
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

131

Manuscript received April 25, 2007
Manuscript revised April 25, 2007

A Retargetable Compiler for Cell-Array-Based
Self-Reconfigurable Architecture

Masayuki Hiromoto†, Shin’ichi Kouyama†, Hiroyuki Ochi†, and Yukihiro Nakamura††

† Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501,Japan
†† Ritsumeikan University, 1-1-1, Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan

Summary
Simulation-based quantitative performance evaluation using
specific applications is indispensable for developing
architectures of self-reconfigurable devices since static analysis
is difficult to estimate their performance. In order to generate
configuration data needed for simulating various target
architectures, we developed a synthesis tool which can be
retargeted to various self-reconfigurable devices specified by
architecture parameters. Given an application in C-language, our
tool automatically executes data-flow analysis, technology
mapping, and layout synthesis. Our tool enables us to perform
efficient design-space exploration, and its retargetability helps
fair evaluation of the devices on the same platform. This paper
also shows architecture evaluation examples using our tool to
demonstrate the advantage of our tool.
Key words:
coarse-grain, ALU-based reconfigurable architecture, high-level
synthesis, layout synthesis

1. Introduction

Recently, dynamic reconfigurable devices have been
remarkably developed. Dynamic reconfigurable devices
have flexibility in changing its functionality even in
runtime, while functionality of Application Specific
Integrated Circuits (ASICs) cannot be changed after
fabrication. Dynamic reconfigurable devices achieve
higher performance than processors using potential
parallelism in the application. Self-reconfigurable devices
such as PCA [7, 14] are a special class of dynamic
reconfigurable devices each of whose basic cell can be
reconfigured individually by its own decision. The device
has a uniform array structure of basic cells, which work
independently to realize distributed processing. These self-
reconfigurable devices are supposed to achieve high
performance and flexibility and thus they are expected to
be useful for today’s portable devices which support
several functionalities and/or standards.

In our research, we explore an architecture of
reconfigurable device featuring self-reconfiguration and
distributed processing through evaluation and comparison
of device architectures. Performance of self-reconfigurable
devices, however, is difficult to be estimated only with

static analysis; therefore simulation-based quantitative
evaluation using specific applications is indispensable.
Unfortunately, simulation-based scheme requires
configuration data of the target application dedicated for
the architecture under evaluation. Generation of
configuration data costs large man-hours without any
development tools dedicated for the architecture. In this
paper we propose a C-compiler, which automatically
generates configuration data of an application, to support
exploration of device architectures.

Note that retargetability is important for a compiler or
a synthesis tool used for architecture exploration. Since
most recent compiler or synthesis tools for reconfigurable
devices, such as FPGAs, are developed and targeted only
for a specific architecture, they do not suit for a use of
developing new reconfigurable architecture. For such use,
VPR [2], which is a placement and routing tool for FPGAs,
is available for architecture exploration since it can be
used for most island-style FPGAs. However, there are no
tools widely applicable for developing self-reconfigurable
architectures. Therefore, we developed a retargetable
compiler for self-reconfigurable architectures.

In addition to introducing our retargetable compiler,
we also show architecture evaluation examples using the
compiler on some applications to demonstrate the
advantage of our tool.

This paper first describes about self-reconfigurable
devices in Section 2, and introduces our evaluation
platform for self-reconfigurable devices in Section 3. Then
detailed explanations of proposed compiler are described
in Section 4, and architecture evaluation with proposed
compiler is shown in Section 5. Finally, a conclusion is
described in Section 6.

2. Self-Reconfigurable Device

2.1 Target Devices in this Paper

In this paper, we define a self-reconfigurable device, the
target architecture of our compiler, as a class of dynamic

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

132

reconfigurable architecture that has following two
features:

1. The device consists of a uniform array of basic cells.

2. Each basic cell consists of a reconfiguration
controller and a reconfigurable resource so that
reconfiguration can be triggered and completed
locally.

1. provides scalability of the device. 1. also enables
us to allocate application tasks at arbitrary place
(relocatability). 2. is indispensable to realize
parallel/distributed control scheme to avoid bottlenecks
and overhead caused by a central controller.

