
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

117

Manuscript received April 5, 2007

Manuscript revised April 25, 2007

Bijective Function with Domain in N and Image in the Set of
Permutations: An Application to Cryptography

Víctor M. Silva-García†, Cornelio Yáñez-Márquez††, and Juan L. Díaz de León-Santiago††,

†CIDETEC, National Polytechnics Institute, México
††CIC, National Polytechnics Institute, México

Summary
In this work an algorithm is constructed that counts n!
permutations in n-1 steps. Actually, the algorithm defines a
bijective function from the natural numbers to the set of
permutations. In addition, for any permutation πL defined over
the positions of a string of length L, where L is a multiple of 3,
this permutation may be constructed by means of 3 permutations
over strings of length ⅔L. This allows for the definition of an
iterative cryptosystem over blocks of 96 characters, with
numbers in the range of 1090 instead of 10154, approximately. It is
also shown that the set of keys grows factorially, so that the
number of elements of the set reaches 2500 when working with
strings of 96 characters. Finally, by means of an example the
iterative cryptosystem using the DES boxes and strings of 96
characters is illustrated.
Key words:
JV Theorem, Factorial Theorem, Factorial Cryptosystem,
Permutations.

1. Introduction

It is well known that many iterative systems like DES,
triple-DES, SPN and AES employ basically three types of
operations, that is, permutations, substitutions and the
Boolean exclusive-or function (XOR) [4, 5]. Permutations
are tabulated and considered fixed. Up to this time the
possibility of representing a permutation by means of a
nonnegative number has not been explored. Naturally, an
algorithm must be constructed that relates a permutation to
a natural number. Such an algorithm defines then a
bijective function [14]. This function allows the
permutation to be considered as a key since the
permutation is then a variable. Then, in principle, the key
may be represented by one or several nonnegative integers.
Using this idea, iterative cryptosystems may be
constructed that are of high computational complexity, but
fast and moderately complex in their implementation [13].

In this work a cryptosystem is proposed, having an
execution time of the same order of magnitude than triple-
DES [5], but at a complexity level of 2500, which is vastly
superior to the AES[5]. Additionally it possesses the
whitening property like the most recent cryptosystems [5].

This property avoids both linear and differential attacks
[1-2].

2. Preliminaries

Before the JV and factorial theorems are proofed, it is
necessary to present 2 examples in order to illustrate the
proofs given below.

First example:

Suppose strings of 8 characters are used. A
permutation of these characters consists in changing their
positions in the string, that is, positions 0, 1, 2, 3, 4, 5, 6,
and 7, to a new particular array; for instance: 5, 7, 6, 4, 2,
0, 1, and 3. Now assume a nonnegative integer n is given
such that 0 ≤ n ≤ 8! – 1; say n = 17777. This number may
be expressed as follows:
17777 = 3(7!) + 3(6!) + 4(5!)

+ 0(4!) + 2(3!) + 2(2!) + 1(1!) 2.1
In fact, any integer n in the interval 0 ≤ n ≤ 8! – 1

may be written uniquely, by using the algorithm of Euclid,
as long as 7!, …, 1! remain fixed. Note that we use as the
arithmetic base the numbers 7!, 6!, 5!, 4!, 3!, 2! and 1!.
Denote the factors of 7!, 6!, 5!, 4!, 3!, 2! y 1! by C0, C1, C2,
C3, C4, C5, C6, respectively. Then, for this example the
factors are:
C0 = 3, C1 = 3, C2 = 4, C3 = 0, C4 = 2, C5 = 2 and C6 = 1.

As may be seen the values Ci are the coefficients of
the divisions by 7!, …, 1!. Furthermore, by the algorithm
of Euclid the factors must satisfy that C0 < 8, C1 < 7,…,
C6 < 2 [14]. By virtue of above the following algorithm
may be constructed:

Step 0. Define an array in increasing order as follows:
X[0] = 0, X[1] = 1, X[2] = 2, X[3] = 3, X[4] = 4, X[5] = 5,
X[6] = 6 and X[7] = 7.

