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Summary 
The parentheses matching problem is to determine the 
index of the mate for each parenthesis, and plays an 
important role in the design of parallel algorithms. In this 
paper, we consider two problems: reconstructing an 
original binary from encoded bit strings and transforming 
an infix expression into a postfix one. This paper proposes 
optimal parallel algorithms for these problems based on 
parentheses matching using linear arrays with optical 
buses. The proposed algorithms run in a constant number 
of communication cycles, using processors equal to the 
input size. The main contribution of this paper is to design 
cost optimal algorithms with a constant time for these 
problems. 
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1. Introduction 

A large body of research has recently been devoted to the 
architectures and algorithm development for optically 
interconnected parallel computer systems [1-9]. Optical 
interconnected parallel architecture can offer advantages 
over electronic counterparts including high connection 
density and relaxed bandwidth-distance product. Parallel 
systems with optical interconnections also resolve some 
limitations of electronic buses such as limited bandwidth, 
capacitive loading, and cross-talk.  

Unlike electronic buses on which signal propagation is 
bidirectional, optical channels are inherently unidirectional 
and have predictable delay per unit length. Some problems 
such as sorting [1, 3, 4], routing [4], image transformation 
[5], graph [6], permutation [7], and matrix multiplication 
[9] have been solved efficiently on parallel architectures 
using optical buses. In this paper, we use the linear array 
of processors with slotted optical buses (for short, 
LASOB) as a computation model.  

The parentheses matching problem is to determine the 
index of the mate for each parenthesis, and plays an 

important role in the design of parallel algorithms such as 
graph and text matching. Shen[10] showed that some 
graph and tree problems can be reduced to the parentheses 
string representation. This paper includes two problems as 
follows: reconstructing an original binary from encoded 
bit strings and transforming an infix expression into a 
postfix one. We present optimal parallel algorithms for 
these problems based on parentheses matching using 
linear arrays with optical buses. 

In computer applications, binary tree is a data structure 
consisting of an array of records, where each record 
corresponds to a tree node and contains the data it carries, 
and pointers to the parent and its two children. In some 
applications the binary tree is encoded as a sequence of 
several integers, and a variety of encoding techniques are 
proposed in [11, 12]. One of the most commonly used 
encoding techniques is the bit-string code proposed in [11]. 

The reverse process, reconstructing the binary tree data 
structure from its sequence of integers, is referred to as the 
decoding. Given a 2n bit-string code (where n is the 
number of nodes in the binary tree), the original binary 
tree of n nodes must be decoded from such an encoded bit-
string code. 

In [12, 13] parallel algorithms for two problems are 
given, both running in O(logn) time using O(n/logn) 
processors in the EREW PRAM model. These algorithms 
are optimal in the sense that the product of time and 
number of processors is asymptotically the same as the 
optimal sequential time. However, both algorithms are not 
performed in a constant time. A constant time algorithm 
for decoding a binary tree from encoded bit strings was 
described on the BSR computation model, which consists 
of n processors sharing m memory locations and having 
broadcast instructions [14]. Compared with the BSR 
model, our parallel computation model has no shared 
memories and each processor has just a constant number 
of memory locations. 

This paper proposes optimal parallel algorithms for both 
problems based on the parentheses matching, which run in 
a constant number of communication cycles on linear 
arrays with slotted optical buses using processors equal to 
the input size. The main contribution of this paper is to 
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design cost optimal algorithms with a constant time for 
these problems. 

The reminder of this paper is organized as follows. In 
the next section the architecture of the LASOB is formally 
described, and several basic operations which will be used 
in our algorithms are introduced. Constant time algorithms   
for decoding the binary tree and transforming the postfix 
expression are described in the section 3 and 4. Finally, 
we conclude the paper in section 5. 

2. The LASOB model 

2.1 Architecture 

Parallel systems with optical interconnections can be 
considered as an alternative to conventional parallel 
systems because optical buses have high connection 
density and relaxed bandwidth-distance product over 
electronic buses. These architectures with optical buses 
include RASOB [1], APPB [2], AROB[4], etc. 

The basic architecture of the LASOB to be introduced 
in this paper is the same as the 1-dimensional RASOB 
model, and is very similar to the APPB model. Since each 
processor on the LASOB is not allowed to reconfigure its 
internal port connections, the architecture of the LASOB 
has much lower switch control than other reconfigurable 
meshes. 

