
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

125

Manuscript received April 5, 2007

Manuscript revised April 25, 2007

Some Parallel Algorithms Based on Parentheses Matching on
Linear Arrays with Optical Buses

Young-Hak Kim

Kumoh National Institute of Technology, Gumi, Korea

Summary
The parentheses matching problem is to determine the
index of the mate for each parenthesis, and plays an
important role in the design of parallel algorithms. In this
paper, we consider two problems: reconstructing an
original binary from encoded bit strings and transforming
an infix expression into a postfix one. This paper proposes
optimal parallel algorithms for these problems based on
parentheses matching using linear arrays with optical
buses. The proposed algorithms run in a constant number
of communication cycles, using processors equal to the
input size. The main contribution of this paper is to design
cost optimal algorithms with a constant time for these
problems.

Key words:
Optical buses, Parentheses matching, Binary tree, Infix/postfix
expression

1. Introduction

A large body of research has recently been devoted to the
architectures and algorithm development for optically
interconnected parallel computer systems [1-9]. Optical
interconnected parallel architecture can offer advantages
over electronic counterparts including high connection
density and relaxed bandwidth-distance product. Parallel
systems with optical interconnections also resolve some
limitations of electronic buses such as limited bandwidth,
capacitive loading, and cross-talk.

Unlike electronic buses on which signal propagation is
bidirectional, optical channels are inherently unidirectional
and have predictable delay per unit length. Some problems
such as sorting [1, 3, 4], routing [4], image transformation
[5], graph [6], permutation [7], and matrix multiplication
[9] have been solved efficiently on parallel architectures
using optical buses. In this paper, we use the linear array
of processors with slotted optical buses (for short,
LASOB) as a computation model.

The parentheses matching problem is to determine the
index of the mate for each parenthesis, and plays an

important role in the design of parallel algorithms such as
graph and text matching. Shen[10] showed that some
graph and tree problems can be reduced to the parentheses
string representation. This paper includes two problems as
follows: reconstructing an original binary from encoded
bit strings and transforming an infix expression into a
postfix one. We present optimal parallel algorithms for
these problems based on parentheses matching using
linear arrays with optical buses.

In computer applications, binary tree is a data structure
consisting of an array of records, where each record
corresponds to a tree node and contains the data it carries,
and pointers to the parent and its two children. In some
applications the binary tree is encoded as a sequence of
several integers, and a variety of encoding techniques are
proposed in [11, 12]. One of the most commonly used
encoding techniques is the bit-string code proposed in [11].

The reverse process, reconstructing the binary tree data
structure from its sequence of integers, is referred to as the
decoding. Given a 2n bit-string code (where n is the
number of nodes in the binary tree), the original binary
tree of n nodes must be decoded from such an encoded bit-
string code.

In [12, 13] parallel algorithms for two problems are
given, both running in O(logn) time using O(n/logn)
processors in the EREW PRAM model. These algorithms
are optimal in the sense that the product of time and
number of processors is asymptotically the same as the
optimal sequential time. However, both algorithms are not
performed in a constant time. A constant time algorithm
for decoding a binary tree from encoded bit strings was
described on the BSR computation model, which consists
of n processors sharing m memory locations and having
broadcast instructions [14]. Compared with the BSR
model, our parallel computation model has no shared
memories and each processor has just a constant number
of memory locations.

This paper proposes optimal parallel algorithms for both
problems based on the parentheses matching, which run in
a constant number of communication cycles on linear
arrays with slotted optical buses using processors equal to
the input size. The main contribution of this paper is to

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

126

design cost optimal algorithms with a constant time for
these problems.

The reminder of this paper is organized as follows. In
the next section the architecture of the LASOB is formally
described, and several basic operations which will be used
in our algorithms are introduced. Constant time algorithms
for decoding the binary tree and transforming the postfix
expression are described in the section 3 and 4. Finally,
we conclude the paper in section 5.

2. The LASOB model

2.1 Architecture

Parallel systems with optical interconnections can be
considered as an alternative to conventional parallel
systems because optical buses have high connection
density and relaxed bandwidth-distance product over
electronic buses. These architectures with optical buses
include RASOB [1], APPB [2], AROB[4], etc.

