
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

140

Manuscript received April 5, 2007

Manuscript revised April 25, 2007

Mining Weighted Frequent Patterns from Path Traversals
on Weighted Graph

Seong Dae Lee,† and Hyu Chan Park ††

†, †† Department of Computer Engineering, Korea Maritime University, Korea
†† Corresponding author

Summary
A lot of real world problems can be modeled as traversals on
graph, and mining from such traversals has been found useful in
several applications. However, previous works considered only
traversals on unweighted graph. This paper generalizes this to the
case where vertices of graph are given weights to reflect their
importance. Under such weight settings, traditional mining
algorithms can not be adopted directly any more. To cope with
the problem, this paper proposes new algorithms to discover
weighted frequent patterns from the traversals. Specifically, we
devise support bound paradigms for candidate generation and
pruning during the mining process.

Key words:
Data mining, Graph, Traversal, Weighted frequent pattern.

1. Introduction

Graph and traversal on it are widely used to model several
classes of real world problems. For example, the structure
of Web site can be modeled as a graph in which the
vertices represent Web pages, and the edges represent
hyperlinks between the pages. Furthermore, user
navigations on the Web site can be modeled as traversals
on the graph. Once a graph and its traversals are given,
valuable information can be discovered. Most common
form of the information may be frequent patterns, i.e., the
sub-traversals that are contained in a large ratio of
traversals. However, previous works have not considered
any weight on the graph [1, 2, 3].

This paper extends previous works by considering
weights attached to the vertices of graph. Such vertex
weight may reflect the importance of vertex. For example,
each Web page may have different importance which
reflects the value of its content. With the weight setting,
the mining algorithm can not be relied on the well-known
Apriori paradigm any more. The reason why Apriori
paradigm works is due to the downward closure property,
which says all the subsets of a frequent pattern must be
frequent. With the weight setting, however, it is not
necessarily true that all the subpatterns of a weighted
frequent pattern are weighted frequent. Therefore, we
adopt the notion of support bound [4]. On top of the

notion, we propose a mining algorithm for the discovery
of weighed frequent patterns.

This paper is organized as follows. In Section 2, we
review previous works related with the traversal pattern
mining and weighted mining. Section 3 and 4 propose an
algorithm for the discovery of the weighted frequent
patterns from traversals on weighted graph. Section 5
includes two methods for the estimation of weight and
support bound used in this paper. In Section 6, we
experiment and analyze the algorithm on synthetic data.
Finally, Section 7 contains the conclusion and future
works.

2. Related Works

The main stream of data mining, which is related to our
work, can be divided into two categories, i.e. the traversal
pattern mining and the weighted mining. For the traversal
pattern mining, there have been few works. Chen et al. [1]
proposed the problem of traversal pattern mining, and then
proposed algorithms with hashing and pruning techniques.
However, they did not consider graph structure, on which
the traversals occur. Nanopoulos et al. [2, 3] proposed the
problem of mining patterns from graph traversals. They
defined new criteria for the support and subpath
containment, and then proposed algorithms with a trie
structure. They considered the graph, on which traversals
occur. Although the above works dealt with the mining of
traversal patterns, to the best of our knowledge, there is no
work which considers the notion of weight as our one.

For the weighted mining, most of previous works are
related to the mining of association rules and its sub-
problem, the discovery of frequent itemsets. Cai et al. [4]
generalized the discovery of frequent itemsets to the case
where each item is given an associated weight. They
introduced new criteria to handle the weights in the
process of finding frequent itemsets, such as the weighted
support for the measurement of support, and the support
bound for the pruning of candidates. Wang et al. [5]
extended the problem by allowing weights to be associated
with items in each transaction. Their approach ignores the
weights when finding frequent itemsets, but considers

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

141

during the association rule generation. Tao et al. [6]
proposed an improved model of weighted support
measurement and the weighted downward closure
property. Yun et al. [7] also considered weighted items in
the process of frequent itemsets, and the length-decreasing
support constraints for a new measurement of support.
Although the above works take the notion of weight into
account as examined in this paper, they can not be adapted
directly to our work because they only concerned on the
mining from items, but not from traversals.

3. Weighted Frequent Patterns

Definition 1. A weighted directed graph is a finite set of
vertices and edges, in which each edge joins one ordered
pair of vertices, and each vertex is associated with a
weight value. A base graph is a weighted directed graph,
on which traversals occur.

For example, the following base graph has 6 vertices
and 8 edges, in which each vertex is associated with a
weight.

