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Summary 
Simulation-based quantitative performance evaluation using 
specific applications is indispensable for developing 
architectures of self-reconfigurable devices since static analysis 
is difficult to estimate their performance. In order to generate 
configuration data needed for simulating various target 
architectures, we developed a synthesis tool which can be 
retargeted to various self-reconfigurable devices specified by 
architecture parameters. Given an application in C-language, our 
tool automatically executes data-flow analysis, technology 
mapping, and layout synthesis. Our tool enables us to perform 
efficient design-space exploration, and its retargetability helps 
fair evaluation of the devices on the same platform. This paper 
also shows architecture evaluation examples using our tool to 
demonstrate the advantage of our tool. 
Key words: 
coarse-grain, ALU-based reconfigurable architecture, high-level 
synthesis, layout synthesis 

1. Introduction 

Recently, dynamic reconfigurable devices have been 
remarkably developed. Dynamic reconfigurable devices 
have flexibility in changing its functionality even in 
runtime, while functionality of Application Specific 
Integrated Circuits (ASICs) cannot be changed after 
fabrication. Dynamic reconfigurable devices achieve 
higher performance than processors using potential 
parallelism in the application. Self-reconfigurable devices 
such as PCA [7, 14] are a special class of dynamic 
reconfigurable devices each of whose basic cell can be 
reconfigured individually by its own decision. The device 
has a uniform array structure of basic cells, which work 
independently to realize distributed processing. These self-
reconfigurable devices are supposed to achieve high 
performance and flexibility and thus they are expected to 
be useful for today’s portable devices which support 
several functionalities and/or standards.  

In our research, we explore an architecture of 
reconfigurable device featuring self-reconfiguration and 
distributed processing through evaluation and comparison 
of device architectures. Performance of self-reconfigurable 
devices, however, is difficult to be estimated only with 

static analysis; therefore simulation-based quantitative 
evaluation using specific applications is indispensable. 
Unfortunately, simulation-based scheme requires 
configuration data of the target application dedicated for 
the architecture under evaluation. Generation of 
configuration data costs large man-hours without any 
development tools dedicated for the architecture. In this 
paper we propose a C-compiler, which automatically 
generates configuration data of an application, to support 
exploration of device architectures.  

Note that retargetability is important for a compiler or 
a synthesis tool used for architecture exploration. Since 
most recent compiler or synthesis tools for reconfigurable 
devices, such as FPGAs, are developed and targeted only 
for a specific architecture, they do not suit for a use of 
developing new reconfigurable architecture. For such use, 
VPR [2], which is a placement and routing tool for FPGAs, 
is available for architecture exploration since it can be 
used for most island-style FPGAs. However, there are no 
tools widely applicable for developing self-reconfigurable 
architectures. Therefore, we developed a retargetable 
compiler for self-reconfigurable architectures.  

In addition to introducing our retargetable compiler, 
we also show architecture evaluation examples using the 
compiler on some applications to demonstrate the 
advantage of our tool.  

This paper first describes about self-reconfigurable 
devices in Section 2, and introduces our evaluation 
platform for self-reconfigurable devices in Section 3. Then 
detailed explanations of proposed compiler are described 
in Section 4, and architecture evaluation with proposed 
compiler is shown in Section 5. Finally, a conclusion is 
described in Section 6. 

2. Self-Reconfigurable Device 

2.1 Target Devices in this Paper 

In this paper, we define a self-reconfigurable device, the 
target architecture of our compiler, as a class of dynamic 
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reconfigurable architecture that has following two 
features: 
 
1. The device consists of a uniform array of basic cells. 

2. Each basic cell consists of a reconfiguration 
controller and a reconfigurable resource so that 
reconfiguration can be triggered and completed 
locally. 

1. provides scalability of the device. 1. also enables 
us to allocate application tasks at arbitrary place 
(relocatability). 2. is indispensable to realize 
parallel/distributed control scheme to avoid bottlenecks 
and overhead caused by a central controller. 