 

 
Figure 1. The LASOB model 

 
The architecture of the LASOB is shown in Figure 1. 

As shown in Figure 1, the bus is divided into two 
segments interconnecting the linear array of processors: 
upper segment(train loading) and lower segment(train 
unloading). Each processor has a transmitting interface to 
the upper segment and a receiving interface to the lower 
segment. Thus, the processors write packets to the upper 
segment, and read packets from the lower segment. During 
a bus cycle, multiple processors can transmit their packets 
by using different time slots of the bus. This is possible 
because optical buses are inherently unidirectional, and 
have predictable delay per unit length. 

In Figure 1, the numbering of the processors is denoted 
from left to right by P(1), P(2), ... , and P(n), respectively. 

Each processor on the upper and lower bus segments is 
separated in time by D=bw+d (seconds) from its 
neighbors, where b is the maximal length of a packet in 
bits, and w is the optical pulse width (or bit duration) in 
seconds. Also, d＞0 is used as guard bands to tolerate 
synchronization error to a certain degree. This temporal 
separation can be achieved by separating the two 
neighboring transmitter (receiver) interfaces on the upper 
(lower) segment with a fiber length D×c, where c is the 
speed of light in the fiber. 

End-to-end propagation is defined as a communication 
cycle. This paper assumes that at the beginning of a 
communication cycle, a train of n cars (slots) is originated 
at the right most end of the upper segment bus. Each car 
can be regarded as an empty packet slot with the duration 
of D and is numbered 1 through n from left to right. Then, 
a simple assignment of the cars is to let processor P(1) use 
car 1 for sending its packet, let P(2) use car 2 for sending 
its packet and so on.  

With this assignment of the cars, the time when the 
processor P(i) may transmit its packet, relative to the 
beginning of the communication cycle, is given by (n-1)D. 
More specifically, if the processor P(i) is expecting a 
packet sent by P(j), it can calculate the time it should pick 
up the packet by (n+i+j-2)D. All transmissions are 
synchronized and each processor can send and receive 
packets at specific time stated above. A communication 
cycle also is assumed as a constant time, since it is 
compared to one computation in a reasonable size (almost 
1,000 processors) [2].  

 

2.2 Basic operations 

We first define several basic operations that will be used 
throughout the paper. P(i), 1≤ i≤ n, represents the i-th 
processor on an LASOB with n processors. 
 
Lemma 1. In an LASOB of size n any permutation can be 
routed in a constant number of cycles. 

 
Proof. Let Π (1), Π (2), … , Π (n) be a permutation of 1, 
2, ..., n. Suppose that for all i, 1≤ i≤ n, each processor P(i) 
wants to send its packet to the processor P(Π (i)). If the 
address of the destination processor is known to the source 
processors, this type of one-to-one communication can be 
done in a communication cycle in parallel by assigning a 
packet of the i-th processor to car Π (i). This technique is 
called time-division destination-oriented multiplexing.  

 
Given a binary sequence b1, b2, …, bn , the prefix sums 

of a binary sequence compute b1+ b2+ … +bj for each j, 
1≤ j≤ n.   
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Lemma 2. Consider an LASOB which consists of n 
processors. If each processor has a bit value, then the 
prefix sums of these values can be computed in a constant 
number of cycles [2, 5].  
 

The parentheses matching problem is to determine the 
pair of each parenthesis within a balanced string of n 
parentheses. A string s consisting of left and right 
parentheses is to be balanced if it contains the same 
number of left parentheses and right parentheses and it 
satisfies the prefix property, namely, that in every prefix 
of s the number of right parentheses does not exceed the 
number of left parentheses. Given a balanced string s 
consisting of left and right parentheses, the parentheses 
matching problem asks to find all pairs of matched 
parentheses in s.  

 
Lemma 3. If each processor has a left or a right 
parenthesis, the parentheses matching problem can be 
solved in a constant number of cycles. 
 
Proof. We proved Lemma 3 in details in [15].   

3. Reconstructing a binary tree from encoded 
bit strings 

Binary tree is a data structure that at most has two children 
nodes and one parent node, and is used in many computer 
applications. In some applications such as encryption 
fields, binary tree can be encoded as a sequence of bits by 
a variety of encoding techniques. The reverse process, 
reconstructing the original binary tree from its encoded 
sequence, is referred to as the decoding. In this section, a 
parallel algorithm for decoding the original binary tree 
from its encoded bit strings is introduced, using an 
LASOB with processors equal to the input size. 
 