The basic architecture of the LASOB to be introduced
in this paper is the same as the 1-dimensional RASOB
model, and is very similar to the APPB model. Since each
processor on the LASOB is not allowed to reconfigure its
internal port connections, the architecture of the LASOB
has much lower switch control than other reconfigurable
meshes.

Figure 1. The LASOB model

The architecture of the LASOB is shown in Figure 1.

As shown in Figure 1, the bus is divided into two
segments interconnecting the linear array of processors:
upper segment(train loading) and lower segment(train
unloading). Each processor has a transmitting interface to
the upper segment and a receiving interface to the lower
segment. Thus, the processors write packets to the upper
segment, and read packets from the lower segment. During
a bus cycle, multiple processors can transmit their packets
by using different time slots of the bus. This is possible
because optical buses are inherently unidirectional, and
have predictable delay per unit length.

In Figure 1, the numbering of the processors is denoted
from left to right by P(1), P(2), ... , and P(n), respectively.

Each processor on the upper and lower bus segments is
separated in time by D=bw+d (seconds) from its
neighbors, where b is the maximal length of a packet in
bits, and w is the optical pulse width (or bit duration) in
seconds. Also, d＞0 is used as guard bands to tolerate
synchronization error to a certain degree. This temporal
separation can be achieved by separating the two
neighboring transmitter (receiver) interfaces on the upper
(lower) segment with a fiber length D×c, where c is the
speed of light in the fiber.

End-to-end propagation is defined as a communication
cycle. This paper assumes that at the beginning of a
communication cycle, a train of n cars (slots) is originated
at the right most end of the upper segment bus. Each car
can be regarded as an empty packet slot with the duration
of D and is numbered 1 through n from left to right. Then,
a simple assignment of the cars is to let processor P(1) use
car 1 for sending its packet, let P(2) use car 2 for sending
its packet and so on.

With this assignment of the cars, the time when the
processor P(i) may transmit its packet, relative to the
beginning of the communication cycle, is given by (n-1)D.
More specifically, if the processor P(i) is expecting a
packet sent by P(j), it can calculate the time it should pick
up the packet by (n+i+j-2)D. All transmissions are
synchronized and each processor can send and receive
packets at specific time stated above. A communication
cycle also is assumed as a constant time, since it is
compared to one computation in a reasonable size (almost
1,000 processors) [2].

2.2 Basic operations

We first define several basic operations that will be used
throughout the paper. P(i), 1≤ i≤ n, represents the i-th
processor on an LASOB with n processors.

Lemma 1. In an LASOB of size n any permutation can be
routed in a constant number of cycles.

Proof. Let Π (1), Π (2), … , Π (n) be a permutation of 1,
2, ..., n. Suppose that for all i, 1≤ i≤ n, each processor P(i)
wants to send its packet to the processor P(Π (i)). If the
address of the destination processor is known to the source
processors, this type of one-to-one communication can be
done in a communication cycle in parallel by assigning a
packet of the i-th processor to car Π (i). This technique is
called time-division destination-oriented multiplexing.

Given a binary sequence b1, b2, …, bn , the prefix sums

of a binary sequence compute b1+ b2+ … +bj for each j,
1≤ j≤ n.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

127

Lemma 2. Consider an LASOB which consists of n
processors. If each processor has a bit value, then the
prefix sums of these values can be computed in a constant
number of cycles [2, 5].

The parentheses matching problem is to determine the
pair of each parenthesis within a balanced string of n
parentheses. A string s consisting of left and right
parentheses is to be balanced if it contains the same
number of left parentheses and right parentheses and it
satisfies the prefix property, namely, that in every prefix
of s the number of right parentheses does not exceed the
number of left parentheses. Given a balanced string s
consisting of left and right parentheses, the parentheses
matching problem asks to find all pairs of matched
parentheses in s.

Lemma 3. If each processor has a left or a right
parenthesis, the parentheses matching problem can be
solved in a constant number of cycles.

Proof. We proved Lemma 3 in details in [15].

