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Summary 
A lot of real world problems can be modeled as traversals on 
graph, and mining from such traversals has been found useful in 
several applications. However, previous works considered only 
traversals on unweighted graph. This paper generalizes this to the 
case where vertices of graph are given weights to reflect their 
importance. Under such weight settings, traditional mining 
algorithms can not be adopted directly any more. To cope with 
the problem, this paper proposes new algorithms to discover 
weighted frequent patterns from the traversals. Specifically, we 
devise support bound paradigms for candidate generation and 
pruning during the mining process. 
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1. Introduction 

Graph and traversal on it are widely used to model several 
classes of real world problems. For example, the structure 
of Web site can be modeled as a graph in which the 
vertices represent Web pages, and the edges represent 
hyperlinks between the pages. Furthermore, user 
navigations on the Web site can be modeled as traversals 
on the graph. Once a graph and its traversals are given, 
valuable information can be discovered. Most common 
form of the information may be frequent patterns, i.e., the 
sub-traversals that are contained in a large ratio of 
traversals. However, previous works have not considered 
any weight on the graph [1, 2, 3]. 

This paper extends previous works by considering 
weights attached to the vertices of graph. Such vertex 
weight may reflect the importance of vertex. For example, 
each Web page may have different importance which 
reflects the value of its content. With the weight setting, 
the mining algorithm can not be relied on the well-known 
Apriori paradigm any more. The reason why Apriori 
paradigm works is due to the downward closure property, 
which says all the subsets of a frequent pattern must be 
frequent. With the weight setting, however, it is not 
necessarily true that all the subpatterns of a weighted 
frequent pattern are weighted frequent. Therefore, we 
adopt the notion of support bound [4]. On top of the 

notion, we propose a mining algorithm for the discovery 
of weighed frequent patterns. 

This paper is organized as follows. In Section 2, we 
review previous works related with the traversal pattern 
mining and weighted mining. Section 3 and 4 propose an 
algorithm for the discovery of the weighted frequent 
patterns from traversals on weighted graph. Section 5 
includes two methods for the estimation of weight and 
support bound used in this paper. In Section 6, we 
experiment and analyze the algorithm on synthetic data. 
Finally, Section 7 contains the conclusion and future 
works. 

2. Related Works 

The main stream of data mining, which is related to our 
work, can be divided into two categories, i.e. the traversal 
pattern mining and the weighted mining. For the traversal 
pattern mining, there have been few works. Chen et al. [1] 
proposed the problem of traversal pattern mining, and then 
proposed algorithms with hashing and pruning techniques. 
However, they did not consider graph structure, on which 
the traversals occur. Nanopoulos et al. [2, 3] proposed the 
problem of mining patterns from graph traversals. They 
defined new criteria for the support and subpath 
containment, and then proposed algorithms with a trie 
structure. They considered the graph, on which traversals 
occur. Although the above works dealt with the mining of 
traversal patterns, to the best of our knowledge, there is no 
work which considers the notion of weight as our one. 

For the weighted mining, most of previous works are 
related to the mining of association rules and its sub-
problem, the discovery of frequent itemsets.  Cai et al. [4] 
generalized the discovery of frequent itemsets to the case 
where each item is given an associated weight. They 
introduced new criteria to handle the weights in the 
process of finding frequent itemsets, such as the weighted 
support for the measurement of support, and the support 
bound for the pruning of candidates. Wang et al. [5] 
extended the problem by allowing weights to be associated 
with items in each transaction. Their approach ignores the 
weights when finding frequent itemsets, but considers 
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during the association rule generation. Tao et al. [6] 
proposed an improved model of weighted support 
measurement and the weighted downward closure 
property. Yun et al. [7] also considered weighted items in 
the process of frequent itemsets, and the length-decreasing 
support constraints for a new measurement of support. 
Although the above works take the notion of weight into 
account as examined in this paper, they can not be adapted 
directly to our work because they only concerned on the 
mining from items, but not from traversals. 

3. Weighted Frequent Patterns 

Definition 1. A weighted directed graph is a finite set of 
vertices and edges, in which each edge joins one ordered 
pair of vertices, and each vertex is associated with a 
weight value. A base graph is a weighted directed graph, 
on which traversals occur.  
 