Step 1. Take the value of X[C0 = 3] = 3 and eliminate
it from the array defined in step 0. The array is then
reordered without including the value of X[C0]. The result
is:

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

118

X[0] = 0, X[1] = 1, X[2] = 2, X[3] = 4, X[4] = 5, X[5] = 6
and X[6] = 7.

Step 2. Take the value of X[C1 = 3] = 4 and eliminate
it from the array defines in step 1. The array is the
reordered without including the value of [C1]. The result
is:
X[0] = 0, X[1] = 1, X[2] = 2, X[3] = 5, X[4] = 6 y X[5] =
7

Step 3. As in step 2 take X[C2 = 4] = 6 and eliminate
it from the array defined in step 2. The new order is:
X[0] = 0, X[1] = 1, X[2] = 2, X[3] = 5 y X[4] = 7.

Step 4. Continue in the same way with X[C3 = 0] = 0
and the resulting order is:
X[0] = 1, X[1] = 2, X[2] = 5 y X[3] = 7.

Step 5. In this step X[C4 = 2] = 5 is eliminated and:
X[0] = 1, X[1] = 2, X[2] = 7.

Step 6. Following the same procedure X[C5 = 2] = 7
is eliminated and X[0] = 1, X[1] = 2.

Step 7. Finally one eliminates X[C6 = 1] = 2 and
X[0] = 1.

If the (eliminated) values of X[C0], X[C1], X[C2],
X[C3], X[C4], X[C5], X[C6] and the final value X[0] are
written in order the result is 3, 4, 6, 0, 5, 7, 2, and 1. It is
not difficult to see that the resulting array is a permutation
of the numbers 0, 1, 2, 3, 4, 5, 6, and 7. In fact, it is the
permutation 17777. It is also important to note that the
number of steps required to assign a number to a
permutation is 7.

Second example:

Now suppose that one is working with strings of 12
characters. A particular permutation of the positions of a
string of that length could be:

5 4 11 0 8 6 3 2 1 7 10 9 2.2
Here we ask the following question: is there a way to

apply permutations to strings of lesser length than 12 such
that it is possible to obtain the permutation given by the
expression 2.2?

Fortunately the answer is yes. We illustrate the
procedure graphically as shown in figure 1.

Fig. 1 Application of 3 permutations of length 8.

Now: may any permutation of 12 characters be
obtained by applying 3 permutations according to the
illustration? The answer is yes and it will be proofed
below. In fact, the proof will be given for strings of length
L, where L is a multiple of 3. The intention of this
example is to describe the proof strategy.

We start with an ordered array, that is, 0, 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, and 11. Divide this set of numbers into 2,
namely: A = {0, 1, 2, 3, 4, 5, 6, 7} and B = {8, 9, 10, 11}.

Furthermore, divide the given permutation, here 5 4
11 0 8 6 3 2 1 7 10 9, in 3 blocks as shown in figure 2.

Fig. 2 Division of the permutation in 3 blocks.

The first permutation assigns the positions of the set
A to the blocks A1 and A2, leaving out those positions that
belong to the set B. This is shown below:
5 4 - 0 - 6 3 2 8 9 10 11

The missing values from set A are 1 and 7; lets place
them at random in the holes. For example, first the 7 and
than the 1. Note that this opens the possibility that there
exist more than three permutations by which the given
permutation may be constructed. The result of applying
the first permutation is:
5 4 7 0 1 6 3 2 8 9 10 11

It follows that the first permutation is π1(y) = 5 4 7 0
1 6 3 2, with 0 ≤ y ≤ 7.

The second permutation is applied to the characters 4
to 11. However, in order to carry this out it is necessary to
define a displacement function as follows: g1(y) = 4-y with
4 ≤ y ≤ 11. This is shown in the table below:

Table 1. The displacement function g1(y).
 g1(y)= 0 1 2 3 4 5 6 7
5 4 7 0 1 6 3 2 8 9 10 11

According to the former ideas the permutation

π2(g1(y)) is constructed as follows:
1. Positions that are in place are not modified.