3. Reconstructing a binary tree from encoded
bit strings

Binary tree is a data structure that at most has two children
nodes and one parent node, and is used in many computer
applications. In some applications such as encryption
fields, binary tree can be encoded as a sequence of bits by
a variety of encoding techniques. The reverse process,
reconstructing the original binary tree from its encoded
sequence, is referred to as the decoding. In this section, a
parallel algorithm for decoding the original binary tree
from its encoded bit strings is introduced, using an
LASOB with processors equal to the input size.

Figure 2. A binary tree

We first consider the binary tree as shown in Figure 2.

Let us define the binary tree of Figure 2 as T. All nodes of
the binary tree T in Figure 2 are assigned 1 and all missing

children are replaced with real ones but these new nodes
are assigned 0. The binary tree assigned in such a way is
defined as the extended binary tree T' (see Figure 3).

The encoding sequence is the same as the preorder
traversal of such an extended binary tree, but the last 0 is
omitted. Thus, an encoded bit-string code for n nodes
consists of 2n bits. For an example, the binary tree of
Figure 3 is encoded 101110001100. An O(logn) time
algorithm for decoding a binary tree is proposed in [13]. In
this paper, a constant time algorithm is described on an
LASOB.

Figure 3. Extended binary tree

The parentheses matching problem is used as a basic

operation in designing our algorithm on an LASOB. We
can transform an encoded bit-string into a string which
consists of left and right parentheses. When a bit-string,
101110001100, is given as input, if 1 is replaced by a left
parenthesis and 0 by a right parenthesis, the encoded bit-
string can be represented as '()((()))(())'.

Let l(i) be the position of the i-th 1 (left parenthesis) in a
bit-string of length 2n, and let r(i) be the position of its
matching 0 (right parenthesis). For an example, in
101110001100, we have l(1)=1, l(2)=3, l(3)=4, l(4)=5,
l(5)=9, l(6)=10, r(1)=2, r(2)=8, r(3)=7, r(4)=6, r(5)=12,
r(6)=11. These values are to be used in determining the
left and right child of a node in the binary tree. Also, this
procedure satisfies the following two properties.

Property 1. If r(i) is equal to l(i)+1, the left child of a
node i does not exist, and otherwise the left child of a node
i is the (i+1)-th 1.

Property 2. If the value of the (r(i)+1)-th bit is 0, the right
child of a node i does not exist, and otherwise the right
child of a node i has a node j such that l(j)=(r(i)+1).

The properties 1 and 2 can be verified easily because an

encoded bit-string is constructed using the preorder
traversal and this bit-string is reduced to the parentheses
matching problem. In case of the property 1, the left child
of a node i is appeared in the immediate next position of
the l(i)-th bit in an encoded bit-string according to the

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

128

inherent property of the preorder traversal, and if the value
of this position is 0, the left child of a node i does not
exist and otherwise the left child for a node i is set to i+1.

We now look into the meaning of the property 2, which
is used to determine the right child of a node in the binary
tree. By the preorder traversal, the right child of a node i is
visited after traversing first all nodes consisting of its left
subtree. In an encoded bit-string, the corresponding bit
position of a node i is l(i), and bits corresponding to all
nodes of the left subtree of a node i are ended at the bit
position r(i).

Thus, the right child of a node i can be determined by
checking the position of the (r(i)+1)-th bit in an encoded
bit-string, and if the value of this position is 0 the right
child of a node i does not exist and otherwise the right
child of a node i is a node j such that l(j)=r(i)+1.

We next will describe how to implement the original
binary tree from an encoded bit-string on an LASOB,
using two properties presented above. Let lchild(i) be the
left child of a node i, and let rchild(i) be the right child of
a node i. Initially, it is assumed that an encoded bit-string
of length 2n is given as input, and the value of the i-th bit
position in the input string is stored in the processor P(i)
on an LASOB with 2n processors. A brief description of
our algorithm is given below, and it consists of 2 phases.

--
-
Phase 1. Compute l(j) and r(j), 1≤ j≤ n, from the input

string.
Phase 2. Determine the left and right child of a node j in

the binary tree by the property 1 and property 2,
respectively.

