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Summary 
In this work an algorithm is constructed that counts n! 
permutations in n-1 steps. Actually, the algorithm defines a 
bijective function from the natural numbers to the set of 
permutations. In addition, for any permutation πL defined over 
the positions of a string of length L, where L is a multiple of 3, 
this permutation may be constructed by means of 3 permutations 
over strings of length ⅔L. This allows for the definition of an 
iterative cryptosystem over blocks of 96 characters, with 
numbers in the range of 1090 instead of 10154, approximately. It is 
also shown that the set of keys grows factorially, so that the 
number of elements of the set reaches 2500 when working with 
strings of 96 characters. Finally, by means of an example the 
iterative cryptosystem using the DES boxes and strings of 96 
characters is illustrated. 
Key words: 
JV Theorem, Factorial Theorem, Factorial Cryptosystem, 
Permutations. 

1. Introduction 

It is well known that many iterative systems like DES, 
triple-DES, SPN and AES employ basically three types of 
operations, that is, permutations, substitutions and the 
Boolean exclusive-or function (XOR) [4, 5]. Permutations 
are tabulated and considered fixed. Up to this time the 
possibility of representing a permutation by means of a 
nonnegative number has not been explored. Naturally, an 
algorithm must be constructed that relates a permutation to 
a natural number. Such an algorithm defines then a 
bijective function [14]. This function allows the 
permutation to be considered as a key since the 
permutation is then a variable. Then, in principle, the key 
may be represented by one or several nonnegative integers. 
Using this idea, iterative cryptosystems may be 
constructed that are of high computational complexity, but 
fast and moderately complex in their implementation [13]. 

In this work a cryptosystem is proposed, having an 
execution time of the same order of magnitude than triple-
DES [5], but at a complexity level of 2500, which is vastly 
superior to the AES[5]. Additionally it possesses the 
whitening property like the most recent cryptosystems [5]. 

This property avoids both linear and differential attacks 
[1-2]. 

2. Preliminaries 

Before the JV and factorial theorems are proofed, it is 
necessary to present 2 examples in order to illustrate the 
proofs given below. 

First example: 

Suppose strings of 8 characters are used. A 
permutation of these characters consists in changing their 
positions in the string, that is, positions 0, 1, 2, 3, 4, 5, 6, 
and 7, to a new particular array; for instance: 5, 7, 6, 4, 2, 
0, 1, and 3. Now assume a nonnegative integer n is given 
such that  0 ≤ n ≤ 8! – 1; say n = 17777. This number may 
be expressed as follows: 
17777 = 3(7!) + 3(6!) + 4(5!)  

+ 0(4!) + 2(3!) + 2(2!) + 1(1!) 2.1 
In fact, any integer n in the interval 0 ≤ n ≤ 8! – 1 

may be written uniquely, by using the algorithm of Euclid, 
as long as 7!, …, 1! remain fixed. Note that we use as the 
arithmetic base the numbers 7!, 6!, 5!, 4!, 3!, 2! and 1!. 
Denote the factors of 7!, 6!, 5!, 4!, 3!, 2! y 1! by C0, C1, C2, 
C3, C4, C5, C6, respectively. Then, for this example the 
factors are:  
C0 = 3, C1 = 3, C2 = 4, C3 = 0, C4 = 2, C5 = 2 and C6 = 1. 

As may be seen the values Ci are the coefficients of 
the divisions by 7!, …, 1!. Furthermore, by the algorithm 
of Euclid the factors must satisfy that C0 < 8, C1 < 7,…, 
C6 < 2 [14]. By virtue of above the following algorithm 
may be constructed: 

Step 0. Define an array in increasing order as follows: 
X[0] = 0, X[1] = 1, X[2] = 2, X[3] = 3, X[4] = 4, X[5] = 5, 
X[6] = 6 and X[7] = 7. 

Step 1. Take the value of X[C0 = 3] = 3 and eliminate 
it from the array defined in step 0. The array is then 
reordered without including the value of X[C0]. The result 
is: 
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X[0] = 0, X[1] = 1, X[2] = 2, X[3] = 4, X[4] = 5, X[5] = 6 
and X[6] = 7. 