For example, the following base graph has 6 vertices 
and 8 edges, in which each vertex is associated with a 
weight.  
 

A

B D

F

C E

2.0

5.0

7.0 4.0

12.0

6.0

 
Fig. 1 Example of base graph  

 
Definition 2. A traversal is a sequence of consecutive 
vertices along a sequence of edges on a base graph. We 
assume that every traversal is path, which has no repeated 
vertices and edges. The length of a traversal is the number 
of vertices in the traversal. The weight of a traversal is the 
sum of vertex weights in the traversal. A traversal 
database is a set of traversals.  
 

We restrict any traversal to be a path, because repeated 
vertices or edges in a traversal may not contain useful 
information in many cases, such as backward movements. 
If a traversal has repeated vertices or edges, it can be 
separated into several paths, such as maximal forward 
references [1]. The following traversal database has totally 
6 traversals, each of which has an identifier and a 
sequence of consecutive vertices. 

 
 
 

 

Tid Traversal 
1 
2 
3 
4 
5 
6 

<A, B> 
<B, C, E, F> 
<A, C> 
<B, C, E> 
<A> 
<A, C, E, D> 

Fig. 2 Example of traversal database 
 
Definition 3. A subtraversal is any subsequence of 
consecutive vertices in a traversal. If a pattern P is a 
subtraversal of a traversal T, then we say that P is 
contained in T, and vice versa T contains P.  
 

There is a well known property on such subtraversal [2, 
3] as follows. 
 
Property 1. Given a traversal of length k, there are only 
two subtraversals of length k-1. 
 

For example, given a traversal of length 4, <B, C, E, 
F>, there are only two subtraversals of length 3, <B, C, E> 
and <C, E, F>. Note that non-consecutive sequences, such 
as <B, C, F>, are not subtraversals.  
 
Definition 4. The support count of a pattern P, scount(P), 
is the number of traversals containing the pattern. The 
support of a pattern P, support(P), is the fraction of 
traversals containing the pattern. Given a traversal 
database D, let |D| be the number of traversals. 

D
PscountPsupport )()( =

                           (1) 
 

There is a well known property on such support count 
and support as follows. 
 
Property 2. The support count and the support of a 
pattern decrease monotonically as the length of the pattern 
increases. In other word, given a k-pattern P and any l-
pattern containing P, denoted by (P, l), where l > k, then 
scount(P) ≥  scount(P, l) and support(P) ≥  support(P, l). 
 

Given a base graph with a set of vertices V = {v1, v2, …, 
vn}, in which each vertex vj is assigned with a weight wj ≥ 
0, we will define the weighted support of a pattern. 
 
Definition 5. The weighted support of a pattern P, 
wsupport(P),  is 
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Definition 6. A pattern P is said to be weighted frequent 
when the weighted support is greater than or equal to a 
given minimum weighted support (minwsup) threshold, 
 

minwsup)wsupport(P ≥                  (3) 
 

For example, given a base graph and traversal database 
of Fig. 1 and 2, and minwsup of 5.0, then the pattern <B, C, 
E> is weighted frequent since (5.0 + 7.0 + 4.0) × 2/6 = 5.3 
≥ 5.0, but the pattern <B, C> is not since (5.0 + 7.0) × 2/6 
= 4.0 < 5.0. 

From equation (1), (2) and (3), a pattern P is weighted 
frequent when its support count satisfies: 

∑
∈

×
≥

Pv

j

j

w

Dminwsup
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                     (4) 
 

We can consider the right hand side of (4) as the lower 
bound of the support count for a pattern P to be weighted 
frequent. Such lower bound, called support bound, is 
given by 
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We take the ceiling of the value since the function 
sbound(P) is an integer. From Equation (4) and (5), we 
can say a pattern P is weighted frequent when the support 
count is greater than or equal to the support bound. 
 

scount(P)   ≥   sbound(P)                       (6) 
 

Note that sbound(P) can be calculated from base graph 
without referring traversal database. On the contrary, 
scount(P) can be obtained by referring traversal database.  