2.2 PCA

This part introduces one of the self-reconfigurable devices,
PCA [7, 14]. PCA has a uniform array structure of basic
elements called “PCA Cells”, which includes “Plastic
Parts” and “Built-in Part” respectively (See Figure 1). The
plastic part consists of Look-Up-Tables (LUTs) like
FPGAs and reconfigured to arbitrary logic circuits. The
built-in part controls data flow and reconfiguration of the
plastic parts inside or outside of the cell. The built-in part
accepts commands from the accompanied plastic part or
other cells. Each PCA cell is connected to the neighbor
cells and this provides scalability of a PCA device. With
self-reconfiguration, PCA can create, copy, or delete
circuit modules to perform flexible and adaptive
processing.

Several PCA devices are proposed such as PCA-1 [9],
PCA-2 [6], and PCA-Chip2 [18], which are all LUT-based
fine-grained reconfigurable devices. Although fine-
grained scheme achieves high flexibility, it requires large
amount of configuration data and long time to reconfigure
the devices. Since large configuration data and long
reconfiguration time become significant overheads for
dynamic reconfigurable devices, most recent dynamic
reconfigurable devices such as DAPDNA [17] and DRP
[13] adopt coarse-grained structure to improve
performance. We expect that similar improvement can be
made for self-reconfigurable devices by adopting coarse-
grained structure.

Built-in Part

Plastic Part

PCA Cell

Fig. 1 Array structure of PCA

3. Evaluation Platform for Self-
Reconfigurable Devices

Our colleagues have proposed an evaluation platform for
self-reconfigurable devices [10] to explore self-
reconfigurable architectures. This section introduces the
platform and the role of the compiler proposed in this
paper.

3.1 Target Architecture

The target architecture of the simulation platform is those
defined in Section 2.1. The platform enables us to evaluate
and compare the performance of various architectures
quantitatively by simply modifying parameters. The
possible architecture parameters include reconfigurable
resource in each basic cell (ALUs with various input word
length and supported operations), wire resources in the
array (structure and bandwidth), and mechanism for
configuration delivery.

3.2 Overview of Platform

An overview of the platform is shown in Figure 2. The
platform consists of device generator, compiler, and a
shared library. An architecture designer can use this
platform in conjunction with general RTL simulators and
HDL synthesis tools.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

133

Compiler

Architecture

Designer

Architecture

Parameters

Various ALUs, Wire

Models, Controllers, etc.

Library

Subset of C

Application

Specify ALUs,

wire models, etc.

Device

Generator

Device

Description
Configuration

Data

Evaluate area and

delay with HDL

systesis tools.

Evaluate runtime

performance

(e.g., latency,

throuput and

configuration time)

with RTL simulators.

Fig. 2 Evaluation platform for self-reconfigurable devices

Using the platform, architecture evaluation is
performed as follows; first a designer determines
parameters of an architecture to be evaluated and input
them to the platform. Then the platform selects parts and
resources from the shared library according to the given
parameters, and generates a device description for the
desired architecture. Since this is described by Verilog
HDL, which is one of the widely used Hardware
Description Languages (HDL), the designer can estimate
static features of the device, such as circuit area and wire
delay, for specific process technology by using general
RTL synthesis tools.

To evaluate the dynamic nature of the device such as
latency, throughput, and reconfiguration time for specific
application, the designer proceeds to simulation-based
experiments. In our platform, the designer can simulate the
device behavior with the device description and the
configuration data of applications by using general RTL
simulators. Note that simulation-based performance
estimation requires configuration data of applications to be
executed on the target device.

3.3 Compiler’s Role

As described above, generating configuration data is
indispensable to evaluate run-time performance of the
target device using simulation with applications. However,
since the platform in [10] does not include an automatic
generator of configuration data from application
description, this process takes long time and large man-
hours. To improve efficiency of architecture exploration, a
compiler that automatically generates configuration data is
desired.

To enable description of applications easy, it is
desired to support high-level language (such as C) for
source code of compilation. Another requirement is
retargetability, which makes the compiler usable for
various kinds of architectures. A retargetable compiler

allows quantitative evaluation between different
architectures on the same platform.