2. Assign the positions from blocks A2 and A3 that are
elements from set B, as is the case with 8, 9 and 10.
Also, assign the positions from π1(y) with 4 ≤ y ≤ 7
that should be in A3, as is the case for 1. The
positions of the form π1(y) with 0 ≤ y ≤ 3 that should
be in the block A3 are substituted by the remaining
positions. Here, the position π1(2) = 7 must be in

3 11 7 0

1th permutation

2nd permutation
3dpermutation

5 4 11 0

A1

8 6 3 2

A2

1 7 10 9

A3

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

119

block A3 and is exchanged for the remaining position,
which is:

π2(g1(11) = 7) = 5.
At this point the positions of block A2 are in their

place:
5 4 7 0 8 6 3 2 1 11 10 9

It follows that the second permutation is:
π2(g1(y)) = 4 1 2 3 0 7 6 5

In order to apply the third permutation, we define the
displacement function g2(y):

 y-8 if 8 ≤ y ≤ 11
 g2(y)=
 y+4 if 0 ≤ y ≤ 3
This is shown in figure 3.

Fig. 3 The displacement function g2(y)

The permutation π3(g2(y)) proceeds then according to
the following steps:
1. Positions that are in their place are not modified.

2. Assign the positions that are members of the set B in
block A1. This locates the position 11 in the position
6. Also, relocate positions of the form π1(y) with 0 ≤
y ≤ 3 which should be in A3. This locates position 7
in position 1. It follows that the third permutation is
π3(g2(y)) = 0 6 2 3 4 5 1 7. The final result is:

5 4 11 0 8 6 3 2 1 7 1 0 9
Some comments are in order. The development of

this kind of procedure allows us to work with numbers in
the order of 1090 instead of 10150, approximately, while
using strings of 96 characters in length. In general, it may
be said that this type of procedure reduces significantly the
amount of computation. On the other hand, using this
procedure but with 4 permutations instead of 3 in order to
reduce even more the range of numbers, then some
permutations of the string of 12 characters would not be
included.

Example: given the permutation 3 4 5 1 0 11 10 6 2 7
8 9 it is not possible to construct this permutation using 4
permutations of strings of 6 characters since the number
11 may not be placed in the position 5 (recall that the
positions are counted starting at 0).

3. Development

Define the set Nm as follows: Nm= {nєN | 0 ≤ n < m!}
with m a positive integer. For any n є Nm the following
iterative procedure will be applied:

Step 0.
n = C0(m-1)! + r1 and by the algorithm

of Euclides [14], 0 ≤ r1 <(m-1)! 3.1

Then, n < m! ⇒
)!1()!1(

1
0

−
+=

− m
rC

m
n < m

Hence, 0 ≤ C0 < m
Step 1.
r1= C1 (m-2)! + r2 and by the same argument used

above we have:
0 ≤ r2 < (m-2)! 3.2

From expression 3.1 results

() () () 1
!2!2

!1 2
1

1
1 −<

−
+=

−
⇒−< m

m
rC

m
rmr

It follows that 0 ≤ C1 < m - 1
Step i.
ri= Ci [m-(i+1)]! + ri+1 with 0≤ ri+1< [m-(i+1)]!. In the

same way as for expressions 3.1 and 3.2 in step (i-1) ri
must satisfy 0 ≤ ri < (m-i)!. From this last expression it

follows that ()[] ()[] im
im

rC
im

r i
i

i −<
+−

+=
+−

+

!1!1
1 .

Hence the following holds: 0 ≤ Ci < (m-i).
Note that this shows that for any i with 0 ≤ i ≤ (m –

 2):
Ci < (m-i).

If one continues with this iterative process, at the end
one obtains the following:
rm-2 = Cm-21! + rm-1 with rm-1 = 0.

