime importance 
for network fault analysis. A sequence of conditionally 
independent events is based stochastically on some 
underlying process which may be described by an 
intensity or frequency distribution function. Such a 
process can be modeled as a Poisson or Normal 
distribution depending on real-time frequency distribution.  

In this work a Bayesian model similar to [2, 8, 9] to 
find change-points in the sequence of telecommunications 
events is proposed. We have carried out several 
simulations to segment data in piecewise constant intensity 
functions. Based on Poisson likelihood criterion we chose 
the optimal piecewise constant intensity function. We 
compare the results of these simulations with those 
obtained with dynamic programming algorithm [12, 7] to 
obtain optimal piecewise constant intensity functions. 

In this paper, first a Bayesian model has been 
developed with fixed dimensions for parametric estimation 
of change points. A Markov Chain Monte Carlo method is 
then used to sample from the target distribution. Later, a 
methodology to find change-points using dynamic 
programming as a non parametric approach is utilized. A 
likelihood criterion to choose optimal solution from 
available solutions is then applied along-with heuristic for 
speeding up the proposed methods. The results for a 
typical telecommunications network alarm data and 
synthetic data sets are then compared to establish best 
fitted data with models.  

The paper is organized as following. Hierarchical 
Bayesian model and dynamic programming algorithm 
based approaches for change-point detection are described 
in Section 2. Poisson likelihood criterion to choose 
optimal solution is outlined in Section 3. Heuristic 
speedup of MCMC and DPA are discussed in Section 4. In 
Section 5, results from trails on data sets are given. 
Section 6 is a brief conclusion.  
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2. Fault detection 

To approximate piecewise constant intensity function 
[5], one needs to find time points where changes in 
intensity of events have occurred. Optimal intensity is then 
number of events divided by the length of the time period 
for discovered piece. Once these change points of an 
optimal piecewise constant intensity function are known 
we can compute intensity values giving likelihood solution. 
The change-points of the optimal piecewise constant 
function are always at occurrence times of the data 
sequence. Detection of changes in data has been done 
using variety of different methodologies [1]. Hierarchical 
Bayesian model and Dynamic programming have only 
been employed in this work to find change points. 

2.1 Hierarchical Bayesian model 

Arrival times of events can be modeled with a 
discrete time Poisson counting process [12]. The numbers 
of events counted in equal sized intervals (bins or time-
points) obey Poisson distributions. So, we can write 
statistically:  

( )iy kλP      (1) 

where  are 

bins or time points in each segment k  of the observed 
data with a Poisson parameter 

1[ 1,..., [, 1,...,k k ki I c c k K−∈ = + =

λ .  is the sample point 
after which the k

kc
th change occurs in the event sequence 

data. By convention 0 sc T=  and K ec T= , where sT  and 

 are start and end times of observation period [ ,eT ]s eT T . 
In other words, the actual change locations are 

k kt c T τ= +  with 0 Tτ≤ < , where T  is the sampling 
period.  

Segmenting an event sequence means the estimation 
of parameters K ,  and 1( ,..., )Kc c c −= 1

1( ,..., )Kλ λ λ=  from the discretized data 

1( ,..., )ny y y= . A hierarchical Bayesian model has been 
used in this work for segmentation of data similar to [2] 
for the estimation of these parameters. Bayesian estimation 
of these parameters requires prior information about the 
location of change-points and the Poisson parameters to be 
known.  

The use of hyper-parameters improves the robustness 
in estimation of parameters [10]. This, however, increases 
difficulty in estimation of Maximum a posteriori (MAP) or 
minimum mean square (MMSE) estimators [2]. Markov 
Chain Monte Carlo (MCMC) methods can then be used to 
draw samples according to the posteriors of interest and 

the Bayesian estimators can be computed from these 
simulated samples. 

