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Abstract 
Long-range dependence characteristics have been observed in 
many natural or physical phenomena. In particular, a significant 
impact on data network performance has been shown in several 
papers. Congested Internet situations, where TCP/IP buffers 
start to fill, show long-range dependent (LRD) self-similar 
chaotic behaviour. The exponential growth of the number of 
servers, as well as the number of users, causes the performance 
of the Internet to be problematic since the LRD traffic has a 
significant impact on the buffer requirements. The Internet is a 
large-scale, wide-area network for which the importance of 
measurement and analysis of traffic is vital. The intensity of the 
long-range dependence (LRD) of communications network 
traffic can be measured using the Hurst parameter. A variety of 
techniques (such as R/S analysis, aggregated variance-time 
analysis, periodogram analysis, Whittle estimator, Higuchi’s 
method, Wavelet-based estimator, absolute moment method, 
etc.) exist for estimating Hurst exponent but the accuracy of the 
estimation is still a complicated and controversial issue. Earlier 
research [1] introduced a novel estimator called the Hurst 
Exponent from the Autocorrelation Function (HEAF) and it was 
shown why lag 2 in HEAF (i.e. HEAF (2)) is considered when 
estimating LRD of network traffic. HEAF estimates H by a 
process which is simple, quick and reliable. In this research we 
extend these concepts by introducing a novel algorithm for 
controlling the long-range dependence of network traffic, 
named CoLoRaDe which is shown to reduce the LRD of packet 
sequences at the router buffer. 
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Introduction 

The importance of Long-Range Dependence (LRD) in 
traffic engineering problems, such as traffic measurement, 
queuing behaviour and buffer sizing, admission control 
and congestion control, is vital. The research in  [2] 
shows that the consequences of LRD are packet delays 
and application level delays that cause a heavy-tailed 
distribution. TCP estimates the round trip timer values 
from the peer acknowledgements and as a result 
congestions appear more frequently while maintaining 
the impulsive behaviour with increase in load. The 
influence of LRD properties on the delay performance at 
packet and application level is reported in [3] and metrics 
of network performance, such as throughput, packet loss, 
latency and buffer occupancy levels, are affected by the 
presence of LRD phenomenon across many types of 
networks. The work in [3] also claims that packet delay 
behaviour tends to be more heavy-tailed in the case of 
LRD traffic while the congestion window size is 
increased. The impact of LRD on quality of service 

(QoS) has been analysed in [4] showing that, the greater 
the LRD, the lower the QoS.  

The LRD property of traffic fluctuations has important 
implications on the performance, design and 
dimensioning of the network [5]. A simple, direct 
parameter, characterizing the degree of long-range 
dependence, is the Hurst parameter. The Hurst exponent 
(or Hurst parameter, H), which more than a half-century 
ago was proposed for analysis of long-term storage 
capacity of reservoirs [6], is used today to measure the 
intensity of LRD in network traffic. A number of 
methods have been proposed to estimate the Hurst 
parameter. Some of the most popular include the 
aggregated variance time (V/T) [7], Rescaled-range (R/S) 
[5, 6], Higuchi method [8], wavelet-based method [9, 10] 
although there are many others. In all these methods, H is 
calculated by taking the slope from a log-log plot. Over 
time, the wavelet-based Hurst parameter has acquired 
popularity in estimating LRD traffic. However the study 
[11] explored the advantages and limitations of wavelet 
estimators and found that a traffic trace with a number of 
deterministic shifts in the mean rate results in a steep 
wavelet spectrum, which leads to an overestimate of the 
Hurst parameter. The intensity of long-range dependence 
is measured for file size or document size [12], packet 
counts (number of packets per unit time) [13, 14, 15], 
inter-arrival time [16, 17], frame size [18], connection 
size [19], packet length [20], number of bytes per unit 
time [5], Bit or byte rate [21] amongst others. 

This paper is organised as follows. Section 2 describes 
the definitions of self-similarity, long-range dependence 
and the autocorrelation function. Section 3 elaborates the 
HEAF estimator. Section 4 introduces the algorithm 
CoLoRaDe and its function. Section 5 depicts the 
complexity of the CoLoRaDe by experimental analysis. 
Finally we draw a conclusion and suggest future works in 
section 6. 
 