4. Proposed Compiler

4.1 Overview

Figure 3 shows a processing flow of proposed compiler.
Input of the compiler is simplified C language that does
not support all the C grammar. The compiler first converts
a given C code to “GCC Tree” expression using a front-
end of GNU Compiler Collection version 4.0 (GCC-4.0).
The GCC Tree, which is intermediate expression used
inside GCC, represents syntax trees of an input C code and
architecture-independent optimizations are performed on
the GCC Tree. Next, the compiler generates a Data Flow
Graph (DFG), which represents a flow and dependency of
data and control, from the GCC Tree. Then nodes in the
DFG are assigned to ALUs to generate a netlist of ALUs.
Finally, all the ALUs are placed and routed according to
the netlist and configuration data is generated. Details of
each part are described in the following subsections.

Soruce Code
(subset of C)

GCC-4.0

GCC Tree
Generate

ALU Netlist

Place &

Route

Generate

DFG

Generate

Configuration

Configuration

Bit Stream

GCC Tree

Wire Connection

Data

Cell Location and

Routing Data

Operation Codes

for ALUs

Fig. 3 Overview of compile flow

4.2 GCC Tree Generation

First, the compiler needs to parse C programs because an
input of the compiler is written in C language. C programs
usually contain redundant description and elimination of
such redundancy improves processing performance.
Therefore, our compiler adopts GCC as a front-end to
perform optimization on input source codes. Major
optimizations that GCC performs are Tree SSA scheme
[15, 16] based-on Static Single Assignment form (SSA)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

134

[4], constant folding, algebraic simplification, common
subexpression elimination, and so on.

4.3 DFG Conversion

The Tree generated by GCC shows a control and data flow
suitable for sequential execution on a processor. Our
compiler converts the GCC Tree to a DFG that is suitable
for parallel processing with hardware implementation. A
DFG, which consists of a set of nodes and arcs, is
generated to include all the information of the input source
code. The nodes and the arcs are associated with data or
operation and directions of data flows, respectively. The
conversion of a GCC tree to a DFG is not easy, because
processing methods of a hardware is different from those
of a processor. Especially, a conversion of conditional
branches with if and else statements are introduced in this
part.

Figure 4 (a) shows a conditional branch for execution
on processors. First a condition statement is evaluated and
then one of two paths is selected according to the
evaluation result. For hardware implementation, however,
a DFG is better to be expressed like Figure 4 (b). While
evaluating a condition, all the possible paths can be
executed in parallel at the same time. After parallel
execution, a result is selected according to the evaluated
condition. Since GCC Tree gives representations like
Figure 4 (a), the proposed compiler converts conditional
statements to the DFG like Figure 4 (b).

if (x > 0)
 z = y * 2;
else
 z = y + 5;

x

y 5

z

(a) processor

sample code

(b) parallel hardware

2

z

* +

y

if (x > 0) y 52

* +>

x 0

selector

Fig. 4 A sample of a DFG which contains a condition branch

4.4 ALU Netlist Generation

This part of the compiler generates a netlist of the
application which consists of ALUs and wire. This netlist
is generated by mapping each operation node in the DFG
to ALU(s) on a target device. While the compile processes
described so far are independent of a target architecture,
the rest of the compile processes including this ALU

mapping phase depends on the architecture parameters
given by the designer.

A procedure of generating a netlist is as follows; first
search operation nodes one-by-one in the DFG from the
root of the tree, and insert ALU(s) associated to each node
to a netlist.

A DFG node can be mapped to an ALU in a straight-
forward manner, if the operation performed in the node is
covered by the instruction set of the ALU of target
architecture. If the required word length is larger than that
of the ALU, multiple ALUs are associated to expand the
word length. If the required operation is not supported by
the ALU (e.g., multiplication is used in the application,
but the ALU does not support multiplication,) the
compiler picks up a multi-ALU unit for the operation from
the library.