The unknown parameters include K , 

1( ,..., )Kc c c −1=  and 1( ,..., )Kλ λ λ= . A standard 
procedure consists of introducing indicator function 

, {1,..., }ir i n∈  such that  if there is a change-point 

at time point i  and 

1ir =
0ir =  otherwise. Using 1nr = , the 

number of change-points and the number of steps become 

equal to 
1

n
ii

K = r
=∑ . The unknown parameter vector 

resulting from this re-parameterization is ( , , )r Kθ λ=  

with 1( ,..., )nr r r=  and 1( ,..., )Kλ λ λ= .  

The unknown parameter vector θ  belongs to a space 
whose dimension depends on K  i.e. 

. It is proposed that the estimation 
of unknown parameter vector 

{0,1} Rnθ ∈Θ = × K

θ  should be carried out 
using Bayesian estimation theory. Bayesian inference on 
θ  is based on the posterior distribution ( | )f yθ . The 
likelihood of the observed data vector  can be expressed 
as [2]:  

y

( )

1

1
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( | )
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where ( )
k

k i I
s r y

∈
= i∑  (number of events in the kth 

segment) and 1( )k kn r c c −k= −  (number of time points 
in the kth segment). It is assumed that the probabilities of 
having 0ir =  and 1ir =  are a priori independent [8]. If 

 is the probability of  then indicator prior 
distribution of  being Binomial can be written:  
P 1ir =

r
1

1
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n
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− −
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Using Gamma distributions ( , )iy ν γG  as priors for 

Poisson parameters kλ , with ν  being constant and γ  as 

an adjustable hyper-parameter, the prior distribution of λ  
can be written as [2]:  

(1 1
R

1

( | ) ( )
( )

K
kk

K K

k k
k

f e
ν

ν λ νγ )λ γ
ν

=
+

− −

=

⎛ ⎞ ∑= ⎜ ⎟Γ⎝ ⎠
∏ λ λΙ  (4) 

R
( )kλ+Ι  is the indicator function defined on R+  

such that 
R

( ) 1kλ+Ι =  if 0kλ ≥  and 
R

( ) 0kλ+Ι =  

otherwise.  
The parameters  and P γ  needs to be fixed based on 

information about event sequence. But to increase the 
robustness of the algorithm these parameters can be 
considered as random variables with non-informative 
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priors. So parameters P  and γ  need to be treated as 
hyper-parameters for assumed priors r  and λ  
respectively. The hyper-parameter P  can be assumed to 
be from a uniform distribution on [0 . The hyper-
parameter 

,1]
γ  has been taken as non-informative Jeffreys' 

prior. Both P  and γ  are assumed a priori independent 
[2]. 

The posterior distribution of the unknown parameter 
vector ( , )rθ λ=  and the hyper-parameter vector 

, )P γφ = (  can be computed from this hierarchical 
model:  

( | ) ( , | )f y f dθ = φ φ∫ yθ    (5) 

The integration of parameters kλ  and  yields [2] 
the following mathematical expression:  

P

( )
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( ( ) )( , | ) 1
( | ) ( ) ( ( ) ) k

K K
k

n r
k k

n rf r y
C r y s r
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γ ν γ +

=

⎛ ⎞ Γ +
∝ ⎜ ⎟Γ +⎝ ⎠
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The posterior distribution as in Eq. 6 is quite complex. 
It is difficult to obtain closed-form expressions of the 
Bayesian estimators. A Gibbs sampling strategy, without 
reversible jumps can now be employed to estimate 
change-points. This can be done by sampling from 
conditional distributions ( | , )f r yγ  and ( | , )f r yγ  [2].  

2.2 Standard dynamic programming algorithm 

Standard Dynamic programming algorithm visits all 
the data points and describes the state of system based on 
maximum likelihood principle. It produces best known 
results however its execution cost is highest. It considers 
all the data points as potential change-points and number 
of maximum pieces is equal to size of the data set. 
Maximization of likelihood principle requires the 
knowledge about the origin of intensity and helps in 
selection of optimal number of pieces.  