Step 2. Take the value of X[C1 = 3] = 4 and eliminate 
it from the array defines in step 1. The array is the 
reordered without including the value of [C1]. The result 
is:  
X[0] = 0, X[1] = 1, X[2] = 2, X[3] = 5, X[4] = 6 y X[5] = 
7 

Step 3. As in step 2 take X[C2 = 4] = 6 and eliminate 
it from the array defined in step 2. The new order is:  
X[0] = 0, X[1] = 1, X[2] = 2, X[3] = 5 y  X[4] = 7. 

Step 4. Continue in the same way with X[C3 = 0] = 0 
and the resulting order is:  
X[0] = 1, X[1] = 2, X[2] = 5 y X[3] = 7. 

Step 5. In this step X[C4 = 2] = 5 is eliminated and:  
X[0] = 1, X[1] = 2, X[2] = 7. 

Step 6. Following the same procedure X[C5 = 2] = 7 
is eliminated and X[0] = 1, X[1] = 2. 

Step 7. Finally one eliminates X[C6 = 1] = 2 and 
X[0] = 1. 

If the (eliminated) values of X[C0], X[C1], X[C2], 
X[C3], X[C4], X[C5], X[C6] and the final value X[0] are 
written in order the result is 3, 4, 6, 0, 5, 7, 2, and 1. It is 
not difficult to see that the resulting array is a permutation 
of the numbers 0, 1, 2, 3, 4, 5, 6, and 7. In fact, it is the 
permutation 17777. It is also important to note that the 
number of steps required to assign a number to a 
permutation is 7. 

Second example: 

Now suppose that one is working with strings of 12 
characters. A particular permutation of the positions of a 
string of that length could be: 

5 4 11 0 8 6 3 2 1 7 10 9 2.2 
Here we ask the following question: is there a way to 

apply permutations to strings of lesser length than 12 such 
that it is possible to obtain the permutation given by the 
expression 2.2? 

Fortunately the answer is yes. We illustrate the 
procedure graphically as shown in figure 1.  

 

 

Fig. 1 Application of 3 permutations of length 8. 

Now: may any permutation of 12 characters be 
obtained by applying 3 permutations according to the 
illustration? The answer is yes and it will be proofed 
below. In fact, the proof will be given for strings of length 
L, where L is a multiple of 3. The intention of this 
example is to describe the proof strategy. 

We start with an ordered array, that is, 0, 1, 2, 3, 4, 5, 
6, 7, 8, 9, 10, and 11. Divide this set of numbers into 2, 
namely: A = {0, 1, 2, 3, 4, 5, 6, 7} and B = {8, 9, 10, 11}. 

Furthermore, divide the given permutation, here 5 4 
11 0 8 6 3 2 1 7 10 9, in 3 blocks as shown in figure 2. 

 

 

Fig. 2 Division of the permutation in 3 blocks. 

The first permutation assigns the positions of the set 
A to the blocks A1 and A2, leaving out those positions that 
belong to the set B. This is shown below: 
5 4 -  0  -  6 3 2 8 9 10 11  

The missing values from set A are 1 and 7; lets place 
them at random in the holes. For example, first the 7 and 
than the 1. Note that this opens the possibility that there 
exist more than three permutations by which the given 
permutation may be constructed. The result of applying 
the first permutation is: 
5 4 7 0 1 6 3 2 8 9 10 11 

It follows that the first permutation is π1(y) = 5 4 7 0 
1 6 3 2, with 0 ≤ y ≤ 7. 

The second permutation is applied to the characters 4 
to 11. However, in order to carry this out it is necessary to 
define a displacement function as follows: g1(y) = 4-y with 
4 ≤ y ≤ 11. This is shown in the table below: 

Table 1. The displacement function g1(y). 
   g1(y)= 0 1 2 3 4 5 6 7 
5 4 7 0 1 6 3 2 8 9 10 11

 
According to the former ideas the permutation 

π2(g1(y)) is constructed as follows: 
1. Positions that are in place are not modified. 