The problem concerned in this paper is stated as 
follows. Given a weighted directed graph (base graph) and 
a set of path traversals on the graph (traversal database), 
find all weighted frequent patterns. 

4. A Framework for Mining Weighted 
Frequent Patterns 

We propose a framework for the mining of weighted 
frequent patterns. An efficient algorithm for mining large 
itemsets has been Apriori algorithm. The reason why 
Apriori algorithm works is due to the downward closure 
property, which says all the subsets of a large itemset must 
be also large. For the weighted setting, however, it is not 

necessarily true for all the subpatterns of a weighted 
frequent pattern being weighted frequent. For example, 
although a pattern <B, C> is a subpattern of the weighted 
frequent pattern <B, C, E>, it is not weighted frequent. 
Therefore, we can not directly adopt Apriori algorithm. 
Instead, we will extend the notion of support bound, 
which can be applied to the pruning and candidate 
generation. 

4.1 Pruning by Support Bound 

One of the cornerstones to improve the mining 
performance is to devise a pruning method which can 
reduce the number of candidates as many as possible. We 
must prune such candidates that have no possibility to 
become weighted frequent in the future. On the contrary, 
we must keep such candidates that have a possibility to 
become weighted frequent in the future. Main concern is 
how to decide such possibility. 
 
Definition 7. A pattern P is said to be feasible when it has 
a possibility to become weighted frequent in the future if 
extended to longer patterns. In other words, when some 
future patterns containing P will be possibly weighted 
frequent. 
 

Now, the pruning problem is converted to the 
feasibility problem. For the decision of such feasibility, we 
will first devise the weight bound of a pattern. Let the 
maximum possible length of weighted frequent patterns be 
u, which may be the length of longest traversal in the 
traversal database. Given a k-pattern P, suppose l-pattern 
containing P, denoted by (P, l), where k < l ≤ u. For the 
additional (l – k) vertices, if we can estimate upper bounds 
of the weights as klrrr www −,,, 21 K , then the upper bound 
of the weight of the l-pattern (P, l) is given by 

∑∑
−

=∈
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We call this upper bound as l-weight bound of P. The 

first sum is the sum of the weights for the k-pattern P. The 
second one is the sum of the (l − k) estimated weights, 
which can be estimated in several ways. We will propose 
two estimation methods in the following section. 

From (5) and (7), we can derive the lower bound of the 
support count for l-pattern containing P to be weighted 
frequent. Such lower bound, called l-support bound of P, 
is given by 
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Lemma 1. A pattern P is feasible if scount(P) ≥ sbound(P, 
l) for some k < l ≤ u, but not feasible if scount(P) < 
sbound(P, l) for all k < l ≤ u. 
 
Proof. Let li be anyone out of l. If scount(P) ≥ sbound(P, 
li), then because scount(P) ≥ scount(P, li) by Property 2, 
there is a possibility to be scount(P, li) ≥ sbound(P, li). It 
means that (P, li) will possibly be weighted frequent. On 
the contrary, if scount(P) < sbound(P, li), then because 
scount(P) ≥ scount(P, li) by Property 2, scount(P, li) < 
sbound(P, li). It means that (P, li) will definitely not be 
weighted frequent. 
 

If a pattern P is feasible then some l-patterns 
containing P will be possibly weighted frequent. In other 
word, P has a possibility to be subpatterns of some 
weighted frequent l-patterns. Therefore, P must be kept to 
be extended to longer patterns for possible weighted 
frequent patterns in the coming passes. On the contrary, if 
a pattern P is not feasible, then all l-patterns containing P 
will not be weighted frequent. In other word, P certainly 
has no possibility to be subpattern of any weighted 
frequent l-patterns. Therefore, P must be pruned. 

For example, referring to Fig. 1 and Fig. 2, given a 2-
pattern <B, C>, suppose 3-pattern <B, C, −>. For the 
additional vertex ‘−’, we can estimate a possible upper 
bound of the weight as 12.0, which is the greatest weight 
among the remaining vertices besides B and C. Therefore, 
the 3-support bound of <B, C> is 

2
)0.12()0.70.5(

60.5)3,,( =⎥
⎥

⎤
⎢
⎢

⎡
++
×

=>< CBsbound
 

 
It means if the support count of <B, C> is greater than 

or equal to 2, some 3-patterns will be possibly weighted 
frequent. In other word, <B, C> has a possibility to be 
subpatterns of some weighted frequent 3-patterns. Because 
the support count of the pattern <B, C> is actually 2, the 
pattern must be extended to 3-patterns for possible 
weighted frequent patterns. 
 