2.   Self-similarity, Long-range dependence 
and Autocorrelation Function 

In general two or more objects having the same 
characteristics are called self-similarity. A phenomenon 
that is self-similar looks the same or behaves the same 
when viewed at different degrees of magnification or 
different scales on a dimension and bursty over all time 
scales. Self-similarity is the property of a series of data 
points to retain a pattern or appearance regardless of the 
level of granularity used and is the result of long-range 
dependence in the data series. If a self-similar process is 
bursty at a wide range of timescales, it may exhibit long-
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range- dependence. In general lagged autocorrelations are 
used in time series analysis for empirical stationary tests.  
Self-similarity manifests itself as long-range dependence 
(i.e., long memory) in the time series of arrivals. The 
evidence of very slow, linear decay in the sample lag 
autocorrelation function (ACF) indicates the 
nonstationary behaviour [22]. The research [23] shows 
that Internet traffic is nonstationary.  

Long-range-dependence means that all the values at 
any time are correlated in a positive and non-negligible 
way with values at all future instants. For a continuous 
time process ( ){ }0, ≥= ttYY  is self-similar if it satisfies 
the following condition [24]:  

 ( ) ( ) 10,0, <<>∀−= HandataYHa
d

tY    (2.1) 
where H is the index of self-similarity, called Hurst 
parameter and the equality is in the sense of finite-
dimensional distributions. 

The stationary process X is said to be a long-range 
dependent process if its autocorrelation function (ACF) is 
non-summable [25] meaning that ∞=∑

∞

∞−=k kρ   

The details of how ACF decays with k are of interest 
because the behaviour of the tail of ACF completely 
determines its summability. According to [5], X is said to 
exhibit long-range dependence if  

∞→
−− kasHktLk ,)22()(~ρ                (2.2) 

where 1
2

1
<< H and (.)L  slowly varies at infinity, i.e., 

,1
)(

)(
lim =
∞→ tL

xtL
t

for all 0>x   (2.3) 

Equation (2.2) implies that the LRD is characterized by 
an autocorrelation function that decays hyperbolically 
rather than exponentially fast.  

LRD processes are characterized by a slowly decaying 
covariance function that is no more summable. When the 
network performance is affected by LRD the data are 
correlated over an unlimited range of time lags and this 
property results in a scale invariance phenomenon. Then 
no characteristic time scale can be identified in the 
process, they are all equivalent for describing its statistics, 
i.e., the part resembles the whole and vice e versa. This is 
why LRD is also called Self-Similarity [26]. 

 

3.  HEAF: a ‘Hurst Exponent by 
Autocorrelation Function’ estimator  

A new estimator has been introduced [1] by extending the 
approach of Kettani and Gubner [27]. As in [27], for a 
given observed data iX  (i.e. nXX ,,.........1 ), the sample 
autocorrelation function can be calculated by the 
following method: 

Let ∑
=

=
n

i iX
n

n 1

1
μ̂    (3.1) 

and ( ) ( ) ( )nkiX
kn

i niX
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where k=0,1, 2, ….., n,    

with ( )0ˆ2ˆ nn γσ = .   (3.3) 
Then the sample autocorrelations of lag k are given by 

( )
2ˆ

ˆ
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n

kn
k

σ

γ
ρ =     (3.4) 

(Equations (3.1), (3.2), (3.3) and (3.4) denote the sample 
mean, the sample covariance, the sample variance and the 
sample autocorrelation, respectively). A second-order 
stationary process is said to be exactly second-order self-
similar with Hurst exponent 12/1 << H if 

]2)1(222)1([5.0 HkHkHkk −+−+=ρ   (3.5) 

From equation (3.5), Kettani and Gubner suggest a 
moment estimator of H . They consider the case where k 
=1 and replace 1ρ  by its sample estimate 1ρ̂ , as defined 
in equation (3.4). This gives an estimate for H of the form 

)1ˆ1(log
2log2

1

2

1ˆ ρ++= e
e

H   (3.6) 

Clearly, this estimate is straightforward to evaluate, 
requiring no iterative calculations. For more details of the 
properties of this estimator, see Kettani and Gubner [27]. 