2.2 PCA 

This part introduces one of the self-reconfigurable devices, 
PCA [7, 14]. PCA has a uniform array structure of basic 
elements called “PCA Cells”, which includes “Plastic 
Parts” and “Built-in Part” respectively (See Figure 1). The 
plastic part consists of Look-Up-Tables (LUTs) like 
FPGAs and reconfigured to arbitrary logic circuits. The 
built-in part controls data flow and reconfiguration of the 
plastic parts inside or outside of the cell. The built-in part 
accepts commands from the accompanied plastic part or 
other cells. Each PCA cell is connected to the neighbor 
cells and this provides scalability of a PCA device. With 
self-reconfiguration, PCA can create, copy, or delete 
circuit modules to perform flexible and adaptive 
processing. 

Several PCA devices are proposed such as PCA-1 [9], 
PCA-2 [6], and PCA-Chip2 [18], which are all LUT-based 
fine-grained reconfigurable devices. Although fine-
grained scheme achieves high flexibility, it requires large 
amount of configuration data and long time to reconfigure 
the devices. Since large configuration data and long 
reconfiguration time become significant overheads for 
dynamic reconfigurable devices, most recent dynamic 
reconfigurable devices such as DAPDNA [17] and DRP 
[13] adopt coarse-grained structure to improve 
performance. We expect that similar improvement can be 
made for self-reconfigurable devices by adopting coarse-
grained structure. 

Built-in Part

Plastic Part

PCA Cell

 

Fig. 1  Array structure of PCA 

3. Evaluation Platform for Self-
Reconfigurable Devices 

Our colleagues have proposed an evaluation platform for 
self-reconfigurable devices [10] to explore self-
reconfigurable architectures. This section introduces the 
platform and the role of the compiler proposed in this 
paper. 

3.1 Target Architecture 

The target architecture of the simulation platform is those 
defined in Section 2.1. The platform enables us to evaluate 
and compare the performance of various architectures 
quantitatively by simply modifying parameters. The 
possible architecture parameters include reconfigurable 
resource in each basic cell (ALUs with various input word 
length and supported operations), wire resources in the 
array (structure and bandwidth), and mechanism for 
configuration delivery. 

3.2 Overview of Platform 

An overview of the platform is shown in Figure 2. The 
platform consists of device generator, compiler, and a 
shared library. An architecture designer can use this 
platform in conjunction with general RTL simulators and 
HDL synthesis tools. 
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Fig. 2  Evaluation platform for self-reconfigurable devices 

Using the platform, architecture evaluation is 
performed as follows; first a designer determines 
parameters of an architecture to be evaluated and input 
them to the platform. Then the platform selects parts and 
resources from the shared library according to the given 
parameters, and generates a device description for the 
desired architecture. Since this is described by Verilog 
HDL, which is one of the widely used Hardware 
Description Languages (HDL), the designer can estimate 
static features of the device, such as circuit area and wire 
delay, for specific process technology by using general 
RTL synthesis tools. 

To evaluate the dynamic nature of the device such as 
latency, throughput, and reconfiguration time for specific 
application, the designer proceeds to simulation-based 
experiments. In our platform, the designer can simulate the 
device behavior with the device description and the 
configuration data of applications by using general RTL 
simulators. Note that simulation-based performance 
estimation requires configuration data of applications to be 
executed on the target device. 

3.3 Compiler’s Role 

As described above, generating configuration data is 
indispensable to evaluate run-time performance of the 
target device using simulation with applications. However, 
since the platform in [10] does not include an automatic 
generator of configuration data from application 
description, this process takes long time and large man-
hours. To improve efficiency of architecture exploration, a 
compiler that automatically generates configuration data is 
desired. 

To enable description of applications easy, it is 
desired to support high-level language (such as C) for 
source code of compilation. Another requirement is 
retargetability, which makes the compiler usable for 
various kinds of architectures. A retargetable compiler 

allows quantitative evaluation between different 
architectures on the same platform. 