Corollary 1. A pattern P is feasible if scount(P) ≥  
sbound(P). 
 
Proof.  From Equation (5), (7) and (8), sbound(P) ≥ 
sbound(P, l) for all k < l ≤ u. Therefore, scount(P) ≥ 
sbound(P, l) for all k < l ≤ u, which means P is feasible by 
Lemma 1. 
 

In this case, we don’t need to estimate sbound(P, l) to 
decide the feasibility of P. On the contrary, in the case of 
scount(P) < sbound(P), we can not decide the feasibility, 
and therefore we need to estimate sbound(P, l) to decide 
the feasibility by Lemma 1. 

According to Lemma 1 along with Corollary 1, we can 
devise a pruning algorithm, called ‘pruning by support 
bounds’, as follows. 
 
Algorithm. Pruning-SB 
    for each pattern P in candidates set Ck { 
        if (scount(P) ≥  sbound(P))  
            continue;    // P is feasible. keep 
        for each l from k+1 to u { 
            estimate sbound(P, l); 
            if (scount(P) ≥  sbound(P, l)) 
                break;    // P is feasible. keep 
        } 
        if (l > u)  
            Ck = Ck – {P};    // P is not feasible. prune 
    } 
 

We can devise another pruning algorithm by using the 
minimum of l-support bounds. 
 
Definition 8. The max l-weight bound, wbound(P, +), and 
the min l-support bound of a pattern P, sbound(P, +), are 
defined as follows. 
               wbound(P, +) = max(wbound(P, l)),  
               sbound(P, +) = min(sbound(P, l)), k < l ≤ u. 
 
Corollary 2. A pattern P is feasible if scount(P) ≥ 
sbound(P, +), but not feasible if scount(P) < sbound(P, +). 
 
Proof. If scount(P) ≥ sbound(P, +), then there is at least 
one li such that scount(P) ≥ sbound(P, li), where sbound(P, 
li) =  sbound(P, +). On the contrary, if scount(P) < 
sbound(P, +), then scount(P) < sbound(P, l) for all k < l ≤ 
u. 
 

According to Corollary 2 along with Corollary 1, we 
can devise another pruning algorithm, called ‘pruning by 
min support bound’, as follows. 
 
Algorithm. Pruning-MSB 
    for each pattern P in candidates set Ck { 
        if (scount(P) ≥  sbound(P))  
            continue;    // P is feasible. keep 
        estimate sbound(P, +); 
        if (scount(P) ≥  sbound(P, +)) 
            continue;    // P is feasible. keep 
        Ck = Ck – {P};    // P is not feasible. prune 
    } 

4.2 Candidate Generation 

We will devise candidate generation algorithms by 
defining downward closure properties between feasible 
patterns. If there is a downward closure property between 
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feasible patterns, new candidates can be generated from 
current feasible patterns. 
 
Definition 9. We say that there is partial downward 
closure property when the (k-1)-subpattern <p1, p2, …, pk-

1> of a feasible k-pattern <p1, p2, …, pk> is also feasible. 
We say that there is full downward closure property when 
two (k-1)-subpatterns <p1, p2, …, pk-1> and <p2, p3, …, 
pk> of a feasible k-pattern <p1, p2, …, pk> are also feasible. 
 

Note that there are only two (k-1)-subpatterns of a k-
pattern by Property 1. When there is the partial downward 
closure property, we can generate candidate (k+1)-patterns, 
Ck+1, from feasible k-patterns, Ck, as follows. 
 
Algorithm. Gen-PDC 
    for each P = <p1, p2, …, pk> in Ck { 
        for each edge <pk, v> in G 
            if v is not already in P  // not repeated vertex 
                P is extended to P' = <p1, p2, …, pk, v>; 
    } 
 

When there is the full downward closure property, we 
can generate Ck+1 in a similar way.  
 