An alternative estimator of H is proposed based upon 
equation (3.5), by considering the cases where k>1. Note 
that the sample equivalent of equation (3.5) can be 
expressed as 

   
.0}2)1(22

2)1{(5.0ˆ)(

=−+−

+−=

HkHk

HkkHf ρ
 (3.7) 

Thus, for a given observed kρ̂ , k>1, a suitable numerical 
procedure can be used to solve this equation, and find an 
estimate of H. This is denoted as a HEAF(k) estimate of 
H. 
To solve equation (3.7) for H the well-known Newton-
Raphson (NR) method is used. This requires the 
derivative of  f(H). Here note that k ≠ 1,  
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Hence, the algorithm to estimate HEAF(k), for any lag k, 
consists of the following steps: 
1. Compute the sample autocorrelations for lag k of a 

given data set by equation (3.4). (Note that iX  can 
be denoted as the number of bits, bytes, packets or 
bit rates observed during the i th interval. If iX  is a 
Gaussian process, it is known as fractional Gaussian 
noise). 

2. Make an initial guess of H, e.g. H1 = 0.6, then 
calculate H2, H3, H4,….., successively using 

)(/)(1 rHfrHfrHrH ′−=+ , until convergence, to 

find the estimate Ĥ  for the given lag k. An initial 
consideration is of the case where k = 2 in equation 
(3.2); i.e. HEAF(2) is considered first. 

One of the major advantages of the HEAF estimator is 
speed, as the NR-method converges very quickly to a root. 
There is no general convergence criterion for NR. Its 
convergence depends on the nature of the function and on 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007 
 

 

82

the accuracy of the initial guess. Fortunately the form of 
the function (i.e., equation (3.7)) appears to converge 
quickly (within at most four iterations) for any initial 
guess in the range of interest, namely H in (0.2, 1). If an 
iteration value, Hr is such that ( ) 0≅′ rHf , then one can 

face “division by zero” or a near-zero number. This will 
give a large magnitude for the next value, Hr+1 which in 
turn stops the iteration. This problem can be resolved by 
increasing the tolerance parameter in the NR program. A 
HEAF(k), for k = 2, …,11, have been considered and no 
difficulty in finding the root in (0.5, 1) have been 
encountered. 
 

4.  CoLoRaDe: an algorithm for controlling 
LRD traffic 

Figure 2 illustrates a schematic view of the operation of 
the CoLoRaDe algorithm at the router buffer. 
Here P1, P2, P3, ……, Pn are the slots of the packet 
sequences. 
S1, S2, S3, …….., Sn are the sets constructed by shuffling 
the slots of the packet sequences. 
P1S, P2S, P3S,……., PnS are the blocks (groups) of the 
sets  of the slots P1, P2, P3, ……, Pn respectively. 
(P1S)minH, (P2S)minH, (P3S)minH, ……., (PnS)minH are the 
individual sets of packet sequences from the blocks  (i.e. 
P1S, P2S, P3S,……., PnS) which possess the minimum 
Hurst parameter. In other words, each block (e.g. P1S) 
consists of several sets where one of the sets possesses 
the minimum value of Hurst parameter. 

Let us assume that the client networks (such as C1, C2, 
C3,….., Cn) are connected to the main Internet service 
provider (ISP) router.  The packet sequences from 
different sources are queued at the point Q. Then the 
packet sequences are slotted into various length (e.g. N = 
12, N = 25, N = 50 etc.) sequences. Each slot of these 
sequences is shuffled for a particular number of times so 
that it has several sets. Then the Hurst parameter (H) for 
each set of a slot is estimated by applying the algorithm 
(step 1 and step 2) given in section III. In other words, 
H’s have been estimated for P1S (i.e. P1S1, P1S2, 
P1S3,……., P1Sn), P2S, P3S,……., PnS  respectively and 
will be scheduled to the transmitter according to (P1S)minH, 
(P2S)minH, (P3S)minH, ……., (PnS)minH and finally sent out 
to the core network (i.e. Internet) on a FIFO basis as 
shown in figure. The CoLoRaDe algorithm is detailed in 
Figure 1. 