4.5 Placement

The compiler determines the physical location for each
ALU in the generated netlist on the cell array of the target
self-reconfigurable device. We adopt a pairwise exchange
method using a simulated annealing [8] algorithm, which
is often used for layout algorithm of LSI design, as an
ALU placement method. In a pairwise exchange method,
beginning with a random initial layout, randomly selected
two ALUs are exchanged so as to improve a cost function
that indicates whole layout goodness. The most important
problem for the simulated annealing scheme is a definition
of the performance function. Since the cont function that is
calculated iteratively requires a low computational cost
and adequately expressing the layout goodness. In this
paper, we use total wire length and wire complexity as a
cost function.

4.6 Routing

After placement of ALUs, routing wires between ALUs is
executed. When routing wires, all routes are desired to
have paths as short as possible, but optimum routing is not
always accomplished because of limitation of available
wire resources.

Among many routing algorithms proposed previously,
we adopt Lee’s maze routing algorithm [11], which is a
simple algorithm and ensures to solve the problems as
long as there is a solution. This maze routing method
generally takes large computational costs and
tremendously long time for a large problem, but a routing
problem in this paper is not so complex because our target
is ALU-based coarse-grained architecture. Therefore, the
maze algorithm is applicable to our proposed compiler.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

135

4.7 Configuration Data Generation

Finally, the compiler generates a bit stream of
configuration data that can be downloaded to the target
device. The instruction code for each ALU and placement
and routing results are converted to associated bit
sequence and written on an output file.

5. Architecture Evaluation with Proposed
Compiler

In this paper, some applications are implemented on a self-
reconfigurable device using the proposed compiler, and
performance of the several variations of architecture is
evaluated and compared. This section describes the
evaluation results, and discusses on the relationship
between architecture and applications.

5.1 Preparation

As shown in Section 3, our target architecture for a self-
reconfigurable device to be evaluated has a cell-array-
based structure. Figure 5 shows an overview of a basic cell
used in the experiments. It has an ALU and a register
surrounded by wires and multiplexers. Each basic cell is
connected to four-direction neighbor cells via multiplexers
located in four side of the basic cell. On this framework of
the architecture, proposed compiler can map applications
to the device according to given parameters. In this paper
three demonstrations are performed: evaluation of bit
width, wire models, and ALU instruction sets. These
demonstrations are shown in the following subsections.

ALU

reg

ALU

reg

ALU

reg

ALU

reg

ALU

reg

data

carry

Fig. 5 A structure of a basic cell

We choose total circuit area and configuration data
size to evaluate architecture performance. Both of them
are significant parameters because circuit area affects

whole system size and power consumption, and
configuration data size determines reconfiguration time.

5.2 Evaluation of Bit Width

The first demonstration introduced in this section is
evaluation of bit width of an ALU. An optimum ALU bit
width may differ according to an application executed on
the device. To find some relationships between optimum
ALU bit width and applications, performance estimation
for three architectures with different ALU bit widths (4-bit,
8-bit, 16-bit) are made. As the target applications, we used
Discrete Cosine Transform (DCT) in 5.2.1, “SubBytes”
process in Advanced Encryption Standard (AES) [1] in
5.2.2, and a decoder of Error Correction Code (ECC) [5]
in 5.2.3. DCT is selected as an application including
mathematical operations, AES as byte-wise application,
and ECC as bit-wise application.

5.2.1 DCT

Algorithm Overview We adopt Chen’s fast DCT
algorithm [3] and Figure 6 shows a sample block diagram
of 8-input 1-dimensional DCT. A part of the circuit
rounded by broken line is implemented on the
reconfigurable cell array with different bit width ALUs.
As shown in Figure 6, this application mainly consists of
mathematical operation like multiplication and addition.
Note that the input bit width is 8 bits.

x0

x

+

x1

x

+

x2

+

x3

+ + + + +

x4 x5 x6 x7

X0 X2 X4 X6 X1 X3 X5 X7

Coefficient

Generator

+ -

x x x x x x

Fig. 6 Block diagram of DCT

Results Compilation results of DCT are shown in Table 1.
The first row shows bit width of ALUs and the second
shows how many cells are used to realize DCT application.
The total area is the product of the circuit area size of a
single cell and the number of utilized cells. The area is
measured by NAND2-equivalent gate count. The total
configuration data is also calculated from number of cells
and configuration data bits per cell.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