As a conclusion of this iterative process it can be
stated that given n є Nm and (m-1)! … 1!; then the number
n may be uniquely written as:
n = C0(m-1)! + C1(m-2)! + C2(m-3)!

+ ….+ Cm-2 1! 3.3
Also, the following holds:

0 ≤ Ci < (m-i), with 0 ≤ i ≤ (m – 2) 3.4
Now, once the values of C0, C1,…, Cm-2 are known,

the following algorithm may be constructed:
Step 0. An array in increasing order is defined as

follows:
X[0] = 0, X[1] = 1, X[2] =2,... X[m-1] = m-1.

Step 1. By expression 3.4 we have C0 < m; hence
X[C0] is an element of the array constructed in step 0. This
element X[C0] is eliminated from the array of step 0 and a
new array is constructed starting from X[0] up to X[m-2].

5 4 7 0 8 6 3 2 1 11 10 9

4 5 6 7

g2(y)= 0 1 2 3

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

120

Step 2. Again, according to expression 3.4 we have
C1 < m-1; hence X[C1] is an element of the array obtained
in step 1. In the same way as in the previous step X[C1] is
eliminated from the array of step 1 and a new array is
obtained starting with X[0] up to X[m-3].

Step m-1. By continuing in the same fashion one
obtains in the end the following:
X[Cm-2] and X[0].

Finally, the string of eliminated numbers X[C0],
X[C1], …, X[Cm-2] and X[0] is a permutation of the string
0, 1, 2, …, m-1. Hence, it is possible to say that to any
nєNm a permutation may be associated. At this point the
following question arises: given two different numbers
from the set Nm, do they generate two different
permutations? This question is answered by the JV
theorem, as stated below.

JV theorem. Given the sets Nm and Пm = {all the
permutations of the array 0,1,…, m-1}. Then, the
algorithm described above defines a bijective function
πm such that πm : Nm → Пm .

The proof is by contradiction. Suppose n1 ≠ n2 with
n1, n2 є Nm ⇒ πm(n1) = πm(n2).

From expression 3.3 we know that n1, n2 may be
written as:

n1 = C0,1(m-1)! + C1,1(m-2)! + C2,1(m-3)! + ….+ Cm-2,1
1! and

n2 = C0,2(m-1)! + C1,2(m-2)! + C2,2(m-3)! + ….+ Cm-2,2
1!

Now, if πm(n1) = πm(n2) it follows that: C0,1 = C0,2, C1,1
= C1,2, …, Cm-2,1 = Cm-2,2. Hence,

n1 = n2, which is a contradiction of the initial
assumption. Consequently, if n1 ≠ n2 with n1, n2 є Nm ⇒
πm(n1) ≠ πm(n2). This shows that the function πm is one to
one.

That the function πm is bijective follows from the fact
that the number of elements of the sets Nm , Пm are equal.

We now proof the factorial theorem.

Factorial theorem. Given a permutation πL over the
positions of a string of length L, with L a multiple of 3.
Then, πL may be constructed by means of 3 permutations
of length ⅔L.

Let be the following permutation of the positions of a
string of L elements:
πL= σ(0) = j0, σ(1) = j1,… σ (L-1) = jL-1 3.5

Now, separate the set of positions in 2, namely:
A={0,1,…, ⅔L-1} and B= {⅔L, ⅔L+1,…, L-1} 3.6

Divide the permutation 3.5 into three as follows:

Fig. 4 Division of the string into three blocks.

The same strategy shown in figure 1 will be used.
The first permutation π1(y) with 0 ≤ y ≤ ⅔L-1 is
constructed as follows:
1. Assign the positions that are elements of the set A to

the blocks A1, A2.

2. The positions of set B, in case they exist and which
should be in blocks A1, A2 are assigned at random
by the remaining elements of A.

In order to apply the permutation π2, we use the
displacement function g1(y) = y - ⅓L, for ⅓ L ≤ y ≤ L-1.

The permutation π2(g1(y)) proceeds then as follows:
1. Positions that are in their place, in case they exist, are

not modified.