The time interval [ , ]s eT T  is divided into n  

independent parts and record time points for n 1−  
potential change-points. Let us denote the data sequence 
by E  and the occurrence times of the events of E  by 

. Thus, :1it i≤ ≤

The last change-point of the optimal k  piece 
function with  is denoted as the end point of the time 

period by . It is assumed now that change-points 

of the optimal piecewise constant functions with k  pieces 
in 

it
( , )iC k t

[ , ]s iT T  are known for all  with  . Now the 
question is: how to find the change-points of the optimal 
function with 

it i k≤

1k + pieces? The L k  is the 

(maximum) likelihood (of the data 

( , , )i jt t
E ) with an optimal 

piecewise constant intensity function having k  number of 
pieces and the observation interval [ , . Then the 

maximum likelihood of the function with 

]i jT T
1k +  pieces is 

given by 
( 1, , ) max( ( , , ) (1, , ))s j s i i jL k T t L k T t L t t+ = +  (8) 

The standard algorithm computes the optimal division 
-into  pieces in the time interval [ ,k ]s iT t  for all  and 
uses these results when computing the best divisions into 

it

1k +  pieces. Then the change-points of the function are 
detected using backward substitutions. The standard 
dynamic programming algorithm finds both the optimal 
solution in the time range [ , ]s eT T  and also for all sub-

ranges [ , ]s iT T . The time requirement of the of the 

algorithm is of the order of . The space required is of 
the order of kn  due to storing values for all the sub-
ranges and division sizes.  

2kn

The dynamic programming algorithm uses a function 
L  that calculates likelihood for varying length data 
segments or pieces. The calculation of this likelihood 
function depends on the probability distribution assumed 
for the process that generated the observed data. We 
assume only Poisson and Normal processes responsible 
intensity modeling and list their likelihood functions to be 
evaluated by standard dynamic programming algorithm. 

For an event sequence S , which contains only 
events of a single event type 

1 2{( , ), ( , ),..., ( , )}tnS e t e t e=  with a time dependent 

intensity function ( )tλ  the observation range being 

[ , ]s eT T . Let us split the observation range into “short” 

M  intervals of length h  (where ( )s e /M T T h= −  and 

denote the intervals by ; 1,...,k k MΔ =  and assume 
events in disjoint intervals are independent. Furthermore, 
we introduce the indicator function I  such that ( ) 1I Δ =  
if an event occurred during the period Δ  and ( ) 0I Δ =  
otherwise.  

n 1 2 ...s nT t t t T< < < < < e , where 

sT  and  are the start and end points of the observation 
period. It is assumed that the change-points of the optimal 
piecewise constant intensity function with k  pieces are 
known, and are denoted by a set .  

eT

1늿{ ,..., }kc c  
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Assuming ( )tλ  as rate parameter drawn from 
Poisson distribution, we can write the Poisson likelihood 
[3] as 

( )

1

exp( ( ))( | ) ( ( ))
( )!

k

M
Ik

k
k k

L S
I
λλ λ Δ

=

− Δ
= Δ

Δ∏   (9) 

1 1

( | ) exp ( ) ( )
MM

k k
k k

L S λ λ
= =

⎛ ⎞= − Δ⎜ ⎟
⎝ ⎠
∑ ∏ tλ   (10) 

( )
1

( | ) exp ( ) ( );(  0)e

s

MT

kT
k

L S t dt t when hλ λ λ
=

= − →∏∫  (11) 

After by taking logarithms, we obtain log-likelihood 
for Poisson process as 

1
( | ) ( ) ln( ( ))e

s

MT

kT
k

l S t dt tλ λ λ
=

= − +∑∫   (12) 

Assuming ( )tλ  as rate parameter drawn from 
Normal distribution, the likelihood for the regular Normal 
distribution is calculated as following [4]:  

2

22
1

( ( ) )1( ; , ) exp
22

M
k

k

IL λλ σ
σπσ=

⎛ Δ −
Δ = −⎜

⎝ ⎠
∏

⎞
⎟  (13) 