4. Proposed Compiler 

4.1 Overview 

Figure 3 shows a processing flow of proposed compiler. 
Input of the compiler is simplified C language that does 
not support all the C grammar. The compiler first converts 
a given C code to “GCC Tree” expression using a front-
end of GNU Compiler Collection version 4.0 (GCC-4.0). 
The GCC Tree, which is intermediate expression used 
inside GCC, represents syntax trees of an input C code and 
architecture-independent optimizations are performed on 
the GCC Tree. Next, the compiler generates a Data Flow 
Graph (DFG), which represents a flow and dependency of 
data and control, from the GCC Tree. Then nodes in the 
DFG are assigned to ALUs to generate a netlist of ALUs. 
Finally, all the ALUs are placed and routed according to 
the netlist and configuration data is generated. Details of 
each part are described in the following subsections. 
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Fig. 3  Overview of compile flow 

4.2 GCC Tree Generation 

First, the compiler needs to parse C programs because an 
input of the compiler is written in C language. C programs 
usually contain redundant description and elimination of 
such redundancy improves processing performance. 
Therefore, our compiler adopts GCC as a front-end to 
perform optimization on input source codes. Major 
optimizations that GCC performs are Tree SSA scheme 
[15, 16] based-on Static Single Assignment form (SSA) 
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[4], constant folding, algebraic simplification, common 
subexpression elimination, and so on. 

4.3 DFG Conversion 

The Tree generated by GCC shows a control and data flow 
suitable for sequential execution on a processor. Our 
compiler converts the GCC Tree to a DFG that is suitable 
for parallel processing with hardware implementation. A 
DFG, which consists of a set of nodes and arcs, is 
generated to include all the information of the input source 
code. The nodes and the arcs are associated with data or 
operation and directions of data flows, respectively. The 
conversion of a GCC tree to a DFG is not easy, because 
processing methods of a hardware is different from those 
of a processor. Especially, a conversion of conditional 
branches with if and else statements are introduced in this 
part. 

Figure 4 (a) shows a conditional branch for execution 
on processors. First a condition statement is evaluated and 
then one of two paths is selected according to the 
evaluation result. For hardware implementation, however, 
a DFG is better to be expressed like Figure 4 (b). While 
evaluating a condition, all the possible paths can be 
executed in parallel at the same time. After parallel 
execution, a result is selected according to the evaluated 
condition. Since GCC Tree gives representations like 
Figure 4 (a), the proposed compiler converts conditional 
statements to the DFG like Figure 4 (b). 
 

if (x > 0)
 z = y * 2;
else
 z = y + 5;

x

y 5

z

(a) processor

sample code

(b) parallel hardware

2

z

* +

y

if (x > 0) y 52

* +>

x 0

selector

 

Fig. 4  A sample of a DFG which contains a condition branch 

4.4 ALU Netlist Generation 

This part of the compiler generates a netlist of the 
application which consists of ALUs and wire. This netlist 
is generated by mapping each operation node in the DFG 
to ALU(s) on a target device. While the compile processes 
described so far are independent of a target architecture, 
the rest of the compile processes including this ALU 

mapping phase depends on the architecture parameters 
given by the designer. 

A procedure of generating a netlist is as follows; first 
search operation nodes one-by-one in the DFG from the 
root of the tree, and insert ALU(s) associated to each node 
to a netlist. 

A DFG node can be mapped to an ALU in a straight-
forward manner, if the operation performed in the node is 
covered by the instruction set of the ALU of target 
architecture. If the required word length is larger than that 
of the ALU, multiple ALUs are associated to expand the 
word length. If the required operation is not supported by 
the ALU (e.g., multiplication is used in the application, 
but the ALU does not support multiplication,) the 
compiler picks up a multi-ALU unit for the operation from 
the library. 

4.5 Placement 

The compiler determines the physical location for each 
ALU in the generated netlist on the cell array of the target 
self-reconfigurable device. We adopt a pairwise exchange 
method using a simulated annealing [8] algorithm, which 
is often used for layout algorithm of LSI design, as an 
ALU placement method. In a pairwise exchange method, 
beginning with a random initial layout, randomly selected 
two ALUs are exchanged so as to improve a cost function 
that indicates whole layout goodness. The most important 
problem for the simulated annealing scheme is a definition 
of the performance function. Since the cont function that is 
calculated iteratively requires a low computational cost 
and adequately expressing the layout goodness. In this 
paper, we use total wire length and wire complexity as a 
cost function. 