136

Figure 7 shows the circuit area and configuration data
against different bit width, 4-bit, 8-bit, and 16-bit. The 4-
bit ALU achieves the smallest circuit size and the 16-bit
ALU shows the shortest configuration data. This shows
the fine-grained 4-bit ALU is suitable for small circuit use,
because fine-grained elements realize high density and
efficient layouts. On the other hand, fine-grained structure
requires more ALUs than coarse-grained one to realize an
identically application. Therefore, for DCT application,
the coarse-grained 16-bit ALUs are superior to the others
in terms of total configuration data size although a circuit
size and configuration data for a single 16-bit cell is larger
than the others. This shows that coarse-grained scheme is
really effective to reduce configuration data for
applications like DCT.

Table 1: Compilation results for DCT
ALU bit width 4-bit 8-bit 16-bit

number of cells 105 63 42

area of a cell 1,277 2,159 3,722
total area 134,085 136,017 156,324
configuration data for a cell 87 91 99

total configuration data 9,135 5,733 4,158

 0

 50

 100

 150

 200

1684
 0

 2000

 4000

 6000

 8000

 10000

ar
ea

 [k
ga

te
]

co
nf

ig
ur

at
io

n
da

ta
 [b

it]

bit width

area
configuration data

Fig. 7 Compilation results for DCT

5.2.2 AES SubBytes

Algorithm Overview AES is a major encryption
standard, which consists of roughly four parts,
AddRoundKey, MixColumns, ShiftRows, and SubBytes.
Since AddRoundKey and ShiftRows parts can be realized
by simple circuits, we evaluate MixColumns and
SubBytes processes on target reconfigurable devices. Both
of them consist of byte-wise operations, thus we introduce
only a result of SubBytes in this paper.

In SubBytes process, a non-linear transformation called
“S-Box” is performed for input data of 8-bit width. Output
is also 8 bits. As an implementation of S-Box, we used a
method based on operations over a composite Galois field
GF(((22)2)2) [12]. This process consists of logical
operations and byte-wise array operations.

Results Compilation results are shown is Table 2 and
Figure 8. The meaning of each row of the table is similar
to Table 1. The results show circuit that area and
configuration data becomes smallest when 4-bit and 8-bit
ALUs are used, respectively. This is caused by the
following reasons. The SubBytes process consists of
random logic operations and byte-width operations. Since
the random logic operation consumes one ALU for 1-bit
operation, fine-grained ALUs are advantageous. On the
other hand, 8-bit ALUs are optimum for byte-wise
operations because of the identical bit width of ALUs and
operations. For SubBytes process, random logic
operations are dominant factor for circuit area, while byte-
wise operations are dominant factor for configuration data.

Table 2: Compilation results for AES SubBytes
ALU bit width 4-bit 8-bit 16-bit

number of cells 324 228 228

area of a cell 1,277 2,159 3,722
total area 413,748 492,252 848,616
configuration data for a cell 87 91 99

total configuration data 28,188 20,748 22,572

 0

 200

 400

 600

 800

 1000

1684
 0

 5000

 10000

 15000

 20000

 25000

 30000

ar
ea

 [k
ga

te
]

co
nf

ig
ur

at
io

n
da

ta
 [b

it]

bit width

area
configuration data

Fig. 8 Compilation results for AES SubBytes

5.2.3 ECC Decoder

Algorithm Overview In this paper we use an ECC
that is capable of single-error-correction and double-error-

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

137

detection. The code has 16 data bits and 6 parity bits. In a
decoding process, 6 syndrome bits are calculated from 22
input bits (16 data bits and 6 parity bits) by bit-wise
Exclusive-OR operations. Then the syndrome bits are
examined to detect or correct errors by operations on 6-bit
data.