Algorithm. Gen-FDC 
    for each P = <p1, p2, …, pk> in Ck { 
        for each edge <pk, v> in G 
            if (v is not already in P) and (Q = <p2, …, pk, v> is 
in Ck ) 
                P is extended to P' = <p1, p2, …, pk, v>; 
    } 
 

This algorithm will generate less number of candidates 
than Algorithm Gen-PDC. 

When there is the full downward closure property, 
Ck+1 can be alternatively obtained by self-joining Ck. That 
is, two k-patterns P = <p1, p2, …, pk> and Q = <q1, q2, …, 
qk> will be joined if  p2 = q1, p3 = q2, … pk = qk-1, and 
p1 != qk. This results in a new candidate pattern <p1, p2, …, 
pk, qk>. For example, the join of <A B C> and <B C D> 
results in <A B C D>. This method need not refer to the 
base graph G, besides for C2 generation. For C2 generation, 
each generated 2-pattern must be excluded if there is no 
corresponding edge in G. 
 
Algorithm. Gen-SQL 
    select P.p1, P.p2, …, P.pk, Q.qk 
    from Ck P, Ck Q 
    where P.p2 = Q.q1, P.p3 = Q.q2, … P.pk = Q.qk-1, 
        and P.p1 != Q.qk. 
  

This method need not refer to the base graph G, 
besides for C2 generation. For C2 generation, each 

generated 2-pattern must be excluded if there is no 
corresponding edge in G. 

4.3 Mining Algorithm 

By combing the pruning and candidate generation 
algorithms as a whole, we can devise an algorithm for 
mining weighted frequent patterns. Fig. 3 shows the 
algorithm proposed in this paper, which performs in a 
level-wise manner.  
 
Algorithm. Mining weighted frequent patterns 
 
Inputs: Base graph G, Traversal database D, Minimum weighted 

support minwsup 
Output: List of weighted frequent patterns Lk 
 
{ 
        // 1. maximum length of weighted frequent patterns 
    u = max(length(t)), t ∈ D; 
 
        // 2.  initialize candidate patterns of length 1 
    C1 = V(G); 
 

    for (k = 1; k ≤ u and Ck ≠ ∅; k++) { 
 
             // 3. obtain support counts 
         for each traversal t ∈ D { 
             for each pattern  p ∈ Ck  
                 If p is contained in t, then p.scount++; 
         } 
 

// 4. determine weighted frequent patterns  
         Lk = {p | p ∈ Ck,  p.weightedSupport ≥ minwsup}; 
                              (equivalently, p.scount ≥ p.sbound) 
 
         if (k < u) { 

// 5.  prune candidates 
             Ck = pruneCandidates(Ck, G, u); 
 
                  // 6. generate new candidates for next pass 
             Ck+1 = genCandidates(Ck, G); 
         } 
    } 
} 

Fig.3 Algorithm for mining weighted frequent patterns 
 

In the algorithm, each step is outlined as follows. Step 
1 is to find out the maximum possible length of weighted 
frequent patterns, which is limited by the maximum length 
of traversals. Step 2 initializes candidate patterns of length 
1 with the vertices of base graph. In Step 3, traversal 
database is scanned to obtain the support counts of 
candidate patterns. Step 4 is to determine weighted 
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frequent patterns if the weighted support is greater than or 
equal to the specified minimum weighted support. 
Equivalently, if the support count is greater or equal to the 
support bound.  In Step 5, the subroutine 
pruneCandidates(Ck, G, u) is to prune candidate patterns 
by checking their feasibility. The algorithm Pruning-SB or 
Pruning-MSB can be used according to their efficiency. 
The remaining patterns are feasible patterns. In Step 6, the 
subroutine genCandidates(Ck, G) generates new candidate 
patterns of length k+1 from the feasible patterns of length 
k for the next pass. The algorithm Gen-PDC, Gen-FDC or 
Gen-SQL can be used according to its applicability and 
efficiency.  

5. Estimations of Support Bound 

We propose two methods for the estimation of weight and 
support bound.  