--
-

In phase 1, each processor P(i), 1≤ i≤ n, computes l(i)

and r(i) from an encoded bit-string. In phase 2, the left and
right child of each node in the binary tree is determined.
The detailed proofs of each phase are described in
Theorem 1.

Theorem 1. Given an encoded bit-string of length 2n, the
problem of decoding the binary tree from such a bit-string
can be solved in a constant number of cycles on an
LASOB with 2n processors.

Proof. Each phase in the algorithm is proved as follows:

Phase 1. The parentheses matching problem described in
Lemma 3 is used as a basic operation. In order to construct
a string which consists of left or right parentheses from an
encoded bit-string, each processor P(i), 1≤ i≤ 2n, assigns

itself a left parenthesis if its bit value is 1 and otherwise a
right one.

 Let m(i) be the index of the processor that has the
matching pair of a left or a right parenthesis stored in the
processor P(i). Then m(i), 1≤ i≤ 2n, can be easily
computed in a constant number of cycles by applying the
parentheses matching algorithm in Lemma 3.

Let psum(i) be the prefix sum of the i-th bit position in
an encoded bit-string of length 2n. Then each processor
P(i) can compute psum(i) in a constant number of cycles
by Lemma 2. We now show how to efficiently determine
l(i) and r(i) in each processor P(i). Each processor P(i) sets
l(psum(i)) to m(i) if it has a left parenthesis or r(psum(i))
to m(i) if it has a right one. Because each processor P(i)
already has psum(i), the processor P(i) can compute l(i)
and r(i) in a constant number of cycles.

Finally, by Lemma 1, each processor P(i) routes
l(psum(i)) to the processor P(psum(i)) if it has a left
parenthesis or r(psum(i)) to P(psum(i)) if it has a right one.
Then, the processors P(i)s, 1≤ i≤ n, from leftmost to right
have l(i) and r(i).

Phase 2. This phase computes lchild(j) and rchild(j) for
each node j, 1≤ j≤ n, using l(j) and r(j) computed in phase
1. After completing phase 1, each processor P(j), 1≤ j≤ n,
has both l(j) and r(j). The left and right child of each node
can be determined using these values and an encoded bit-
string given initially as input. First, we show how to
determine the left child of each node by the property 1.
Because each processor P(j), 1≤ j≤ n, has l(j) and r(j) by
the phase 1, the processor P(j) can set lchild(j) to NULL if
r(j)=l(j)+1 and otherwise lchild(j) to j+1. It is possible to
perform in a constant number of cycles as this procedure
can be computed directly in each processor.

We next show how to determine the right child of each
node by the property 2. Each processor P(j), 1≤ j≤ n, sets
rchild(j) to NULL if the value of the (r(j)+1)-th bit
position is 0. This is possible because the value of the bit
stored in the processor P(r(j)+1) can be routed to the
processor P(j) in a constant number of cycles by Lemma 1
and all the r(j)s are distinct.

Now, when the value of the (r(j)+1)-th bit position is 1,
we show how each processor P(j) sets rchild(j) to k such
that l(k)=r(j)+1. Each processor P(j), 1≤ j≤ n, can check
whether the value of the (r(j)+1)-th bit position is 1 or 0.
To find the value of k such that l(k)=r(j)+1, each
processor P(k), 1≤ k≤ n, routes (l(k), k) to the processor
P(l(k)) by Lemma 1. Then the processor P(l(k)) has the
index k sent, and the processor P(j), 1≤ j≤ n, can obtain
the index k satisfying this condition (i.e., l(k)=r(j)+1)
from the processor P(r(j)+1), where 1≤ l(j),r(j)≤ 2n. Thus
the processor P(j) can set rchild(j) to the index k received
from the processor P(r(j)+1) when all conditions are

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

129

satisfied. These steps can be solved in a constant number
of cycles by applying Lemma 1 because only simple
routings among the processors are needed.

4. Transforming an infix expression to a
postfix one

In this section, we present an optimal parallel algorithm
for transforming an infix expression into a postfix one on
an LASOB. In computer science, the postfix expression is
widely used in calculating arithmetic expressions using
stack operations. This paper considers only the following
operators: +, -, *, /, ↑ . However, the algorithm proposed
in this paper can be easily extended to arithmetic
expressions with general operators. In what follows our
algorithm consists of four phases and we later will prove
how each phase is implemented in a constant number of
cycles on an LASOB.