2. Assign the positions from blocks A2 and A3 that are 
elements from set B, as is the case with 8, 9 and 10. 
Also, assign the positions from π1(y) with 4 ≤ y ≤ 7 
that should be in A3, as is the case for 1. The 
positions of the form π1(y) with 0 ≤ y ≤ 3 that should 
be in the block A3 are substituted by the remaining 
positions. Here, the position π1(2) = 7 must be in 

3 11 7 0 

1th permutation 

2nd permutation 
3dpermutation 

5  4  11  0 

A1 

8  6  3  2 

A2 

1  7  10  9 

A3 
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block A3 and is exchanged for the remaining position, 
which is: 

π2(g1(11) = 7) = 5.  
At this point the positions of block A2 are in their 

place: 
5 4 7 0 8 6 3 2 1 11 10 9 

It follows that the second permutation is: 
π2(g1(y)) = 4 1 2 3 0 7 6 5 

In order to apply the third permutation, we define the 
displacement function g2(y): 

          y-8   if   8 ≤ y ≤ 11 
            g2(y)=  
          y+4  if   0 ≤ y ≤ 3 
This is shown in figure 3. 
 

 

Fig. 3 The displacement function g2(y) 

The permutation π3(g2(y)) proceeds then according to 
the following steps:  
1. Positions that are in their place are not modified. 

2. Assign the positions that are members of the set B in 
block A1. This locates the position 11 in the position 
6. Also, relocate positions of the form π1(y) with 0 ≤ 
y ≤ 3 which should be in A3. This locates position 7 
in position 1. It follows that the third permutation is 
π3(g2(y)) = 0 6 2 3 4 5 1 7. The final result is: 

5   4   11   0   8   6   3   2   1   7   1   0  9 
Some comments are in order. The development of 

this kind of procedure allows us to work with numbers in 
the order of 1090 instead of 10150, approximately, while 
using strings of 96 characters in length. In general, it may 
be said that this type of procedure reduces significantly the 
amount of computation. On the other hand, using this 
procedure but with 4 permutations instead of 3 in order to 
reduce even more the range of numbers, then some 
permutations of the string of 12 characters would not be 
included.  

Example: given the permutation 3 4 5 1 0 11 10 6 2 7 
8 9 it is not possible to construct this permutation using 4 
permutations of strings of 6 characters since the number 
11 may not be placed in the position 5 (recall that the 
positions are counted starting at 0). 

3. Development 

Define the set Nm as follows: Nm= {nєN | 0 ≤ n < m!} 
with m a positive integer. For any n є Nm  the following 
iterative procedure will be applied: 

Step 0. 
n = C0(m-1)! + r1  and by the algorithm  

of Euclides [14],  0 ≤ r1 <(m-1)! 3.1 

Then, n < m! ⇒ 
)!1()!1(

1
0

−
+=

− m
rC

m
n  < m 

Hence, 0 ≤ C0 < m 
Step 1. 
r1= C1 (m-2)! + r2  and by the same argument used 

above we have: 
0 ≤ r2 < (m-2)! 3.2 

From expression 3.1 results 
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It follows that 0 ≤ C1 < m - 1 
Step i. 
ri= Ci [m-(i+1)]! + ri+1 with 0≤ ri+1< [m-(i+1)]!. In the 

same way as for expressions 3.1 and 3.2 in step (i-1) ri 
must satisfy 0 ≤ ri < (m-i)!. From this last expression it 

follows that ( )[ ] ( )[ ] im
im
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im

r i
i

i −<
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+=
+−

+
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1 . 

Hence the following holds: 0 ≤ Ci < (m-i).  
Note that this shows that for any i with 0 ≤ i ≤ (m –

 2): 
Ci < (m-i). 

If one continues with this iterative process, at the end 
one obtains the following: 
rm-2 = Cm-21! + rm-1 with rm-1 = 0. 

As a conclusion of this iterative process it can be 
stated that given n є Nm and (m-1)! … 1!; then the number 
n may be uniquely written as: 
n = C0(m-1)! + C1(m-2)! + C2(m-3)! 