5.1 Estimation by All Vertices 

Given a k-pattern P, suppose l-pattern containing P, where 
k < l ≤ u. Let V be the set of all vertices in the base graph. 
Among the remaining vertices (V − P), let the vertices 
with the (l − k) greatest weights be .21 ,,, klrrr vvv −K  Then, 
the l-weight bound, wbound(P, l), and the l-support bound, 
sbound(P, l), of P are defined same as Equation (7) and 
(8), respectively. 
 

For example, refer to Fig. 1 and Fig. 2, the 3-support 
bound for the pattern <A> is 

2
)0.70.12()0.2(

60.5)3,( =⎥
⎥

⎤
⎢
⎢

⎡
++

×
=>< Asbound

 
 

Corollary 3. wbound(P, l) increases monotonically, and 
accordingly  sbound(P, l) decreases monotonically as l 
increases.  
 

Let the upper limit of the length of possible weighted 
frequent patterns be known as u. By Corollary 3, the min 
support bound of P is the u-support bound of P,  

 
sbound(P, +) = sbound(P, u)                    (9) 

 
By Equation (9) along with Corollary 2, if scount(P) ≥ 

sbound(P, u), then P is feasible. On the contrary, if 
scount(P) < sbound(P, u), then P is not feasible. This 
means that we do not need to calculate l-support bounds of 
P for k < l < u. Therefore, the pruning algorithm Pruning-
MSB is more efficient than Pruning-SB. 
 

Corollary 4. For any pi in P=<p1, p2, …, pk>, 
wbound(P−{pi}, l) ≥ wbound(P, l), and accordingly 
sbound(P−{pi}, l) ≤ sbound(P, l). 
 
Proof. wbound(P−{pi}, l) is the sum of the vertex weights 
of P excluding pi and (l−k+1) greatest vertex weights 
among the vertices including pi. This sum is always 
greater than or equal to the sum of the vertex weights of P 
and (l−k) greatest vertex weights. 
 
Lemma 2. There is the full downward closure property 
among feasible patterns. That is, if a k-pattern P=<p1, p2, 
…, pk> is feasible, then the two (k−1)-subpatterns Pa=<p1, 
p2, …, pk-1> and Pb=<p2, p3, …, pk> are also feasible.  
 
Proof. The if condition means scount(P) ≥ sbound(P, u). 
For Pa, scount(Pa) ≥ scount(P) by Property 2, and 
sbound(Pa, u) ≤ sbound(P, u) by Corollary 4. Therefore 
scount(Pa) ≥ sbound(Pa,, u), which implies Pa is feasible. 
This is similar for Pb. 
 

Therefore, the candidate generation algorithm Gen-
FDC or Gen-SQL can be applied. 
 
Example.  
 
From the Fig. 1 and 2, we will show how the weighted 
frequent patterns are generated from the traversal database. 
Suppose the minwsup (minimum weighted support 
threshold) is 5.0. 
 
1. In the upperLimit() subroutine, the algorithm will scan 
the length of traversals, and returns the maximum length, 
which is 4 in this example. The maximum length is the 
upper limit of the length of weighted frequent patterns. 
 
2. During the initialization step, the candidate patterns of 
length 1 are generated with all vertices of the base graph. 

C1 = {<A>, <B>, <C>, <D>, <E>, <F>} 
 
3. The algorithm repeats as followings. 
 
Pattern

(P) 
scount

(P) 
sbound

(P) 
wbound(P,4) 
/ sbound(P,4) 

Weight
frequent Feasible

<A> 4 15 27 / 2   
<B> 3 6 30 / 1   
<C> 4 5 30 / 1   
<D> 1 5 30 / 1   
<E> 3 8 29 / 2   
<F> 1 3 30 / 1   

 
Candidates for next pass are generated by Gen-B or 

Gen-C. 
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Pattern 
(P) 

scount 
(P) 

sbound 
(P) 

wbound(P,4) 
/ sbound(P,4) WF F 

<A, B> 1 5 26 / 2   
<A, C> 2 4 27 / 2   
<B, C> 2 3 30 / 1   
<B, D> 0 - -   
<C, E> 3 3 -   
<D, F> 0 - -   
<E, D> 1 3 29 / 2   
<E, F> 1 2 29 / 2   

In the above table, ‘-’ denotes ‘not need’. 
 