4.6 Routing 

After placement of ALUs, routing wires between ALUs is 
executed. When routing wires, all routes are desired to 
have paths as short as possible, but optimum routing is not 
always accomplished because of limitation of available 
wire resources. 

Among many routing algorithms proposed previously, 
we adopt Lee’s maze routing algorithm [11], which is a 
simple algorithm and ensures to solve the problems as 
long as there is a solution. This maze routing method 
generally takes large computational costs and 
tremendously long time for a large problem, but a routing 
problem in this paper is not so complex because our target 
is ALU-based coarse-grained architecture. Therefore, the 
maze algorithm is applicable to our proposed compiler. 
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4.7 Configuration Data Generation 

Finally, the compiler generates a bit stream of 
configuration data that can be downloaded to the target 
device. The instruction code for each ALU and placement 
and routing results are converted to associated bit 
sequence and written on an output file. 

5. Architecture Evaluation with Proposed 
Compiler 

In this paper, some applications are implemented on a self-
reconfigurable device using the proposed compiler, and 
performance of the several variations of architecture is 
evaluated and compared. This section describes the 
evaluation results, and discusses on the relationship 
between architecture and applications. 

5.1 Preparation 

As shown in Section 3, our target architecture for a self-
reconfigurable device to be evaluated has a cell-array-
based structure. Figure 5 shows an overview of a basic cell 
used in the experiments. It has an ALU and a register 
surrounded by wires and multiplexers. Each basic cell is 
connected to four-direction neighbor cells via multiplexers 
located in four side of the basic cell. On this framework of 
the architecture, proposed compiler can map applications 
to the device according to given parameters. In this paper 
three demonstrations are performed: evaluation of bit 
width, wire models, and ALU instruction sets. These 
demonstrations are shown in the following subsections. 
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Fig. 5  A structure of a basic cell 

We choose total circuit area and configuration data 
size to evaluate architecture performance. Both of them 
are significant parameters because circuit area affects 

whole system size and power consumption, and 
configuration data size determines reconfiguration time. 

5.2 Evaluation of Bit Width 

The first demonstration introduced in this section is 
evaluation of bit width of an ALU. An optimum ALU bit 
width may differ according to an application executed on 
the device. To find some relationships between optimum 
ALU bit width and applications, performance estimation 
for three architectures with different ALU bit widths (4-bit, 
8-bit, 16-bit) are made. As the target applications, we used 
Discrete Cosine Transform (DCT) in 5.2.1, “SubBytes” 
process in Advanced Encryption Standard (AES) [1] in 
5.2.2, and a decoder of Error Correction Code (ECC) [5] 
in 5.2.3. DCT is selected as an application including 
mathematical operations, AES as byte-wise application, 
and ECC as bit-wise application. 

5.2.1 DCT 

Algorithm Overview We adopt Chen’s fast DCT 
algorithm [3] and Figure 6 shows a sample block diagram 
of 8-input 1-dimensional DCT. A part of the circuit 
rounded by broken line is implemented on the 
reconfigurable cell array with different bit width ALUs. 
As shown in Figure 6, this application mainly consists of 
mathematical operation like multiplication and addition. 
Note that the input bit width is 8 bits. 
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Fig. 6  Block diagram of DCT 

Results Compilation results of DCT are shown in Table 1. 
The first row shows bit width of ALUs and the second 
shows how many cells are used to realize DCT application. 
The total area is the product of the circuit area size of a 
single cell and the number of utilized cells. The area is 
measured by NAND2-equivalent gate count. The total 
configuration data is also calculated from number of cells 
and configuration data bits per cell. 
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Figure 7 shows the circuit area and configuration data 
against different bit width, 4-bit, 8-bit, and 16-bit. The 4-
bit ALU achieves the smallest circuit size and the 16-bit 
ALU shows the shortest configuration data. This shows 
the fine-grained 4-bit ALU is suitable for small circuit use, 
because fine-grained elements realize high density and 
efficient layouts. On the other hand, fine-grained structure 
requires more ALUs than coarse-grained one to realize an 
identically application. Therefore, for DCT application, 
the coarse-grained 16-bit ALUs are superior to the others 
in terms of total configuration data size although a circuit 
size and configuration data for a single 16-bit cell is larger 
than the others. This shows that coarse-grained scheme is 
really effective to reduce configuration data for 
applications like DCT. 