 
Figure 2. A binary tree 

 
We first consider the binary tree as shown in Figure 2. 

Let us define the binary tree of Figure 2 as T. All nodes of 
the binary tree T in Figure 2 are assigned 1 and all missing 

children are replaced with real ones but these new nodes 
are assigned 0. The binary tree assigned in such a way is 
defined as the extended binary tree T' (see Figure 3). 

The encoding sequence is the same as the preorder 
traversal of such an extended binary tree, but the last 0 is 
omitted. Thus, an encoded bit-string code for n nodes 
consists of 2n bits.  For an example, the binary tree of 
Figure 3 is encoded 101110001100. An O(logn) time 
algorithm for decoding a binary tree is proposed in [13]. In 
this paper, a constant time algorithm is described on an 
LASOB. 

 

 
Figure 3. Extended binary tree 

 
The parentheses matching problem is used as a basic 

operation in designing our algorithm on an LASOB. We 
can transform an encoded bit-string into a string which 
consists of left and right parentheses. When a bit-string, 
101110001100, is given as input, if 1 is replaced by a left 
parenthesis and 0 by a right parenthesis, the encoded bit-
string can be represented as '()((()))(())'.  

Let l(i) be the position of the i-th 1 (left parenthesis) in a 
bit-string of length 2n, and let r(i) be the position of its 
matching 0 (right parenthesis). For an example, in 
101110001100, we have l(1)=1, l(2)=3, l(3)=4, l(4)=5, 
l(5)=9, l(6)=10, r(1)=2, r(2)=8, r(3)=7, r(4)=6, r(5)=12, 
r(6)=11. These values are to be used in determining the 
left and right child of a node in the binary tree. Also, this 
procedure satisfies the following two properties. 

 
Property 1. If r(i) is equal to l(i)+1, the left child of a 
node i does not exist, and otherwise the left child of a node 
i is the (i+1)-th 1. 

 
Property 2. If the value of the (r(i)+1)-th bit is 0, the right 
child of a node i does not exist, and otherwise the right 
child of a node i has a node j such that l(j)=(r(i)+1). 

 
The properties 1 and 2 can be verified easily because an 

encoded bit-string is constructed using the preorder 
traversal and this bit-string is reduced to the parentheses 
matching problem. In case of the property 1, the left child 
of a node i is appeared in the immediate next position of 
the l(i)-th bit in an encoded bit-string according to the 
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inherent property of the preorder traversal, and if the value 
of this position is  0, the left child of a node i does not 
exist and otherwise the left child for a node i is set to i+1. 

We now look into the meaning of the property 2, which 
is used to determine the right child of a node in the binary 
tree. By the preorder traversal, the right child of a node i is 
visited after traversing first all nodes consisting of its left 
subtree. In an encoded bit-string, the corresponding bit 
position of a node i is l(i), and bits corresponding to all 
nodes of the left subtree of a node i are ended at the bit 
position r(i).  

Thus, the right child of a node i can be determined by 
checking the position of the (r(i)+1)-th bit in an encoded 
bit-string, and if the value of this position is 0 the right 
child of a node i does not exist and otherwise the right 
child of a node i is a node j such that l(j)=r(i)+1. 

We next will describe how to implement the original 
binary tree from an encoded bit-string on an LASOB, 
using two properties presented above. Let lchild(i) be the 
left child of a node i, and let rchild(i) be the right child of 
a node i. Initially, it is assumed that an encoded bit-string 
of length 2n is given as input, and the value of the i-th bit 
position in the input string is stored in the processor P(i) 
on an LASOB with 2n processors.  A brief description of 
our algorithm is given below, and it consists of 2 phases.  

 
----------------------------------------------------------------------
- 
Phase 1. Compute l(j) and r(j), 1≤ j≤ n, from the input 

string. 
Phase 2. Determine the left and right child of a node j in 

the binary tree by the property 1 and property 2, 
respectively. 

----------------------------------------------------------------------
- 

 
In  phase 1, each processor P(i), 1≤ i≤ n, computes l(i) 

and r(i) from an encoded bit-string. In phase 2, the left and 
right child of each node in the binary tree is determined. 
The detailed proofs of each phase are described in 
Theorem 1. 

 
Theorem 1. Given an encoded bit-string of length 2n, the 
problem of decoding the binary tree from such a bit-string 
can be solved in a constant number of cycles on an 
LASOB with 2n processors. 