Pattern 
(P) 

scount 
(P) 

sbound 
(P) 

wbound(P,4) 
/ sbound(P,4) WF F 

<A, C, E> 1 3 25 / 2   
<B, C, E> 2 2 -   

 
The weighted frequent patterns are {<C, E>, <B, C, 

E>}. 

5.2 Estimation by Reachable Vertices  

To prune unnecessary candidates as many as possible, the 
support bounds need to be estimated as high as possible. It 
means that we must estimate the weight bounds as low as 
possible. The previous method, however, has a tendency 
to over-estimate the weight bounds. This tendency is 
mainly due to the non-consideration of the topology of 
base graph. Specifically, the vertices with greatest weights 
are chosen one after one, even though they can not be 
reached from the corresponding pattern. 
  
Definition 10. Given a base graph G, k-reachable vertices 
from a vertex v is all the vertices reachable from v within 
the distance k. 
 

Such k-reachable vertices can be regarded as the 
vertices within the radius k from v. Therefore, k-reachable 
vertices include all the (k-1)-reachable vertices. 

Given a k-pattern P, let R(P, l), k < l ≤ u, be the (l-k)-
reachable vertices from the head vertex of P, but not in P 
and not through the vertices in P. They can be obtained by 
a level wise manner. 
 
Algorithm. R(P, l) 
     T = {head vertex of P} for l = k+1, N otherwise; 
     N = ∅; 
     for each vertex v in T 
         for each edge <v, w> in G 
             if w is not in P and R(P, l-1) and N, then append w 

to N; 
     R(P, l) = R(P, l-1) ∪ N 
 

For example, from Fig. 1, R(<A>, 2) is {B, C}, and 
R(<A>, 3) is {B, C, D, E}. 

Among the vertices in R(P, l), let the vertices with the 
(l − k) greatest weights be klrrr vvv −,,, 21 K . Then, the l-
weight bound, wbound(P, l), and the l-support bound, 
sbound(P, l), of P are obtained by Equation (7) and (8), 
respectively. 

For example, refer to Fig. 1 and Fig. 2, the 3-support 
bound for the pattern <A> is 

2
)0.60.7()0.2(

60.5)3,( =⎥
⎥

⎤
⎢
⎢

⎡
++

×
=>< Asbound  

 
Corollary 3'. wbound(P, l) increases monotonically, and 
accordingly  sbound(P, l) decreases monotonically as l 
increases.  
 

By Corollary 3', the min support bound of P is the u-
support bound of P, 

 
sbound(P, +) = sbound(P, u)                 (9') 

 
In spite of Equation (9'), however, the pruning 

algorithm Pruning-SB may be more efficient than 
Pruning-MSB because the pruning can be decided before u 
due to the level wise characteristic of the algorithm R(P, l). 
 
Corollary 4'. For pk in P=<p1, p2, …, pk>, 
wbound(P−{pk}, l) ≥ wbound(P, l), and accordingly 
sbound(P−{pk}, l) ≤ sbound(P, l). 
 
Proof. wbound(P−{pk}, l) is the sum of the vertex weights 
of P excluding pk and (l−k+1) greatest vertex weights 
among the vertices of Rl-k+1(P−{pk}) which includes all the 
vertices of Rl-k(P) and pk. This sum is always greater than 
or equal to the sum of the vertex weights of P and (l−k) 
greatest vertex weights among the vertices of Rl-k(P). 
 
Lemma 2'. There is the partial downward closure property 
among feasible patterns. That is, if a k-pattern P=<p1, p2, 
…, pk> is feasible, then the (k−1)-subpattern Pa=<p1, p2, 
…, pk-1> is also feasible.  
 
Proof. The if condition means scount(P) ≥ sbound(P, u). 
For Pa, scount(Pa) ≥ scount(P) by Property 2, and 
sbound(Pa, u) ≤ sbound(P, u) by Corollary 4'. Therefore 
scount(Pa) ≥ sbound(Pa,, u), which implies Pa is feasible. 
 