Table 1: Compilation results for DCT 
ALU bit width 4-bit 8-bit 16-bit 

number of cells 105 63 42

area of a cell 1,277 2,159 3,722
total area 134,085 136,017 156,324
configuration data for a cell 87 91 99

total configuration data 9,135 5,733 4,158
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Fig. 7  Compilation results for DCT 

5.2.2 AES SubBytes 

Algorithm Overview AES is a major encryption 
standard, which consists of roughly four parts, 
AddRoundKey, MixColumns, ShiftRows, and SubBytes. 
Since AddRoundKey and ShiftRows parts can be realized 
by simple circuits, we evaluate MixColumns and 
SubBytes processes on target reconfigurable devices. Both 
of them consist of byte-wise operations, thus we introduce 
only a result of SubBytes in this paper. 

In SubBytes process, a non-linear transformation called 
“S-Box” is performed for input data of 8-bit width. Output 
is also 8 bits. As an implementation of S-Box, we used a 
method based on operations over a composite Galois field 
GF(((22)2)2) [12]. This process consists of logical 
operations and byte-wise array operations. 
 
Results Compilation results are shown is Table 2 and 
Figure 8. The meaning of each row of the table is similar 
to Table 1. The results show circuit that area and 
configuration data becomes smallest when 4-bit and 8-bit 
ALUs are used, respectively. This is caused by the 
following reasons. The SubBytes process consists of 
random logic operations and byte-width operations. Since 
the random logic operation consumes one ALU for 1-bit 
operation, fine-grained ALUs are advantageous. On the 
other hand, 8-bit ALUs are optimum for byte-wise 
operations because of the identical bit width of ALUs and 
operations. For SubBytes process, random logic 
operations are dominant factor for circuit area, while byte-
wise operations are dominant factor for configuration data. 

Table 2: Compilation results for AES SubBytes 
ALU bit width 4-bit 8-bit 16-bit 

number of cells 324 228 228

area of a cell 1,277 2,159 3,722
total area 413,748 492,252 848,616
configuration data for a cell 87 91 99

total configuration data 28,188 20,748 22,572
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Fig. 8  Compilation results for AES SubBytes 

5.2.3 ECC Decoder 

Algorithm Overview In this paper we use an ECC 
that is capable of single-error-correction and double-error-
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detection. The code has 16 data bits and 6 parity bits. In a 
decoding process, 6 syndrome bits are calculated from 22 
input bits (16 data bits and 6 parity bits) by bit-wise 
Exclusive-OR operations. Then the syndrome bits are 
examined to detect or correct errors by operations on 6-bit 
data. 
 
Results Table 3 and Figure 9 show compiling results. The 
meaning of each row of the table is also similar to Table 1. 
This ECC decoder includes mainly 16-bit operations for 
data bits and 6-bit operations for parity bits. Although 
these are bit-wise operations, multiple bits can be 
processed by a single ALU since our ALU (similar to 
those in conventional CPUs) supports the bit-wise 
operation which processes the identical logic operation to 
all bits in parallel. Therefore, the smallest number of cells 
is achieved by an architecture with 16-bit ALUs that can 
execute many bits simultaneously, and 1.5 times of the 
cells are used with 8-bit ALUs and twice with 4-bit ALUs. 
In spite of many cells being used in fine-grained design, 
the total circuit area takes almost identical value in each 
design because a fine-grained ALU is smaller than coarse-
grained one. However, number of used cells directly 
affects total amount of configuration data, and 16-bit 
ALUs achieve the smallest value in this case. 

Table 3: Compilation results for ECC decoder 
ALU bit width 4-bit 8-bit 16-bit 

number of cells 545 277 197

area of a cell 1,277 2,159 3,722

total area 697,242 602,361 736,956
configuration data for a cell 87 91 99
total configuration data 47,502 25,389 19,602
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Fig. 9  Compilation results for ECC decoder 

These results show that coarse-grained ALUs are also 
suitable for applications that mainly consist of bit-wise 
operations if the identical logic operations are executed in 
parallel. 