The algorithm is implemented in Java and a sample 
output given in Table I. Here the impact of Hurst 
estimates on the queuing process can be observed.  The 
Table in the appendix represents a sample of trace files 
that the CoLoRaDe algorithm uses. 
 

5.  Complexity of the algorithm, CoLoRaDe 
To explore the complexity of CoLoRaDe, we chose six 
workstations with different specifications which are 
represented in Table II. We investigated several lengths 
of packet sequences such as N = 1000, N = 2000, N = 
3000, N = 5000, N = 10000, N = 15000, N = 20000, N = 
25000, N = 30000, N = 35000, N = 40000, N = 45000 

and N = 50000. According to CoLoRaDe, these lengths 
of sequences have been slotted by considering a certain 
number of samples (NS). For instance,  for  N =1000, we 
slot this length of sequences by NS =12, NS =25, NS =50, 
NS =100, NS =200, NS =500 and  NS =1000. Similar 
procedures have been followed for other types of length 
of sequences. In our research we mainly concentrate on 
the time complexity of the algorithm. A router introduces 
delay (latency) as it processes the packets it receives. 
Consequently, time is a crucial factor here as we cannot 
accept increased delay in processing the packets. Figure 3 
represents the elapsed time observed using different PC’s 
for a particular length of packet sequences where we 
consider different number of samples (NS) in each slot. It 
is clear that smaller numbers of samples per slot in the 
length of packet sequences contribute to longer periods of 
elapsed time to execute the algorithm. NS = 200 per slot 
gives the best performance as the algorithm takes the 
least time to execute in this case when using PC2, PC3, 
PC4, PC5 and PC6.  
 

 
Figure 1.  The CoLoRaDe algorithm

 
noOfSets = Number of sets 
noOfSamples = number of samples (e.g. packet sequence) in a set 
N = Total number of incoming samples (e.g. packet) 
slot = N/noOfSamples 
temp = array of samples 
p = current slot 
 
Pick up the certain number of packets (X) from the router buffer 
that are waiting to be scheduled for transmission. 
 
acf () 
(This function calculates the samples autocorrelation function) 

1.  set p = 1 
2.  while (p<=slot) 

               i) set start = 1+ noOfSamples*(p-1) 
                   set end = noOfSamples * p 
             ii) set m = 0 
                    for n = start to end 
                       temp[m] = X[n]  // (copy all samples into 
                                                     temp) 
                       m = m+1 
             iii)    for  noOfShuffle = 1 to noOfSets 
                    a)  if not first set of samples 
                               then Shuffle(temp) 
                    b)  for i = 0 to noOfSamples  
                 setsOfShuffle[noOfShuffle] [i] = temp[i] 
                    c)   Find acf for setsOfShuffle 
                    d)   rk[ ] = acf   // copy acf of set of packet’s   
                                               sequences into rk 
                    e) call Heaf (rk[], Hursts[], noOfHurstParameter) 
             iv)  Find out the minimum Hurst parameter from the  
                   Hursts of all sets of samples (e.g. packet  
                   sequence) 
             v)  Find the set that corresponds to minimum Hurst  
                   parameter 
             vi) Transmit the set (of the packets) that contains  
                   minimum Hurst 
             vii)  p = p+1 (increment of slot number) 

3.  Go to step 1 until the packets awaiting at the router  
     buffer  
4.  End of acf () 

               
Heaf (rk[], Hursts[],noOfHurstParameter): this function 
estimates the Hurst parameter by HEAF(2) method for a given 
samples. 
Shuffle (array): this function shuffles the set of samples 
main (): this is the main method which calls acf () 
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Figure 2.  Illustration of packets management for controlling LRD at router buffer 

 
 

TABLE I.   SAMPLE  OUTPUT  BY  COLORADE  ALGORITHM 

Set # 1 
40.0   
45.0   
552.0   
40.0   
72.0   
80.0   
41.0   
40.0   
72.0   
44.0   
80.0   
40.0 