After by taking logarithms, we obtain log-likelihood 
for Normal process as 

2
2

1

( ; , ) ln(2 ) ln( )
2

1 ( ( ) )
2

M

k
k

Ml M

I

λ σ π

λ
σ =

Δ = − −

− Δ −∑

σ   (14) 

The evaluation of likelihood function is done by 
estimating the parameters of likelihood expression for 
each piece encountered by standard dynamic programming 
algorithm. Standard Dynamic programming algorithm is 
known to have complexity of the order  both in 
terms computations and memory requirements. Its 
performance does not depend on number of events or the 
length of monitoring interval. It depends on how the 
monitoring interval is discretized. The likelihood function 
calls increase monotonically as the discretized data set size 
is increased.  

2( )O n

To estimate execution time of standard dynamic 
programming algorithm several simulations were carried 
out. Various discretized data set sizes ranging from 200 
samples to 10,000 samples were used. The execution times 
are found to be between fractions of a second to twenty 
five hours. For further details about execution times of 
standard dynamic algorithm, please see [7]. 

3. Optimal piecewise constant intensity 
function 

A piecewise constant frequency distribution has the 
following form: 

1;  ; 1,...,
( )

0;
i i iwhen c t c i n

t
otherwise

λ
λ − ≤ ≤ =⎧

= ⎨
⎩

  (15) 

The values 0 sc T=  and  are the start and 

end times of the observation period, the values 
nc T= e

iλ  are the 

intensity values in ith piece and  are the 
change-points of the function. For Poisson process, the 
log-likelihood [11] of data S  given a piecewise constant 
intensity function with  pieces yields:  

1 1{ ,..., }nc c −

n

11 1
( | ) ( ) ln{ ( )}k

k

n nc

kc
k k

l S t dt tλ λ λ
−= =

= − +∑ ∑∫   (16) 

MCMC algorithm described in Section 2 partitions 
the data into piecewise constant intensity function with  
segments and 

k
1k −  change-points. In each run a different 

value of k  and different locations of change-points has 
been used. Similarly with the dynamic programming 
algorithm, the data can be partitioned into piecewise 
constant intensity function with  segments 
and respective change-points. Eq. 16 has been used to 
select the optimal piecewise constant intensity function 
from various piecewise constant intensity functions 
computed from trials. 

2,..., 1k n= −

4. MCMC-DPA Hybrid Methodology 

The standard MCMC and dynamic programming 
algorithms require huge runtimes for large discretized data 
sets. All time points in both algorithms are considered as 
potential change-point candidates for obtaining piecewise 
constant intensity functions. Both of these algorithms are 
modified to accept a reduced list of potential change-point 
candidates. This list stores pre-selected indices of 
discretized time points.  

One of such possibility is logarithmic selection from 
with in the set of all potential candidates. The selection of 
the potential change-points is carried out by choosing 
every kth time point of the discretized sequence to the 
candidate set. We first set k  equal to 2  where  is the 
greatest integer satisfying  and  is the number of 
time points in the sequence. Then we decrease r  by one, 
in steps. This procedure reduces the execution time of 
MCMC and dynamic programming algorithm irrespective 
of results of approximation.  

r r
2r n< n

Details regarding reduction in execution times of 
dynamic programming algorithm may be found in our 
previous work [7].  
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5. Empirical Results 

Several constant intensity functions were generated 
with the MCMC and dynamic programming algorithms on 
both synthetic as well as real data sets used in this work. 
The results show differences between the computed 
piecewise constant intensity functions. A lot of change-
points are however found common to both MCMC and 
dynamic programming algorithms when Poisson 
distribution is considered as underlying process. Results 
for instantaneous intensity data set made with Gamma 
distribution are shown in Fig. 1.  