5.3 Evaluation of Wire Models 

As the second demonstration scenario, we will compare 
architectures with different wire resources using our 
compiler. An architecture with rich wire resources can 
implement applications efficiently but physical area for 
wire resources becomes large. In contrast, an architecture 
with poor wires cannot achieve high utilization of cells, 
because wire congestion should be reduced and/or need 
cells used for “feed-through” purpose. In this section, 
experimental results of different bit width of wire 
resources between basic cells is shown in order to 
demonstrate that the proposed compiler routes paths over 
the wires of parameterized bit width. The implemented 
application is DCT, which was described in previous 
section. 

Figure 10 shows the compilation result with 
interconnection wires of 1 or 2 track(s). “1 track” means 
that there are wire resources as shown in Figure 5, where 
each data bus has the same bit width as ALUs. “2 tracks” 
means that the number of data bus resources is twice as 
many as Figure 5 to increase the flexibility of routing. 
Although there is little difference in circuit area between 1 
track and 2 tracks cases with ALUs of 4-bit word length, 
the 1 track architecture achieves 50% reduction from 2 
tracks architecture in area for 16-bit ALUs. In addition, 
the amount of configuration data for 1 track design is less 
than 2 tracks one at every ALU bit width. Therefore, a 
single track wire resource is sufficient for implementing 
applications like a DCT, which does not have very 
complex interconnections. 
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Fig. 10  Compilation results for DCT with different wire tracks 
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5.4 Evaluation of Instruction Sets 

The final demonstration is evaluation of architectures with 
ALUs of different instruction sets. Since there are many 
possible variations of ALUs, our compiler can generate 
ALU netlists according to a given instruction set. During 
the design of optimum instruction set of ALUs to 
implement the target applications efficiently, the decision 
making whether the ALU should have a multiplication 
instruction or not is very important. We test two 
instruction sets; one includes multiplication and the other 
does not, referred to as “with MUL” and “w/o MUL”, 
respectively. Again, DCT is used for the application. 

The compilation results are shown in Figure 11. 
Since a DCT contains many multiplications, “with MUL” 
is much better than “w/o MUL” in terms of area and 
configuration data. By adding multipliers to ALUs, the 
circuit area decreases to 40% of the design on the "no 
MUL" architecture although area for a single cell increases 
from 2,037 gates to 2,857 gates. The configuration data 
also decreases to 30%. 

These results suggest that instruction set of ALUs 
should be carefully designed for specific target 
applications, and our compiler is useful for exploring the 
design space. 
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Fig. 11  Compilation results for DCT with different instruction sets 

6. Conclusion 

In this paper, a retargetable compiler which is helpful for 
exploration and evaluation of self-reconfigurable 
architectures is proposed. The proposed compiler provides 
efficient evaluation and comparison for various kinds of 
architectures on a common platform. The compiler 
analyzes an input C code and optimizes it with GCC, 
generates a DFG, converts to a netlist of ALUs, places and 

routes ALUs, and finally produces configuration data for a 
target architecture.  

We also demonstrate some examples of architecture 
evaluation using the proposed compiler. This shows that 
our compiler enables quantitative evaluation, which is 
helpful for comparing various self-reconfigurable 
architectures. The demonstration also shows the 
compiler’s retargetability, e.g., parameterized bit width 
and wire tracks and different instruction sets for ALUs.  

Using the proposed compiler and the evaluation 
platform, we will make intensive experiments on various 
architectures and applications in order to clarify the 
architecture suitable for a certain application and/or the 
application executed efficiently on a certain architecture, 
and finally, we will develop a new coarse-grained self-
reconfigurable device which is highly optimized for a 
practical application domain. We are also planning to 
make enhancements of our compiler, including 
parallelization and/or pipelining of loops, task scheduling 
for dynamic reconfiguration, and co-design of 
reconfigurable fabric and conventional processor based on 
application profiling.  
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