+ ….+ Cm-2 1! 3.3 
Also, the following holds: 

0 ≤ Ci < (m-i), with 0 ≤ i ≤ (m – 2) 3.4 
Now, once the values of C0, C1,…, Cm-2 are known, 

the following algorithm may be constructed:  
Step 0. An array in increasing order is defined as 

follows:  
X[0] = 0, X[1] = 1, X[2] =2,... X[m-1] = m-1. 

Step 1. By expression 3.4 we have C0 < m; hence 
X[C0] is an element of the array constructed in step 0. This 
element X[C0] is eliminated from the array of step 0 and a 
new array is constructed starting from X[0] up to X[m-2]. 

5  4  7  0 8  6  3  2 1  11  10  9 

4  5  6  7 

g2(y)=      0    1    2   3  
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Step 2. Again, according to expression 3.4 we have 
C1 < m-1; hence X[C1] is an element of the array obtained 
in step 1. In the same way as in the previous step X[C1] is 
eliminated from the array of step 1 and a new array is 
obtained starting with X[0] up to X[m-3]. 

Step m-1. By continuing in the same fashion one 
obtains in the end the following:  
X[Cm-2] and X[0]. 

Finally, the string of eliminated numbers X[C0], 
X[C1], …, X[Cm-2] and X[0] is a permutation of the string 
0, 1, 2, …, m-1. Hence, it is possible to say that to any 
nєNm a permutation may be associated. At this point the 
following question arises: given two different numbers 
from the set Nm, do they generate two different 
permutations? This question is answered by the JV 
theorem, as stated below. 

JV theorem. Given the sets Nm and Пm = {all the 
permutations of the array 0,1,…, m-1}. Then, the 
algorithm described above defines a bijective function 
πm such that πm : Nm  →  Пm . 

The proof is by contradiction. Suppose n1 ≠  n2 with 
n1, n2 є Nm ⇒ πm(n1) = πm(n2). 

From expression 3.3 we know that n1, n2 may be 
written as: 

n1 = C0,1(m-1)! + C1,1(m-2)! + C2,1(m-3)! + ….+ Cm-2,1 
1! and 

n2 = C0,2(m-1)! + C1,2(m-2)! + C2,2(m-3)! + ….+ Cm-2,2 
1! 

Now, if πm(n1) = πm(n2) it follows that: C0,1 = C0,2, C1,1 
= C1,2, …, Cm-2,1 = Cm-2,2. Hence, 

n1 = n2, which is a contradiction of the initial 
assumption. Consequently, if n1 ≠  n2 with n1, n2 є Nm ⇒ 
πm(n1) ≠ πm(n2). This shows that the function πm is one to 
one. 

That the function πm is bijective follows from the fact 
that the number of elements of the sets Nm , Пm are equal. 

 
We now proof the factorial theorem. 

Factorial theorem. Given a permutation πL over the 
positions of a string of length L, with L a multiple of 3. 
Then, πL may be constructed by means of 3 permutations 
of length ⅔L. 

Let be the following permutation of the positions of a 
string of L elements: 
πL= σ(0) = j0, σ(1) = j1,… σ (L-1) = jL-1 3.5 

Now, separate the set of positions in 2, namely: 
A={0,1,…, ⅔L-1} and B= {⅔L, ⅔L+1,…, L-1} 3.6 

Divide the permutation 3.5 into three as follows: 
 

 

Fig. 4 Division of the string into three blocks. 

The same strategy shown in figure 1 will be used. 
The first permutation π1(y) with 0 ≤ y ≤ ⅔L-1 is 
constructed as follows: 
1. Assign the positions that are elements of the set A to 

the blocks A1, A2. 

2. The positions of set B, in case they exist and which 
should be in blocks A1, A2  are assigned at random 
by the remaining elements of A. 

In order to apply the permutation π2, we use the 
displacement function g1(y) = y - ⅓L, for  ⅓ L ≤ y ≤ L-1. 

The permutation π2(g1(y)) proceeds then as follows: 
1. Positions that are in their place, in case they exist, are 

not modified.  