2. Assign the positions, in case they exist, from blocks
A2 and A3 that are elements of the set B. Assign the
positions, in case they exist, of the form π1(y) for ⅓L
≤ y ≤ ⅔L-1 that should be in block A3. Positions, in
case they exist, of the form π1(y) for 0 ≤ y ≤ ⅓L-1
that should be in the block A3, are exchanged with
the remaining positions. At this point the positions of
the block A2 are in their place.

In order to apply the permutation π3 we use the
displacement function:

The permutation π3(g2(y)) proceeds according to the

following steps:
1. Positions that are in their place, in case they exist, are

not modified.

2. Assign the positions, in case they exist, from block
A1 that correspond to the set B as well as the
positions of the form π1(y) for 0 ≤ y ≤ ⅓L-1 that
should be in A3.

It follows that if the 3 permutations described above
are applied the permutation 3.5 is constructed.

1/3 L

A1 A2 A3

1/3 L 1/3 L

g2(y)=

Ly
3
2

− if
3
2 L ≤ and ≤ L -1

Ly
3
1

+ if 0 ≤ and ≤ L
3
1

-1

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

121

4. Proposal of a Cryptosystem

By using the JV and factorial theorems a
cryptosystem may be proposed that has an execution time
of the same order of magnitude than triple-DES but much
more resistant to brute force attacks. The here proposed
system is iterative in nature. In what follows, a high level
description will be given:
1. Assume a string of 12 bytes of clear text is given,

equivalent to a string of 96 bits. Chose 3 positive
integers n1, n2 and n3 such that 2 ≤ ni ≤ 64!-1 for i = 1,
2, 3.

2. According to the JV theorem, to the positive integers
ni one may associate 3 permutations over strings of
64 positions in length. Then, it follows from the
factorial theorem that it is possible to construct any
permutation of the string of clear text of 96 bits, call
this permutation π96. We shall refer to the application
of this permutation to the clear text as π96(TC).

3. Since the string π96(TC) is of 96 bits, it is possible to
divide it into 2 substrings, one right substring and one
left substring each of 48 bits in length. Call these
substrings R0 and L0, respectively. Starting with these
substrings, the following iterative procedure will be
applied 8 times:

Li = Ri-1 and
Ri = Li-1 ⊕ g(Ri-1) for i = 1,2,..,8 where the symbol ⊕
denotes the Boolean exclusive-or function.
The function g does the following:
a. The right substring Ri-1 of 48 bits is fed to the 8

boxes of the DES criptosystem [4].

b. The result of the former step is a string of 32 bits,
to which the DES expansion function E is applied
[4]. The resulting string of 48 bits will be called
g(Ri-1).

This procedure is illustrated in the following figure:

Ii Di

Ii-1 Di-1

g(Ii)

⊕

48

48 48

48

Fig. 5 Iteration i of the proposed algorithm.

4. After the 8th iteration (π96)-1(R8L8) is applied. Note
that (π96)-1 is the inverse permutation of π96 and that
the substrings R8, L8 are inverted.

Some additional remarks:
1. As can be seen, the integers n1, n2, and n3 act like

keys, since the permutation π96 can be changed by
altering one or some of the numbers n1, n2, and n3.

2. Considering that each permutation is a key, the
number of possible keys is approximately 10150.

3. The proponed cryptosystem possesses the whitening
property [5].

4. Decryption differs from the encryption process where
the right substring is altered by the boxes, by altering
the left substring. The figure shows the procedure:

Li Ri

Li-1 Ri-1

g(Ii)

⊕

48

48 48

48

Fig. 6 Iteration i of the proposed algorithm during decryption.

To conclude this section, the authors propose the
name “Factorial Cryptosystems” for all cryptosystems
based on the JV and factorial theorems.