 

Fig. 1 Change-points of 103-piece division of instantaneous intensity data 
set made with Gamma distribution: MCMC (a) standard DPA Poisson (b) 

standard DPA Normal (c) 

Both MCMC and dynamic programming algorithm 
segment a given data set to form piecewise constant 
intensity functions with variable number of pieces. Each 
run of MCMC algorithm can compute a different 
piecewise constant intensity function with different 
number of pieces. The range of number of pieces is found 
to short when compared to dynamic programming 
algorithm. The dynamic programming algorithm is 
capable of segmenting a data set in  pieces. : 2,..., 1k n −

To select optimal piecewise constant intensity 
function, each piecewise constant intensity function has to 
be evaluated with Eq. 16. The one giving the maximum 
value will be the optimal. Results show that piecewise 
constant intensity functions with MCMC algorithm fall 
between those obtained with dynamic programming 
algorithm using Poisson distribution and Normal 
distribution based likelihood functions.  

We now present these results for our data sets 
generated with exponential distributions. We use all the 
time points of our data sets as potential candidates to 
compute piecewise constant intensity functions. Constant 
intensity functions using Bayesian modeling have been 
computed using MCMC simulation of Eq. 6. We use Eq. 
12 and 14 with the dynamic programming algorithm for 
Poisson and Normal distribution based change-points. The 
values obtained from Eq. 16 for each piecewise constant 
intensity function are referred as likelihood curves.  

Fig. 2 shows the likelihood curves for our constant 
intensity data set. Likelihood curve for MCMC algorithm 
gains maximum value for 163 piece division. MCMC 
algorithm is found to partition the data set between 167 
and 198 pieces. Maximum gain in likelihood for Poisson 
distribution based change-points found using dynamic 
programming algorithm is found at 92 pieces. For Normal 
distribution based change-points found using dynamic 
programming algorithm, we get the maximum gain in 
likelihood when data is divided into 162 pieces.  

 

Fig. 2 Likelihood of piecewise constant intensity function: Exponential 
data set with constant intensity. 

Fig. 3 provides results of trials related to increasing 
intensity data set produced with Exponential distribution. 
Likelihood curve for MCMC algorithm yields maximum 
value for 100 piece division. MCMC algorithm is found to 
partition the data set between 81 and 115 pieces. The 
maximum value for likelihood is found at 109 pieces for 
Poisson distribution based change-points (DPA). The 
maximum value of likelihood using Normal distribution 
based change-points (DPA) is achieved for division of 50 
pieces.  

 

Fig. 3 Likelihood of piecewise constant intensity function: Exponential 
data set with increasing intensity. 
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Results for varying intensity data set constructed 
from Exponential distribution are shown in Fig 4. 
Likelihood curve for MCMC algorithm yields maximum 
value for 130 piece division. MCMC algorithm is found to 
partition the data set between 130 and 154 pieces. The 
maximum value for likelihood using Poisson distribution 
based change-points (DPA) is observed when 99 pieces 
are used. The maximum value of likelihood for Normal 
distribution based change-points (DPA) is achieved when 
63 pieces are employed.  

 

Fig. 4 Likelihood of piecewise constant intensity function: Exponential 
data set with varying intensity. 

When instantaneous intensity data set is employed, 
likelihood curve for MCMC algorithm gains maximum 
value for 98 piece division. MCMC algorithm is found to 
partition the data set between 96 and 103 pieces. We find 
maximum value for likelihood at 99 pieces for Poisson 
distribution based change-points (DPA). The maximum 
value of likelihood using Normal distribution based 
change-points (DPA) is achieved at 65 pieces. These 
results are shown in Fig. 5. 

 

Fig. 5 Likelihood of piecewise constant intensity function: Exponential 
data set with instantaneous intensity. 

In second part, the effect of reducing time points as 
potential change-points is observed. MCMC and dynamic 
programming algorithms are used with reduced number of 
potential change-point candidates based on logarithmic 
selection to find optimal constant intensity functions. 
Logarithmic selection decreases the required time to 
construct a piecewise constant intensity function 
exponentially with both MCMC and dynamic 
programming algorithms.  