Therefore, the candidate generation algorithm Gen-
PDC can be only applied. 
 
Example. 
 

wbound(P,l) 
/ sbound(P,l) Pattern

(P) 
scount

(P) 
sbound

(P) l = 2 l = 3 l = 4
WF F
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<A> 4 15 9 / 4 - -  
<B> 3 6 12 / 3 - -  
<C> 4 5 11 / 3 - -  
<D> 1 5 18 / 2 × ×   
<E> 3 8 16 / 2 - -  
<F> 1 3 × × ×   
In the above table, ‘×’ denotes ‘not applicable’. 
Candidates for next pass are generated by Gen-A. 

  
wbound(P,l) 
/ sbound(P,l) Pattern 

(P) 
scount 

(P) 
sbound 

(P) l = 3 l = 4 
WF F

<A, B> 1 5 14 / 3 26 / 2   
<A, C> 2 4 13 / 3 27 / 2  
<B, C> 2 3 16 / 2 -  
<B, D> 0 - - -   
<C, E> 3 3 - - 
<E, D> 1 3 22 / 2 ×   
<E, F> 1 2 × ×   

 
wbound(P,l) 
/ sbound(P,l) Pattern 

(P) 
scount 

(P) 
sbound 

(P) l = 4 
WF F

<A, C, E> 1 3 25 / 2   
<B, C, E> 2 2 - 
<C, E, D> 1 2 29 / 2   
<C, E, F> 1 2 ×   

 
Pattern 

(P) 
scount 

(P) 
sbound 

(P) WF F

<B, C, E, D> 0 -   
<B, C, E, F> 1 2   

 
The weighted frequent patterns are {<C, E>, <B, C, 

E>}. 

6. Experimental Results 

This section presents experimental results of the mining 
algorithm, and compares two estimation algorithms, All 
vertices and Reachable vertices, using synthetic dataset. 
The algorithms are implemented with C++ language 
running under Microsoft Visual C++ 6.0. All experiments 
are performed on 3.0 GHz Pentium Ⅳ PC machine with 1 
GB memory. The operating system is Windows XP 
Professional and the database server is Microsoft SQL 
Server 2000 for managing base graphs and traversals on 
them. 

During the experiment, base graph is generated 
synthetically according to the parameters, i.e., number of 
vertices and average number of edges per vertex. And then, 
we assigned distinctive weight to each vertex of the base 
graph. All the experiments use a base graph with 100 
vertices and 300 edges, i.e., 3 average edges per vertex. 
The number of traversals is 10,000 and the minimum 

weighted support is 2.0. We generated six sets of 
traversals, in each of which the maximum length of 
traversals varies from 5 to 10. 

Fig. 4 shows the trend of the number of feasible 
patterns with respect to the max length of traversals. We 
measured the number of feasible patterns when the length 
of candidate patterns is (max length of traversals – 1). As 
shown in the figure, the number of feasible patterns for 
Reachable vertices is smaller than that of All vertices. The 
difference of the number of feasible patterns between two 
estimation algorithms becomes smaller as the max length 
of traversals increases.  

 

 
Fig. 4. Number of feasible patterns w.r.t diferrent max 

length of patterns 

 
Fig. 5 shows the trend of the execution time with 

respect to the max length of traversals. As shown in Fig. 5, 
when the max length of traversals is short, Reachable 
vertices is more efficient than All vertices. When the max 
length of traversals increases, however Reachable vertices 
is less efficient. The performance difference becomes 
larger when the max length of traversals becomes longer. 
This is because Reachable vertices spends more time to 
find reachable vertices as the max length of traversals 
increases. 
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Fig. 5. Execution time w.r.t diferrent max length of 

patterns 

7. Conclusions 

This paper extended the mining problem to the 
discovering of weighted frequent patterns from path 
traversals on weighted graph. Differently from previous 
approaches, vertices of graph are attached with weights 
which reflect their importance. With this weight setting, 
we presented the mining algorithm which takes the 
weights into account in the measurement of support. This 
algorithm is based on the notion of support bound. We 
also proposed two methods for the estimation of support 
bound, and then experimented on them. We are currently 
working on the applications such as Web mining. 
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