5. Results of the proposed algorithm.

In what follows the working of the algorithm will be
explained by means of a specific example. Suppose the
clear text VíctorManuel is to be encrypted and assume for
n1, n2, and n3 the following values:
n1 = 1264579012126457901212645790121264579012126
45790121264579012126457901212645790121264579012

n2 = 1264579112126457901212645790121264579012126
4579012126457901212645790121264579012

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

122

n3 = 1264579012126457901212645790121264579012145
79012126457901212645790121264579012

These numbers satisfy the condition 2 ≤ ni ≤ 64!-1.

The permutations associated to these numbers follow:
π1 = 63, 49, 22, 46, 56, 40, 35, 39, 23, 41, 38, 20, 55,

52, 31, 47, 34, 25, 54, 61, 17, 10, 53, 42, 44, 57, 14, 4, 19,
32, 28, 43, 16, 26, 45, 50, 2, 0, 51, 59, 12, 48, 18, 11, 5, 6,
7, 36, 37, 30, 62, 15, 24, 21, 13, 3, 33, 27, 60, 1, 29, 8, 9,
58.

π2 = 0, 1, 2, 3, 4, 5, 37, 17, 41, 27, 13, 61, 9, 50, 32,
12, 24, 38, 54, 53, 40, 59, 58, 20, 35, 6, 39, 25, 51, 30, 62,
42, 44, 8, 43, 34, 52, 33, 23, 19, 56, 48, 22, 47, 14, 60, 21,
28, 55, 18, 10, 45, 29, 57, 16, 49, 36, 15, 63, 31, 46, 11, 7,
26.

π3 = 0, 1, 2, 3, 4, 5, 9, 13, 56, 15, 34, 21, 52, 35, 48,
14, 26, 11, 43, 51, 44, 36, 22, 23, 29, 47, 58, 27, 8, 20, 30,
63, 37, 39, 50, 53, 54, 40, 33, 16, 59, 28, 6, 19, 10, 12, 60,
25, 18, 55, 24, 42, 41, 31, 45, 46, 49, 32, 62, 7, 57, 17, 38,
61.

The permutation π96 is obtained by applying a similar
procedure to the one shown in figure 1, with the following
result:

π96 = 40, 39, 54, 10, 53, 23, 49, 87, 4, 78, 3, 77,13, 7,
19, 36, 18, 42, 68, 38, 41, 60, 52, 31, 25, 63, 28, 15, 57, 62,
35, 32, 16, 26, 45, 50, 2, 0, 69, 30, 73, 1, 6, 93, 48, 82, 64,
5, 33, 70, 86, 85, 72, 91, 90, 24, 67, 51, 71, 27, 83, 9, 94,
74, 76, 12, 75, 66, 84, 65,80, 92, 44, 29, 22, 89, 17, 46, 34,
21, 95, 79, 20, 61, 55, 56, 37, 81, 11, 47, 14, 58, 88, 8, 59,
43.

The inverse permutation (π96)-1 yields the following
result:

(π96)-1 = 37, 41, 36, 10, 8, 47, 42, 13, 93, 61, 3, 88, 65,
12, 90, 27, 32, 76, 16, 14, 82, 79, 74, 5, 55, 24, 33, 59, 26,
73, 39, 23, 31, 48, 78, 30, 15, 86, 19, 1, 0, 20, 17, 95, 72,
34, 77, 89, 44, 6, 35, 57, 22, 4, 2, 84, 85, 28, 91, 94, 21, 83,
29, 25, 46, 69, 67, 56, 18, 38, 49, 58, 52, 40, 63, 66, 64, 11,
9, 81, 70, 87, 45, 60, 68, 51, 50, 7, 92, 75, 54, 53, 71, 43,
62, 80.

The result of the encryption process in hexadecimal
format is:
897A4FA1980E73CDF8BF937F.

6. CONCLUSIONS

As can be seen, the former procedure may be applied
to many situations. As a matter of fact, it may be applied
to all those cryptosystems that rely on permutations. On
the other hand, the factorial function grows faster than the
exponential function, which means that the number of
available keys grows to extraordinary values, here to about
2500 (10150)[6].