--
--
Phase 1. Insert the parentheses to an infix expression.
Phase 2. Determine the matching pairs of all parentheses

using the parentheses matching algorithm.
Phase 3. Move each operator of an infix expression to the

position of the nearest right parenthesis
enclosing it.

Phase 4. Remove all parentheses and then rearrange the
operands and operators only.

--
--

Theorem 2. Given an infix expression of length n, the
problem of transforming an infix expression into a postfix
one can be solved in a constant number of cycles on an
LASOB with n processors.

Proof. The detailed proofs of each phase in the algorithm
are given below.

Phase 1. Assume that an infix expression of length n, x1,
x2, …, xn, is given and each xi, 1≤ i≤ n, is stored in the
processor P(i) on an LASOB with 5n processors. In other
word, the given infix expression is stored in consecutive
positions on n leftmost processors. xi has one of the
following symbols: operator, operand, left parenthesis, or
right parenthesis.

Phase 1 can be implemented efficiently with the help of
the parentheses insertion algorithm of Knuth [16]. Each
processor P(i), 1≤ i≤ n, with operator inserts parentheses
to itself according to the rules as follows: '))xi((' if xi is '+'
or '-', ')xi(bb' if xi is '*' or '/', and '((xibb' or ' xi))bb' if xi is '('
or ')', respectively, where b is a blank. Also, each

processor P(i) with operand assigns ' xibbbb' to its
processor, and then n leftmost processors have 5 symbols
each.

The symbols on n leftmost processors are rearranged on
5n processors so that each processor has only a symbol.
This rearrangement can be solved easily in a constant
number of cycles by Lemma 1. Next, each processor on 5n
processors assigns 0 if it has symbol 'b' and otherwise 1,
and then we compute the prefix sums of the binary strings
by Lemma 2. By Lemma 1, each processor without
symbol 'b' route its symbol to the processor corresponding
to the value of its prefix sum. Hence, it is obvious that
phase 1 is performed in a constant number of cycles.

For an example, we consider an infix expression as
follows: a / b - c + d ↑ (e / f + g↑ h). After completing
phase 1, the input expression is transformed into the below
expression, which includes balanced parentheses
enclosing all operators.

 (((a / b) - c) + (d ↑ ((e / f) + (g↑ h))))

Phase 2. In phase 2, the matching pairs of all parentheses
from the result of phase 1 are determined. The parentheses
matching problem can be solved in a constant number of
cycles by Lemma 3. Let m(i) be the index of the matching
pairs for left or right parentheses. Then the value of m(i) in
the processor P(i) with a left or a right parenthesis can be
obtained from Lemma 3 and this value later will be used in
phase 3.

Phase 3. Each operator in the result expression obtained
from phase 2 is moved to the position of the nearest right
parenthesis enclosing it. This routing is performed as
follows: First, all the processors P(i)s with the result of
phase 1 route their operators to the processors P(i+2)s if
the processors P(i+2)s have a right parenthesis. Next, all
the processors P(i)s route their operators to the processors
P(m(i+1)) if the processors P(i+1)s have a left parenthesis.
These steps can be completed in a constant number of
cycles by Lemma 1 because only simple routings are
needed.

Phase 4. In this phase, all parentheses are removed and
then the remaining operands and operators are to rearrange
in consecutive processors from leftmost to right on an
LASOB. These steps also are done in a constant number
of cycles as follows: First, the prefix sums in the binary
sequence are computed by Lemma 2 after assigning 0 if a
parenthesis is removed and otherwise 1, and then both
operands and operators are routed in the processors
corresponding to the index equal to the values of their
prefix sums. After completing this phase, the input
expression in the above example can be converted as the
following postfix one.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

130

 a b / c - d e f / g h↑ +↑ +

Finally, as phases 1, 2, 3, and 4 can be computed in a

constant number of cycles, and our algorithm performed
on 5n processors can be simulated easily in a constant
number of cycles on n processors, the theorem is proved.