2. Assign the positions, in case they exist, from blocks 
A2 and A3 that are elements of the set B. Assign the 
positions, in case they exist, of the form π1(y) for ⅓L 
≤ y ≤ ⅔L-1 that should be in block A3. Positions, in 
case they exist, of the form π1(y) for 0 ≤ y ≤ ⅓L-1 
that should be in the block A3, are exchanged with 
the remaining positions. At this point the positions of 
the block A2 are in their place. 

In order to apply the permutation π3 we use the 
displacement function:  

 
The permutation π3(g2(y)) proceeds according to the 

following steps:  
1. Positions that are in their place, in case they exist, are 

not modified.  

2. Assign the positions, in case they exist, from block 
A1 that correspond to the set B as well as the 
positions of the form π1(y) for 0 ≤ y ≤ ⅓L-1 that 
should be in A3. 

It follows that if the 3 permutations described above 
are applied the permutation 3.5 is constructed. 

 

1/3 L 

A1 A2 A3 

1/3 L 1/3 L 

g2(y)= 

Ly
3
2

−  if 
3
2 L ≤ and ≤ L -1 

Ly
3
1

+  if 0 ≤ and ≤ L
3
1

-1 
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4. Proposal of a Cryptosystem 

By using the JV and factorial theorems a 
cryptosystem may be proposed that has an execution time 
of the same order of magnitude than triple-DES but much 
more resistant to brute force attacks. The here proposed 
system is iterative in nature. In what follows, a high level 
description will be given: 
1. Assume a string of 12 bytes of clear text is given, 

equivalent to a string of 96 bits. Chose 3 positive 
integers n1, n2 and n3 such that 2 ≤ ni ≤ 64!-1 for i = 1, 
2, 3. 

2. According to the JV theorem, to the positive integers 
ni one may associate 3 permutations over strings of 
64 positions in length. Then, it follows from the 
factorial theorem that it is possible to construct any 
permutation of the string of clear text of 96 bits, call 
this permutation π96. We shall refer to the application 
of this permutation to the clear text as π96(TC). 

3. Since the string π96(TC) is of 96 bits, it is possible to 
divide it into 2 substrings, one right substring and one 
left substring each of 48 bits in length. Call these 
substrings R0 and L0, respectively. Starting with these 
substrings, the following iterative procedure will be 
applied 8 times: 

Li  = Ri-1 and 
Ri = Li-1 ⊕ g(Ri-1) for i = 1,2,..,8 where the symbol ⊕ 
denotes the Boolean exclusive-or function. 
The function g does the following: 
a. The right substring Ri-1 of 48 bits is fed to the 8 

boxes of the DES criptosystem [4]. 

b. The result of the former step is a string of 32 bits, 
to which the DES expansion function E is applied 
[4]. The resulting string of 48 bits will be called 
g(Ri-1). 

This procedure is illustrated in the following figure: 
 

Ii Di 

Ii-1 Di-1

g(Ii) 

⊕ 

48 

48 48 

48 

 

Fig. 5 Iteration i of the proposed algorithm. 

4. After the 8th iteration (π96)-1(R8L8) is applied. Note 
that (π96)-1 is the inverse permutation of π96 and that 
the substrings R8, L8 are inverted. 

Some additional remarks: 
1. As can be seen, the integers n1, n2, and n3 act like 

keys, since the permutation π96 can be changed by 
altering one or some of the numbers n1, n2, and n3. 

2. Considering that each permutation is a key, the 
number of possible keys is approximately 10150. 

3. The proponed cryptosystem possesses the whitening 
property [5]. 

4. Decryption differs from the encryption process where 
the right substring is altered by the boxes, by altering 
the left substring. The figure shows the procedure: 

 
Li Ri

Li-1 Ri-1

g(Ii)

⊕

48

48 48

48

 

Fig. 6 Iteration i of the proposed algorithm during decryption. 

To conclude this section, the authors propose the 
name “Factorial Cryptosystems” for all cryptosystems 
based on the JV and factorial theorems. 