Results Table 3 and Figure 9 show compiling results. The
meaning of each row of the table is also similar to Table 1.
This ECC decoder includes mainly 16-bit operations for
data bits and 6-bit operations for parity bits. Although
these are bit-wise operations, multiple bits can be
processed by a single ALU since our ALU (similar to
those in conventional CPUs) supports the bit-wise
operation which processes the identical logic operation to
all bits in parallel. Therefore, the smallest number of cells
is achieved by an architecture with 16-bit ALUs that can
execute many bits simultaneously, and 1.5 times of the
cells are used with 8-bit ALUs and twice with 4-bit ALUs.
In spite of many cells being used in fine-grained design,
the total circuit area takes almost identical value in each
design because a fine-grained ALU is smaller than coarse-
grained one. However, number of used cells directly
affects total amount of configuration data, and 16-bit
ALUs achieve the smallest value in this case.

Table 3: Compilation results for ECC decoder
ALU bit width 4-bit 8-bit 16-bit

number of cells 545 277 197

area of a cell 1,277 2,159 3,722

total area 697,242 602,361 736,956
configuration data for a cell 87 91 99
total configuration data 47,502 25,389 19,602

 0

 200

 400

 600

 800

 1000

1684
 0

 10000

 20000

 30000

 40000

 50000

ar
ea

 [k
ga

te
]

co
nf

ig
ur

at
io

n
da

ta
 [b

it]

bit width

area
configuration data

Fig. 9 Compilation results for ECC decoder

These results show that coarse-grained ALUs are also
suitable for applications that mainly consist of bit-wise
operations if the identical logic operations are executed in
parallel.

5.3 Evaluation of Wire Models

As the second demonstration scenario, we will compare
architectures with different wire resources using our
compiler. An architecture with rich wire resources can
implement applications efficiently but physical area for
wire resources becomes large. In contrast, an architecture
with poor wires cannot achieve high utilization of cells,
because wire congestion should be reduced and/or need
cells used for “feed-through” purpose. In this section,
experimental results of different bit width of wire
resources between basic cells is shown in order to
demonstrate that the proposed compiler routes paths over
the wires of parameterized bit width. The implemented
application is DCT, which was described in previous
section.

Figure 10 shows the compilation result with
interconnection wires of 1 or 2 track(s). “1 track” means
that there are wire resources as shown in Figure 5, where
each data bus has the same bit width as ALUs. “2 tracks”
means that the number of data bus resources is twice as
many as Figure 5 to increase the flexibility of routing.
Although there is little difference in circuit area between 1
track and 2 tracks cases with ALUs of 4-bit word length,
the 1 track architecture achieves 50% reduction from 2
tracks architecture in area for 16-bit ALUs. In addition,
the amount of configuration data for 1 track design is less
than 2 tracks one at every ALU bit width. Therefore, a
single track wire resource is sufficient for implementing
applications like a DCT, which does not have very
complex interconnections.

 0

 50

 100

 150

 200

1684
 0

 2000

 4000

 6000

 8000

 10000

 12000

ar
ea

 [k
ga

te
]

co
nf

ig
ur

at
io

n
da

ta
 [b

it]

bit width

area (1 track)
area (2 tracks)

configuration data (1 track)
configuration data (2 tracks)

Fig. 10 Compilation results for DCT with different wire tracks

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

138

5.4 Evaluation of Instruction Sets

The final demonstration is evaluation of architectures with
ALUs of different instruction sets. Since there are many
possible variations of ALUs, our compiler can generate
ALU netlists according to a given instruction set. During
the design of optimum instruction set of ALUs to
implement the target applications efficiently, the decision
making whether the ALU should have a multiplication
instruction or not is very important. We test two
instruction sets; one includes multiplication and the other
does not, referred to as “with MUL” and “w/o MUL”,
respectively. Again, DCT is used for the application.

The compilation results are shown in Figure 11.
Since a DCT contains many multiplications, “with MUL”
is much better than “w/o MUL” in terms of area and
configuration data. By adding multipliers to ALUs, the
circuit area decreases to 40% of the design on the "no
MUL" architecture although area for a single cell increases
from 2,037 gates to 2,857 gates. The configuration data
also decreases to 30%.

These results suggest that instruction set of ALUs
should be carefully designed for specific target
applications, and our compiler is useful for exploring the
design space.