Fig. 6 shows likelihood values computed for optimal 
constant intensity functions employing the constant 
intensity data set using the Exponential distribution. The 
likelihood curves for MCMC and dynamic programming 
algorithm with Poisson and Normal distribution change 
points have increasing trend. The likelihood curve for 
MCMC stays below dynamic programming based change 
points with reduced candidates all the time.  

 

Fig. 6 Effect of candidate selection on likelihood: Exponential data set 
with constant intensity. 

Likelihood values computed for optimal constant 
intensity functions employing the increasing intensity data 
set made from Exponential distribution are shown in Fig. 7. 
Again the likelihood curves for MCMC and dynamic 
programming algorithm with Poisson and Normal 
distribution change points have increasing trend. The 
likelihood curve for MCMC stays below dynamic 
programming based change points with reduced 
candidates all the time. 
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Fig. 7 Effect of candidate selection on likelihood: Exponential data set 
with increasing intensity. 

Likelihood values computed for optimal constant 
intensity functions employing the varying intensity data 
set made from Exponential distribution are shown in Fig. 8. 
The likelihood curves for MCMC and dynamic 
programming algorithm with Poisson and Normal 
distribution change points have increasing trend. The 
likelihood curve for MCMC stays below dynamic 
programming based change points with reduced 
candidates all the time. 

 

Fig. 8 Effect of candidate selection on likelihood: Exponential data set 
with varying intensity. 

Results of instantaneous intensity data set obtained by 
using Exponential distribution are shown in Fig. 9. The 
likelihood curves for MCMC and dynamic programming 
algorithm with Poisson and Normal distribution change 
points have increasing trend.  

 

Fig. 9 Effect of candidate selection on likelihood: Exponential data set 
with instantaneous intensity. 

For exponential samples with increasing intensity, the 
optimal piecewise intensity function has been computed 
using both standard dynamic programming and MCMC 
algorithms. Fig. 10 shows an optimal 109-piece constant 
intensity function computed using Poisson likelihood 
function using standard DPA. An optimal 50-piece 
constant intensity function computed with the Normal 
likelihood function using standard DPA is shown in Fig. 
11. An optimal 100-piece constant intensity function 
computed with the MCMC algorithm is shown in Fig. 12. 

 

Fig. 10 Optimal piecewise constant intensity function computed using 
standard DPA Poisson likelihood.  
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Fig. 11 Optimal piecewise constant intensity function computed using 
standard DPA Normal likelihood.  

 

Fig. 12 Optimal piecewise constant intensity function computed using 
MCMC algorithm.  

Table 1 through 2 show the results of optimal 
piecewise partitioning of the data sets with the help of 
Poisson and Normal distributions using dynamic 
programming and MCMC algorithms for finding change 
points. We have listed mean squared error values when an 
approximation is compared to the original discretized data. 
Optimal piecewise constant intensity functions are 
computed with all and varying number of change-point 
candidates.  

 

Table 1: Comparison of intensity functions (using standard, improved 
DPA and MCMC) against real intensities using mean squared error. 

 
 

5. Conclusion 

Optimal modeling of time-sequence data by 
piecewise constant intensity functions by MCMC with 
fixed dimensions and dynamic programming have been 
performed. The conclusions from the current study are the 
following: 
• Piecewise constant functions can be used in a flexible 

manner to represent time-sequence data.  

• Augmentation of MCMC and standard dynamic 
programming algorithm by heuristics method has 
been found to yield remarkable speedup at the cost of 
minor loss in the accuracy of results.  

• MCMC algorithm computes optimal piecewise 
intensity function with approximately same number of 
pieces as computed with dynamic programming 
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algorithm when Poisson distribution is considered as 
underlying process. 

 
 

Table 2: Comparison of intensity functions (using standard, improved 
DPA and MCMC) against real intensities using mean squared error. 
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