5. Results of the proposed algorithm. 

In what follows the working of the algorithm will be 
explained by means of a specific example. Suppose the 
clear text VíctorManuel is to be encrypted and assume for 
n1, n2, and n3 the following values: 
n1 = 1264579012126457901212645790121264579012126
45790121264579012126457901212645790121264579012 

n2 = 1264579112126457901212645790121264579012126
4579012126457901212645790121264579012 
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n3 = 1264579012126457901212645790121264579012145
79012126457901212645790121264579012 

 
These numbers satisfy the condition 2 ≤ ni ≤ 64!-1. 

The permutations associated to these numbers follow:  
π1 = 63, 49, 22, 46, 56, 40, 35, 39, 23, 41, 38, 20, 55, 

52, 31, 47, 34, 25, 54, 61, 17, 10, 53, 42, 44, 57, 14, 4, 19, 
32, 28, 43, 16, 26, 45, 50, 2, 0, 51, 59, 12, 48, 18, 11, 5, 6, 
7, 36, 37, 30, 62, 15, 24, 21, 13, 3, 33, 27, 60, 1, 29, 8, 9, 
58. 

π2 = 0, 1, 2, 3, 4, 5, 37, 17, 41, 27, 13, 61, 9, 50, 32, 
12, 24, 38, 54, 53, 40, 59, 58, 20, 35, 6, 39, 25, 51, 30, 62, 
42, 44, 8, 43, 34, 52, 33, 23, 19, 56, 48, 22, 47, 14, 60, 21, 
28, 55, 18, 10, 45, 29, 57, 16, 49, 36, 15, 63, 31, 46, 11, 7, 
26. 

π3 = 0, 1, 2, 3, 4, 5, 9, 13, 56, 15, 34, 21, 52, 35, 48, 
14, 26, 11, 43, 51, 44, 36, 22, 23, 29, 47, 58, 27, 8, 20, 30, 
63, 37, 39, 50, 53, 54, 40, 33, 16, 59, 28, 6, 19, 10, 12, 60, 
25, 18, 55, 24, 42, 41, 31, 45, 46, 49, 32, 62, 7, 57, 17, 38, 
61. 

The permutation π96 is obtained by applying a similar 
procedure to the one shown in figure 1, with the following 
result:  

π96 = 40, 39, 54, 10, 53, 23, 49, 87, 4, 78, 3, 77,13, 7, 
19, 36, 18, 42, 68, 38, 41, 60, 52, 31, 25, 63, 28, 15, 57, 62, 
35, 32, 16, 26, 45, 50, 2, 0, 69, 30, 73, 1, 6, 93, 48, 82, 64, 
5, 33, 70, 86, 85, 72, 91, 90, 24, 67, 51, 71, 27, 83, 9, 94, 
74, 76, 12, 75, 66, 84, 65,80, 92, 44, 29, 22, 89, 17, 46, 34, 
21, 95, 79, 20, 61, 55, 56, 37, 81, 11, 47, 14, 58, 88, 8, 59, 
43. 

The inverse permutation (π96)-1 yields the following 
result:  

(π96)-1 = 37, 41, 36, 10, 8, 47, 42, 13, 93, 61, 3, 88, 65, 
12, 90, 27, 32, 76, 16, 14, 82, 79, 74, 5, 55, 24, 33, 59, 26, 
73, 39, 23, 31, 48, 78, 30, 15, 86, 19, 1, 0, 20, 17, 95, 72, 
34, 77, 89, 44, 6, 35, 57, 22, 4, 2, 84, 85, 28, 91, 94, 21, 83, 
29, 25, 46, 69, 67, 56, 18, 38, 49, 58, 52, 40, 63, 66, 64, 11, 
9, 81, 70, 87, 45, 60, 68, 51, 50, 7, 92, 75, 54, 53, 71, 43, 
62, 80. 

The result of the encryption process in hexadecimal 
format is: 
897A4FA1980E73CDF8BF937F. 

6. CONCLUSIONS 

As can be seen, the former procedure may be applied 
to many situations. As a matter of fact, it may be applied 
to all those cryptosystems that rely on permutations. On 
the other hand, the factorial function grows faster than the 
exponential function, which means that  the number of 
available keys grows to extraordinary values, here to about 
2500 (10150)[6]. 