 
Proof. Each phase in the algorithm is proved as follows: 

 
Phase 1. The parentheses matching problem described in 
Lemma 3 is used as a basic operation. In order to construct 
a string which consists of left or right parentheses from an 
encoded bit-string, each processor P(i), 1≤ i≤ 2n, assigns 

itself a left parenthesis if its bit value is 1 and otherwise a 
right one. 

 Let m(i) be the index of the processor that has the 
matching pair of a left or a right parenthesis stored in the 
processor P(i). Then m(i), 1≤ i≤ 2n, can be easily 
computed in a constant number of cycles by applying the 
parentheses matching algorithm in Lemma 3. 

Let psum(i) be the prefix sum of the i-th bit position in 
an encoded bit-string of length 2n. Then each processor 
P(i) can compute psum(i) in a constant number of cycles 
by Lemma 2. We now show how to efficiently determine 
l(i) and r(i) in each processor P(i). Each processor P(i) sets 
l(psum(i)) to m(i) if it has a left parenthesis or r(psum(i)) 
to m(i) if it has a right one. Because each processor P(i) 
already has psum(i), the processor P(i) can compute l(i) 
and r(i) in a constant number of cycles. 

Finally, by Lemma 1, each processor P(i) routes 
l(psum(i)) to the processor P(psum(i)) if it has a left 
parenthesis or r(psum(i)) to P(psum(i)) if it has a right one. 
Then, the processors P(i)s, 1≤ i≤ n, from leftmost to right 
have l(i) and r(i). 

 
Phase 2. This phase computes lchild(j) and rchild(j) for 
each node j, 1≤ j≤ n, using l(j) and r(j) computed in phase 
1. After completing phase 1, each processor P(j), 1≤ j≤ n, 
has both l(j) and r(j). The left and right child of each node 
can be determined using these values and an encoded bit-
string given initially as input. First, we show how to 
determine the left child of each node by the property 1. 
Because each processor P(j), 1≤ j≤ n, has l(j) and r(j) by 
the phase 1, the processor P(j) can set lchild(j) to NULL if 
r(j)=l(j)+1 and otherwise lchild(j) to j+1. It is possible to 
perform in a constant number of cycles as this procedure 
can be computed directly in each processor. 

We next show how to determine the right child of each 
node by the property 2. Each processor P(j), 1≤ j≤ n, sets 
rchild(j) to NULL if the value of the (r(j)+1)-th bit 
position is 0. This is possible because the value of the bit 
stored in the processor P(r(j)+1) can be routed to the 
processor P(j) in a constant number of cycles by Lemma 1 
and all the r(j)s are distinct.  

Now, when the value of the (r(j)+1)-th bit position is 1, 
we show how each processor P(j) sets rchild(j) to k such 
that l(k)=r(j)+1. Each processor P(j), 1≤ j≤ n, can check 
whether the value of the (r(j)+1)-th bit position is 1 or 0. 
To find the value of k such that l(k)=r(j)+1, each 
processor P(k), 1≤ k≤ n, routes (l(k), k) to the processor 
P(l(k)) by Lemma 1. Then the processor P(l(k)) has the 
index k sent, and the processor P(j), 1≤ j≤ n, can obtain 
the index k satisfying this condition (i.e., l(k)=r(j)+1) 
from the processor P(r(j)+1), where 1≤ l(j),r(j)≤ 2n. Thus 
the processor P(j) can set rchild(j) to the index k received 
from the processor P(r(j)+1) when all conditions are 
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satisfied. These steps can be solved in a constant number 
of cycles by applying Lemma 1 because only simple 
routings among the processors are needed.  

4. Transforming an infix expression to a 
postfix one 

In this section, we present an optimal parallel algorithm 
for transforming an infix expression into a postfix one on 
an LASOB. In computer science, the postfix expression is 
widely used in calculating arithmetic expressions using 
stack operations. This paper considers only the following 
operators: +, -, *, /, ↑ . However, the algorithm proposed 
in this paper can be easily extended to arithmetic 
expressions with general operators. In what follows our 
algorithm consists of four phases and we later will prove 
how each phase is implemented in a constant number of 
cycles on an LASOB. 

 
----------------------------------------------------------------------
--  
Phase 1. Insert the parentheses to an infix expression. 
Phase 2. Determine the matching pairs of all parentheses 

using the parentheses matching algorithm. 
Phase 3. Move each operator of an infix expression to the 

position of the nearest right parenthesis 
enclosing it. 