 0

 20

 40

 60

 80

 100

with MULw/o MUL
 0

 500

 1000

 1500

 2000

 2500

ar
ea

 [k
ga

te
]

co
nf

ig
ur

at
io

n
da

ta
 [b

it]

bit width

area
configuration data

Fig. 11 Compilation results for DCT with different instruction sets

6. Conclusion

In this paper, a retargetable compiler which is helpful for
exploration and evaluation of self-reconfigurable
architectures is proposed. The proposed compiler provides
efficient evaluation and comparison for various kinds of
architectures on a common platform. The compiler
analyzes an input C code and optimizes it with GCC,
generates a DFG, converts to a netlist of ALUs, places and

routes ALUs, and finally produces configuration data for a
target architecture.

We also demonstrate some examples of architecture
evaluation using the proposed compiler. This shows that
our compiler enables quantitative evaluation, which is
helpful for comparing various self-reconfigurable
architectures. The demonstration also shows the
compiler’s retargetability, e.g., parameterized bit width
and wire tracks and different instruction sets for ALUs.

Using the proposed compiler and the evaluation
platform, we will make intensive experiments on various
architectures and applications in order to clarify the
architecture suitable for a certain application and/or the
application executed efficiently on a certain architecture,
and finally, we will develop a new coarse-grained self-
reconfigurable device which is highly optimized for a
practical application domain. We are also planning to
make enhancements of our compiler, including
parallelization and/or pipelining of loops, task scheduling
for dynamic reconfiguration, and co-design of
reconfigurable fabric and conventional processor based on
application profiling.

Acknowledgments

This work is partly supported by the Japan Society for the
Promotion of Science (JSPS) the 21st Century COE
Program (Grant No. 14213201) and Grants-in-Aid for
Scientific Research (B) 17300016 from JSPS. This work
also supported by the VLSI Design and Education Center
(VDEC), the University of Tokyo in collaboration with
Synopsys, Inc. and Mentor Graphics, Inc.

References
[1] National Institute for Standards and Technology,

“Announcing the Advanced Encryption Standard (AES)”,
Federal Information Processing Standards Publication,
vol.197, Nov 2001.

[2] V. Betz and J. Rose, “VPR: A New Packing, Placement and
Routing Tool for FPGA Research”, In Proceedings of the
7th International Workshop on Field-Programmable Logic
and Applications, pp.213-222, Sep 1997.

[3] W. H. Chen, C. H. Smith, and S. C. Fralick, “A Fast
Computational Algorithm for the Discrete Cosign
Transform”, The IEEE Transactions on Communications,
vol.COM-25, no.9, pp.1004-1009, Sep 1977.

[4] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F.
K. Zadeck, “Efficiently Computing Static Single
Assignment Form and the Control Dependence Graph”,
ACM Transactions on Programming Languages and
Systems, vol.13, no.4, pp.451-490, Oct 1991.

[5] M. Y. Hsiao, “A Class of Optimal Minimum Odd-Weight-
Column SEC-DED Codes”, IBM Journal of Research and
Development, vol.14, no.4, pp.395-401, Jul 1970.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

139

[6] H. Ito, R. Konishi, H. Nakada, H. Tsuboi, Y. Okuyama, and
A. Nagoya, “Dynamically Reconfigurable Logic LSI –
PCA-2”, IEICE Transactions on Information and Systems,
vol.E87-D, no.8, Aug 2004.

[7] H. Ito, K. Oguri, K. Nagami, R. Konishi, and T. Shiozawa,
“The Plastic Cell Architecture for Dynamic Reconfigurable
Computing”, In Proceedings of 9th International Workshop
on Rapid System Prototyping, pp.39-44, Jun 1998.

[8] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi,
“Optimization by Simulated Annealing”, Science, vol.202,
no.4598, pp.671-680, May 1983.

[9] R. Konishi, H. Ito, H. Nakada, A. Nagoya, K. Oguri, N.
Imlig, T. Shiozawa, M. Inamori, and K. Nagami, “PCA-1: A
Fully Asynchronous Self-Reconfigurable LSI”, In
Proceedings of 7th International Symposium on
Asynchronous Circuits and Systems (ASYNC 2001), pp.54-
61, Mar 2001.