Lastly, in contrast to the DES and triple-DES systems
where the permutations are fixed, the here proponed
cryptosystem is based on variable permutations which,
when implemented in hardware, are costly both in the
number of required gates and in execution time. In what
follows it is assumed that the gates have a fanin of two and
unlimited fanout. Also, the logical operation of negation is
assumed to be incorporated into the input(s) and output of
the gates, if required, and thus do not consume time nor
does it require additional gates. Note that this analysis is
intended only as a reference, since actual results vary with
the fanin and fanout of the logic device actually used.

6.1. The permutation

Consider an implementation based on a crossbar
switch as shown in the figure below. The input is applied
to the columns and the output is obtained from the rows.
Here, the permutation shown is the following:

0 3, 1 0, 2 4, 3 2, and 4 1

Fig. 7 A permutation executed by switch crossbar.

It is easy to see that N2 switches are required.
Associated to each switch is a decoder with lg(N) inputs,
where lg(N) denotes the logarithm base 2 of N, that
activates, if required, the switch. Finally, the output of the
switches of a given row are combined by an N-input or
gate to produce the output of the row. For N = 2n, n a
positive integer, and for the assumptions given above, the
following values result:
1. The switches: N2 gates, delay:1

2. Decoders: N2D gates, where
() () 1lg1lg2

1 −≤≤+ NDN , delay: ()⎡ ⎤Nlglg ,
where ⎡ ⎤x denotes the ceiling of x.

 0 1 2 3 4
 a b c d e
 3 0 4 2 1

0 b

1 e

2 d

3 a

4 c

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

123

3. Or gate: N(N–1) gates, delay: (lgN)

Here, N = 64 and we obtain 4096 + 4096(5) + 64(63)
= 28,608 gates and a global delay of 10 gate delays. Note
that the number of gates may be reduced considerably by
using other switching schemes (for instance, a multistage
banyan network [15]) but at the expense of higher delays.

6.2. Estimation of the total execution time

Referring to figure 5, we obtain for the total
execution time the following:
1. The delay of the initial permutation.

2. The delay of 8 iterations given by the delay of the
boxes and the exclusive or function.

3. The delay of the final permutation.

The delays of the initial and final permutation are
similar and are given by the delays of 3 permutations over
64 bits to which must be added the delay due to the
replacement of bits in the blocks as described in the
example 2. The latter is variable, but it is clear that each
replacement cannot require more than 32 displacements
and, furthermore, the maximum amount of replacements is
64. The permutation over 96 bits requires then in the order
of 3(10) delays, plus the delays due to 64 replacements.
Assuming a barrel shifter is used to generate the
displacements, a delay in the order of 6 results for each
displacement and the insertion. Hence, the total delay of
the 96-bit permutation is equal to, or less, than 30 + 6(64)
= 414.

The boxes are read-only memories of 26 words of 4
bits each. If implemented by gates, they generate a delay
of ()⎡ ⎤ 36lg = . It is then clear that the execution or the 8
iterations requires an order of magnitude less time than the
permutations, and the total execution time may be
estimated as 1000 or less gate delays.

As an example, suppose an FPGA device is used that
specifies a delay of 0.2 ns per gate and associated wire
delay. Then, the proposed algorithm executes in 200 ns for
a 96 bit block, that is, with a speed of 480 Mb/s. As can be
seen, the speed is limited mainly by the replacement of
bits. Since these operations may be executed in parallel
and depending of the resources of the device, if the
number of barrel shifters is increased the execution time
may be reduced significantly and speeds in excess of 1
Gb/s may be obtained.

Finally, the importance of the factorial theorem must
not be underestimated. If the permutation were to be
executed directly over 96 bits, the amount of gates
required would increase from 28,608 to 73,632 and the
algorithm would be difficult to implement with the
resources of FPGA’s available today [16].

Acknowledgments

The authors would like to thank the Instituto Politécnico
Nacional (Secretaría Académica, COFAA, SIP, and CIC),
the CONACyT, and SNI for their economical support to
develop this work.