Phase 4. Remove all parentheses and then rearrange the 
operands and operators only. 

----------------------------------------------------------------------
-- 

 
Theorem 2. Given an infix expression of length n, the 
problem of transforming an infix expression into a postfix 
one can be solved in a constant number of cycles on an 
LASOB with n processors. 

 
Proof. The detailed proofs of each phase in the algorithm 
are given below. 

 
Phase 1. Assume that an infix expression of length n, x1, 
x2, …, xn, is given and each xi, 1≤ i≤ n, is stored in the 
processor P(i) on an LASOB with 5n processors. In other 
word, the given infix expression is stored in consecutive 
positions on n leftmost processors. xi has one of the 
following symbols: operator, operand, left parenthesis, or 
right parenthesis. 

Phase 1 can be implemented efficiently with the help of 
the parentheses insertion algorithm of Knuth [16]. Each 
processor P(i), 1≤ i≤ n, with operator inserts parentheses 
to itself according to the rules as follows: '))xi((' if xi is '+' 
or '-', ')xi(bb' if xi is '*' or '/', and '((xibb' or ' xi))bb' if xi is '(' 
or ')', respectively, where b is a blank. Also, each 

processor P(i) with operand assigns ' xibbbb' to its 
processor, and then n leftmost processors have 5 symbols 
each. 

The symbols on n leftmost processors are rearranged on 
5n processors so that each processor has only a symbol. 
This rearrangement can be solved easily in a constant 
number of cycles by Lemma 1. Next, each processor on 5n 
processors assigns 0 if it has symbol 'b' and otherwise 1, 
and then we compute the prefix sums of the binary strings 
by Lemma 2. By Lemma 1, each processor without 
symbol 'b' route  its symbol to the processor corresponding 
to the value of its prefix sum. Hence, it is obvious that 
phase 1 is performed in a constant number of cycles. 

For an example, we consider an infix expression as 
follows: a / b - c + d ↑  (e / f + g↑ h). After completing 
phase 1, the input expression is transformed into the below 
expression, which includes balanced parentheses 
enclosing all operators.  

 
 (((a / b) - c) + (d ↑ ((e / f) + (g↑ h)))) 
 

Phase 2. In phase 2, the matching pairs of all parentheses 
from the result of phase 1 are determined. The parentheses 
matching problem can be solved in a constant number of 
cycles by Lemma 3. Let m(i) be the index of the matching 
pairs for left or right parentheses. Then the value of m(i) in 
the processor P(i) with a left or a right parenthesis can be 
obtained from Lemma 3 and this value later will be used in 
phase 3. 

 
Phase 3. Each operator in the result expression obtained 
from phase 2 is moved to the position of the nearest right 
parenthesis enclosing it. This routing is performed as 
follows: First, all the processors P(i)s with the result of 
phase 1 route their operators to the processors P(i+2)s if 
the  processors P(i+2)s have a right parenthesis. Next, all 
the processors P(i)s route their operators to the processors 
P(m(i+1)) if the processors P(i+1)s have a left parenthesis. 
These steps can be completed in a constant number of 
cycles by Lemma 1 because only simple routings are 
needed. 

 
Phase 4. In this phase, all parentheses are removed and 
then the remaining operands and operators are to rearrange 
in consecutive processors from leftmost to right on an 
LASOB. These steps also are done in a constant number 
of cycles as follows: First, the prefix sums in the binary 
sequence are computed by Lemma 2 after assigning 0 if a 
parenthesis is removed and otherwise 1, and then both 
operands and operators are routed in the processors 
corresponding to the index equal to the values of their 
prefix sums. After completing this phase, the input 
expression in the above example can be converted as the 
following postfix one. 
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    a b / c - d e f / g h↑ +↑ + 
 
Finally, as phases 1, 2, 3, and 4 can be computed in a 

constant number of cycles, and our algorithm performed 
on 5n processors can be simulated easily in a constant 
number of cycles on n processors, the theorem is proved.  

5. Conclusions 

In this paper, we considered two problems as follows: 
reconstructing an original binary from encoded bit strings 
and transforming an infix expression into a postfix one. 
This paper proposed efficient parallel algorithms for these 
problems based on parentheses matching using linear 
arrays with optical buses. The proposed algorithms run in 
a constant number of communication cycles using 
processors equal to the input size. In the sense of the 
product of time and the number of processors used, all of 
our algorithms are both time and cost optimal. 
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