Set # 2  
40.0   
80.0   
44.0   
72.0   
40.0   
72.0   
45.0   
552.0   
40.0   
80.0   
40.0   
41.0   

Set # .3 
72.0   
40.0   
40.0   
552.0   
72.0   
80.0   
40.0   
44.0   
41.0   
45.0   
40.0   
80.0   

Set  # 4 
72.0   
72.0   
40.0   
40.0   
41.0   
44.0   
552.0   
80.0   
40.0   
40.0   
80.0   
45.0   

Set # 5 
552.0   
72.0   
44.0   
80.0   
40.0   
80.0   
41.0   
40.0   
40.0   
45.0   
72.0   
40.0   

Set # 6 
40.0   
80.0   
41.0   
72.0   
40.0   
552.0   
40.0   
44.0   
45.0   
40.0   
80.0   
72.0   

 
Estimated Hurst parameters for all sets are: 
 0.6654197669965659    
 0.6950803356916133    
 0.671880547095466    
 0.6465780923490018    
 0.6886795520389399    
 0.6736553256908231    
 
 *** Minimum Hurst is  0.6465780923490018 
 
The corresponding set (ready to transmit) is: 
72.0     
72.0     
40.0     
40.0     
41.0     
44.0     
552.0     
80.0     
40.0     
40.0     
80.0     
45.0     

 
 

Figure 4 depicts the elapsed time for a different length 
of packet sequences while the performance is observed 
with different PC’s. Number of packet sequences (NS) in 
each slot considered here are NS = 50, NS = 100, NS 
=200 and NS = 500. It is clear that PC5 outperforms for 
all cases as it contains higher specifications.   
 

TABLE II.      WORKSTATIONS WITH DIFFERENT SPECIFICATION 

Work station Specification 

PC1 Intel Pentium (R) 4, CPU 2.4 GHz, 512 MB of RAM 

PC2 Intel Pentium (R) 4, CPU 3.0 GHz, 0.99 GB of RAM 

PC3 Intel Pentium (R) 4, CPU 3.0 GHz, 504 MB of RAM 

PC4 Intel Pentium (R) 3, CPU 866 MHz, 384 MB of RAM

PC5 Intel Centrino Duo Core, CPU T2250 @ 1.73 GHz, 
1024 MB of RAM 

PC6 Intel Pentium (R) 4, CPU 1.80 GHz, 256 MB of RAM

 

6.  Conclusions and Future Work 
In this research we introduce a novel algorithm called 
CoLoRaDe to control the intensity of LRD traffic. 
Experimental results show that the CoLoRaDe is capable 
of reducing the LRD of packet sequences received at the 
router buffer before they are transmitted to the core 
network (i.e. Internet).  The complexity analyses of 
CoLoRaDe suggest that the number of packet sequences  
(NS) in each set of a slot should be around NS = 200 
which makes the best value to execute the algorithm 
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faster. To estimate the Hurst parameter, we used the 
process of HEAF (2) estimator (i.e. the algorithm (step 1 
and step 2) given in section 3), which is simple, reliable 
and capable of yielding quick estimation. It potentially 
can be used for real-time traffic measurement and control 
at the edge routers. As the main function of the 
CoLoRaDe algorithm is to reduce the LRD of packet 

traffic, it can contribute in reducing the network load 
towards the improvement of quality of service of future 
Internet. Future work will include evaluation of the 
applicability of the CoLoRaDe algorithm for real-time 
implementations in routers. 
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Figure 3.  Elapsed time for different length of packet sequences where each block or slot contains different length of sequences (e.g. NS = 12 indicates 12 

different packet sequences in each slot.) 
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Figure 4.  Elapsed time for different length of packet sequences while performance is observed with different PC’s.  
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Appendix 

Sample of a trace file 

Length of samples Packet size in byte 
(Bi) 

1 41 
2 42 
3 42 
4 41 
5 82 
6 55 
7 41 
8 42 
9 42 

10 454 
11 40 
12 95 
13 55 
14 40 
15 40 
16 41 
17 41 
18 104 
19 41 
20 72 
21 84 
22 552 
23 79 
24 104 
25 44 
 ׃
 ׃ ׃

N Bn 
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