Lastly, in contrast to the DES and triple-DES systems 
where the permutations are fixed, the here proponed 
cryptosystem is based on variable permutations which, 
when implemented in hardware, are costly both in the 
number of required gates and in execution time. In what 
follows it is assumed that the gates have a fanin of two and 
unlimited fanout. Also, the logical operation of negation is 
assumed to be incorporated into the input(s) and output of 
the gates, if required, and thus do not consume time nor 
does it require additional gates. Note that this analysis is 
intended only as a reference, since actual results vary with 
the fanin and fanout of the logic device actually used. 

6.1. The permutation 

Consider an implementation based on a crossbar 
switch as shown in the figure below. The input is applied 
to the columns and the output is obtained from the rows. 
Here, the permutation shown is the following: 

0 3, 1 0, 2 4, 3 2, and 4 1 

 

Fig. 7 A permutation executed by switch crossbar. 

It is easy to see that N2 switches are required. 
Associated to each switch is a decoder with lg(N) inputs, 
where lg(N) denotes the logarithm base 2 of N, that 
activates, if required, the switch. Finally, the output of the 
switches of a given row are combined by an N-input or 
gate to produce the output of the row. For N = 2n, n a 
positive integer, and for the assumptions given above, the 
following values result: 
1. The switches: N2 gates, delay:1 

2. Decoders: N2D gates, where 
( ) ( ) 1lg1lg2

1 −≤≤+ NDN  , delay: ( )⎡ ⎤Nlglg  , 
where ⎡ ⎤x  denotes the ceiling of x. 
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3. Or gate: N(N–1) gates, delay: (lgN) 

Here, N = 64 and we obtain 4096 + 4096(5) + 64(63) 
= 28,608 gates and a global delay of 10 gate delays. Note 
that the number of gates may be reduced considerably by 
using other switching schemes (for instance, a multistage 
banyan network [15]) but at the expense of higher delays. 

6.2. Estimation of the total execution time 

Referring to figure 5, we obtain for the total 
execution time the following: 
1. The delay of the initial permutation. 

2. The delay of 8 iterations given by the delay of the 
boxes and the exclusive or function. 

3. The delay of the final permutation. 

The delays of the initial and final permutation are 
similar and are given by the delays of 3 permutations over 
64 bits to which must be added the delay due to the 
replacement of bits in the blocks as described in the 
example 2. The latter is variable, but it is clear that each 
replacement cannot require more than 32 displacements 
and, furthermore, the maximum amount of replacements is 
64. The permutation over 96 bits requires then in the order 
of 3(10) delays, plus the delays due to 64 replacements. 
Assuming a barrel shifter is used to generate the 
displacements, a delay in the order of 6 results for each 
displacement and the insertion. Hence, the total delay of 
the 96-bit permutation is equal to, or less, than 30 + 6(64) 
= 414. 

The boxes are read-only memories of 26 words of 4 
bits each. If implemented by gates, they generate a delay 
of  ( )⎡ ⎤ 36lg = . It is then clear that the execution or the 8 
iterations requires an order of magnitude less time than the 
permutations, and the total execution time may be 
estimated as 1000 or less gate delays. 

As an example, suppose an FPGA device is used that 
specifies a delay of 0.2 ns per gate and associated wire 
delay. Then, the proposed algorithm executes in 200 ns for 
a 96 bit block, that is, with a speed of 480 Mb/s. As can be 
seen, the speed is limited mainly by the replacement of 
bits. Since these operations may be executed in parallel 
and depending of the resources of the device, if the 
number of barrel shifters is increased the execution time 
may be reduced significantly and speeds in excess of 1 
Gb/s may be obtained. 

Finally, the importance of the factorial theorem must 
not be underestimated. If the permutation were to be 
executed directly over 96 bits, the amount of gates 
required would increase from 28,608 to 73,632 and the 
algorithm would be difficult to implement with the 
resources of FPGA’s available today [16].  
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