[10] S. Kouyama, T. Izumi, H. Ochi, and Y. Nakamura, “A
simulation platform for designing cell-array-based self-
reconfigurable architecture”, IEICE Transactions on
Fundamentals of Electronics, Communications and
Computer Sciences, vol.E90-A, no.4, pp.784-791, Apr 2007.

[11] C. Y. Lee, “An Algorithm for Path Connection and its
Applications”, IRE Transaction on Electronic Computing,
vol.EC-10, pp.346-365, Sep 1961.

[12] S. Morioka and A. Satoh, “An Optimized S-Box Circuit
Architecture for Low Power AES Design”, In Proceedings
of Workshop on Cryptographic Hardware and Embedded
Systems, pp.172-186, Aug 2002.

[13] M. Motomura, “Dynamically Reconfigurable Processor
Architecture”, Microprocessor Forum, Oct 2002.

[14] K. Nagami, K. Oguri, T. Shiozawa, H. Ito, and R. Konishi,
“Plastic Cell Architecture: A Scalable Device Architecture
for General-Purpose Reconfigurable Computing”, IEICE
Transaction on Electronics, vol.E81-C, no.9, pp.1431-1437,
Sep 1998.

[15] D. Novillo, “Tree SSA—A New Optimization Infrastructure
for GCC”, In Proceedings of the GCC Developer’s Summit,
pp.181-193, May 2003.

[16] D. Novillo, “Tree SSA—A New High-Level Optimization
Framework for the GNU Compiler Collection”, In
Proceedings of the Nord/USENIX Users Conference, Feb
2003.

[17] T. Sugawara, K. Ide, and Tomohiro Sato, “Dynamically
Reconfigurable Processor Implemented with IPFlex’s
DAPDNA Technology”, IEICE Transactions on
Information and Systems, vol.E87-D, no.8, pp.1997-2003,
May 2004.

[18] H. Tsutsui, A. Tomita, S. Sugimoto, K. Sakai, T. Izumi, T.
Onoye, and Y. Nakamura, “LUT-Array-Based PLD and
Synthesis Approach Based on Sum of Generalized Complex
Terms Expression”, IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences,
vol.E84-A, no.11, pp.2681-2689, Nov 2001.

Masayuki Hiromoro received his
B.E. degree in Electrical and Electronic
Engineering from Kyoto University in
2006. Presently, he is a master course
student at Department of Communications
and Computer Engineering, Kyoto
University. He is a student member of
IEICE, IPSJ, and IEEE.

Shin’ichi Kouyama received his
B.E. degree in Electrical and Electronic
Engineering and M.E. degree in
Communications and Computer
Engineering from Kyoto University in
2003, and 2005, respectively. Presently, he
is a doctor course student at Department of
Communications and Computer
Engineering, Kyoto University. He is a
student member of IEICE and IEEE.

Hiroyuki Ochi received the B.E., M.E.,
and Ph.D. degrees in Engineering from
Kyoto University in 1989, 1991, and 1994,
respectively. In 1994, he joined
Department of Computer Engineering,
Hiroshima City University as an associate
professor. Since 2004, he has been an
associate professor of Department of
Communications and Computer
Engineering, Kyoto University. He is a

member of IEICE, IPSJ, and IEEE.

Yukihiro Nakamura received his
B.S., M.S. and Ph.D. degrees in Applied
Mathematics and Physics from Kyoto
University, in 1967, 1969 and 1995,
respectively. From 1969 to 1996, he was
with Electrical Communications
Laboratories, NTT. In NTT he engaged in
research and development of the
behavioral description language “SFL” and
the High-Level Synthesis System

“PARTHENON”. Concurrently, he was a guest professor at
Graduate School of Information Systems, University of Electro-
Communications. In 1996, he joined Graduate School of
Informatics, Kyoto University as a professor. Since 2007, he has
been a professor of Research Organization of Science and
Engineering, Ritsumeikan University. He has also been a
coordinator of Synthesis Corporation since 1998. He received
Best Paper Award of IPSJ, Okochi Memorial Technology Prize,
Minister’s Prize of the Science and Technology Agency and
Achievement Award of IEICE in 1990, 1992, 1994 and 2000,
respectively. He is a fellow of IEEE and a member of IEICE,
IPSJ and ACM.