5. Conclusions

In this paper, we considered two problems as follows:
reconstructing an original binary from encoded bit strings
and transforming an infix expression into a postfix one.
This paper proposed efficient parallel algorithms for these
problems based on parentheses matching using linear
arrays with optical buses. The proposed algorithms run in
a constant number of communication cycles using
processors equal to the input size. In the sense of the
product of time and the number of processors used, all of
our algorithms are both time and cost optimal.

References
[1] Hamdi, C. Qiao, Y. Pan, and J. Tong,

"Communication-efficient sorting algorithms on
reconfigurable array of processors with slotted optical
buses," J. of Parallel Distribut. Comput. 57, pp. 166-
187, 1999.

[2] S. Pavel and S. G. Akl, "On the power of arrays with
reconfigurable optical buses," Proc. Int'l Conf.
Parallel and Distributed Processing Techniques and
Applications, Vol. III, pp. 1443-1454, 1996.

[3] S. Pavel and S. G. Akl, "Integer sorting and routing in
arrays with reconfigurable optical buses," Proc. Int'l
Conf. on Parallel Processing, Vol. II, pp. 90-94, 1996.

[4] C. H. Wu, S. H. Horng, Y. R. Wang, and H. R. Tsai,
"Optimal geometric algorithms for digitized images
on arrays with reconfigurable optical buses,"
Microprocessors and microsystems, Vol. 30, pp. 425-
434, 2006.

[5] M. Kim, "Efficient transformations between binary
images and quadtrees on a linear array with
reconfigurable optical buses," The Trans. of KIPS,
Vol. 6, pp. 1511-1519, 1999.

[6] K. Y. Pan and M. Hamdi, "Solving graph theory
problems using reconfigurable pipelined optical
buses," Parallel Computing, Vol. 26, pp. 723-735,
2000.

[7] J. L. Trahan, A. G. Bourgeois, Y. Pan, and R.
Vaidyanathan, "Optimally scaling permutation routing
on reconfigurable linear arrays with optical buses," J.

of Parallel Distribut. Comput. 60, pp. 1125-1136,
2000.

[8] C. Wu, S. J. Horng, and H. R. Tsai, "Efficient parallel
algorithms for hierarchical clustering on arrays with
reconfigurable optical Buses," J. of Parallel Distribut.
Comput. 60, pp. 1137-1153, 2000.

[9] K. Li, Y. Pan, and S. Q. Zheng, "Parallel matrix
computations using a reconfigurable pipelined optical
bus, "J. of Parallel Distribut. Comput. 59, pp. 13-30,
1999.

[10] W. Shen, "Data structures for parallel processing,"
Http://carbon.cudenver.edu, 2007.

[11] S. Zaks, "Lexicographic generation of ordered trees,"
Theoretical Computer Science, vol. 10, pp. 63-82,
1980.

[12] S. Olariu, J. L. Schwing, and J. Zhang, "Optimal
parallel encoding and decoding for trees," Int'l J.
Foundation of Computer Science, Vol. 3, pp. 1-10,
1992.

[13] E. Dekel and S. Sahni, "Parallel generation of postfix
and tree forms," ACM Trans. Programming
Languages and Systems 5, pp. 300-317, 1983.

[14] Stojmenovic, "Constant time BSR solutions to
parenthesis matching, tree decoding, and tree
reconstruction from its traversals," IEEE Trans.
Parallel and Dist. Systems, Vol. 7, pp. 218-224, 1996.

[15] Y. H. Kim, "An optimal parallel algorithm for
generating computation tree form on linear array with
slotted optical buses," J. of KISS: computer systems
and theory, Vol. 27, pp. 475-484, 2000.

[16] D. E. Knuth, The art of computer programming:
Fundamental algorithms, Addison-Wesley, Reading,
MA, 1973.

 Young-Hak Kim received the M.S.
and Ph.D. degrees in Computer
Engineering from Sogang University
in 1989 and 1997, respectively. He is
currently an associate professor in
the school of computer and software
engineering at Kumoh National
Institute of Technology, Gumi,
Korea. He was a visiting scholar in
the school of electrical and computer
engineering at Georgia Institute of

Technology. His research interests include parallel algorithm,
parallel processing, and embedded system.