References
[1] Biham E. and Shamir A., 1993, “Differential cryptanalysis

of the full 16-round DES”, Lecturer Notes in computer
Science.

[2] Matsui M, 1994, “Linear Cryptanalysis for DES cipher”,
Lecture Notes in Computer Science.

[3] Grabbe J. Orlin, 2003, “Data Encryption Standard: The DES
algorithm illustrated”, Laissez faire City time, vol. 2, no 28.

[4] Douglas R. Stinson, 1995, CRYPTOGRAPHY: Theory and
practice, CRC Press, pp. 70-113.

[5] Douglas R. Stinson, 2002, CRYPTOGRAPHY: Theory and
practice, CHAPMAN & HALL/ CRC Press, second edition,
pp. 74-116.

[6] Rosen K., 2003, Discrete Mathematics and its Applications,
Mc. Graw Hill, fifth edition.

[7] Koblitz M., 1987, A Course in Number Theory and
Cryptography, Springer-Verlag, pp. 53-80, New York Inc.

[8] Sorking A., 1980, LUCIFER: A cryptographic algorithm,
Cryptología 8, pp 22-35.

[9] Fúster Sabater A. et al, 2001, Técnicas Criptográficas de
protección de datos, Alfaomega 2ª Edición, pp. 5-92.

[10] Ritter T, 2006, “Triple-DES is Proven to be Very Secure?”,
http://www.ciphersbyritter.com/NEWS5/PROVSEC.HTM.

[11] Stalling W, March 2006, “Encryption Options Beyond
DES”, www.commsdesign.com.

[12] Carlet C., 2005, “On highly nonlinear S-boxes and their
inability to thwart DPA attacks”, 6th International
Conference on Cryptology of the Springer-Verlag, pp. 49-
62

[13] Lindig Bos M., Silva García V.M., 2006, “Diseño de un
dispositivo para encripción de datos en tiempo real”,
CIDETEC-ESIQIE-IPN., vol. 2.

[14] Herstein I.N., 1986, Álgebra Abstracta, Grupo Editorial
Iberoamérica, pp. 22 y 11.

[15] T. Leighton, 1992, Introduction to Parallel Algorithms and
Architectures: Arrays, Trees, Hypercubes, Morgan-
Kaufmann Publishers, San Mateo, California, pp. 394.

[16] AX Detailed Specs_DS, 2005, Actel Corp.

Víctor M. Silva-García Mexican
Nationality. Bachelor Degree on
Physics and Mathematics (1972) by
the IPN ESFM. Degree of Ms. C.
(1980) by the Chapingo Posgraduate
College. He is currently a Ph. D
student on Computer Sciences at the
IPN CIC, and Director of the IPN
Computer Innovation and
Technological Research Center.
Areas of Interest: Probability and

Statistics, Cryptography, Hardware.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

124

Cornelio Yáñez-Márquez Mexican
Nationality. Bachelor Degree on
Physics and Mathematics (1989) by
the IPN ESFM. Degrees of Ms. C.
(1995) on Computer Engineering
and Ph. D. (2002) on Computer
Sciences, obtained both at IPN
Computer Research Center.
Currently he is a Titular C
researcher at IPN Computer

Research Center.. A member of the Researchers National System.
Areas of Interest: Associative Memories, Neural Networks,
Mathematical Morphology, Image Analysis.
http://www.cornelio.org.mx

Juan L. Díaz de León-Santiago
Mexican Nationality. Degrees of M.
Sc. (1993) on Automatic Control
and Ph. D. (1996) on Mathematical
Morphology, obtained both at IPN
CINVESTAV, México. Currently he
is a Titular C researcher at IPN
Computer Research Center. A
member of the Researchers National
System. Areas of Interest:
Mathematical Morphology, Image
Analysis, Morpohological Neural
Networks and Associative Memories,

Control Theory, Mobile Robotics.