A

B D

F

C E

2.0

5.0

7.0 4.0

12.0

6.0

Fig. 1 Example of base graph

Definition 2. A traversal is a sequence of consecutive
vertices along a sequence of edges on a base graph. We
assume that every traversal is path, which has no repeated
vertices and edges. The length of a traversal is the number
of vertices in the traversal. The weight of a traversal is the
sum of vertex weights in the traversal. A traversal
database is a set of traversals.

We restrict any traversal to be a path, because repeated
vertices or edges in a traversal may not contain useful
information in many cases, such as backward movements.
If a traversal has repeated vertices or edges, it can be
separated into several paths, such as maximal forward
references [1]. The following traversal database has totally
6 traversals, each of which has an identifier and a
sequence of consecutive vertices.

Tid Traversal
1
2
3
4
5
6

<A, B>
<B, C, E, F>
<A, C>
<B, C, E>
<A>
<A, C, E, D>

Fig. 2 Example of traversal database

Definition 3. A subtraversal is any subsequence of
consecutive vertices in a traversal. If a pattern P is a
subtraversal of a traversal T, then we say that P is
contained in T, and vice versa T contains P.

There is a well known property on such subtraversal [2,
3] as follows.

Property 1. Given a traversal of length k, there are only
two subtraversals of length k-1.

For example, given a traversal of length 4, <B, C, E,
F>, there are only two subtraversals of length 3, <B, C, E>
and <C, E, F>. Note that non-consecutive sequences, such
as <B, C, F>, are not subtraversals.

Definition 4. The support count of a pattern P, scount(P),
is the number of traversals containing the pattern. The
support of a pattern P, support(P), is the fraction of
traversals containing the pattern. Given a traversal
database D, let |D| be the number of traversals.

D
PscountPsupport)()(=

 (1)

There is a well known property on such support count
and support as follows.

Property 2. The support count and the support of a
pattern decrease monotonically as the length of the pattern
increases. In other word, given a k-pattern P and any l-
pattern containing P, denoted by (P, l), where l > k, then
scount(P) ≥ scount(P, l) and support(P) ≥ support(P, l).

Given a base graph with a set of vertices V = {v1, v2, …,
vn}, in which each vertex vj is assigned with a weight wj ≥
0, we will define the weighted support of a pattern.

Definition 5. The weighted support of a pattern P,
wsupport(P), is

())()(PsupportwPwsupport
Pv

j

j
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∑

∈ (2)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

142

Definition 6. A pattern P is said to be weighted frequent
when the weighted support is greater than or equal to a
given minimum weighted support (minwsup) threshold,

minwsup)wsupport(P ≥ (3)

For example, given a base graph and traversal database
of Fig. 1 and 2, and minwsup of 5.0, then the pattern <B, C,
E> is weighted frequent since (5.0 + 7.0 + 4.0) × 2/6 = 5.3
≥ 5.0, but the pattern <B, C> is not since (5.0 + 7.0) × 2/6
= 4.0 < 5.0.

From equation (1), (2) and (3), a pattern P is weighted
frequent when its support count satisfies:

∑
∈

×
≥

Pv

j

j

w

Dminwsup
Pscount)(

 (4)

We can consider the right hand side of (4) as the lower
bound of the support count for a pattern P to be weighted
frequent. Such lower bound, called support bound, is
given by

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡
×

=
∑
∈Pj

j

v
w

Dminwsup
Psbound)(

 (5)

We take the ceiling of the value since the function
sbound(P) is an integer. From Equation (4) and (5), we
can say a pattern P is weighted frequent when the support
count is greater than or equal to the support bound.

scount(P) ≥ sbound(P) (6)

Note that sbound(P) can be calculated from base graph
without referring traversal database. On the contrary,
scount(P) can be obtained by referring traversal database.

The problem concerned in this paper is stated as
follows. Given a weighted directed graph (base graph) and
a set of path traversals on the graph (traversal database),
find all weighted frequent patterns.

4. A Framework for Mining Weighted
Frequent Patterns

We propose a framework for the mining of weighted
frequent patterns. An efficient algorithm for mining large
itemsets has been Apriori algorithm. The reason why
Apriori algorithm works is due to the downward closure
property, which says all the subsets of a large itemset must
be also large. For the weighted setting, however, it is not

necessarily true for all the subpatterns of a weighted
frequent pattern being weighted frequent. For example,
although a pattern <B, C> is a subpattern of the weighted
frequent pattern <B, C, E>, it is not weighted frequent.
Therefore, we can not directly adopt Apriori algorithm.
Instead, we will extend the notion of support bound,
which can be applied to the pruning and candidate
generation.

4.1 Pruning by Support Bound

One of the cornerstones to improve the mining
performance is to devise a pruning method which can
reduce the number of candidates as many as possible. We
must prune such candidates that have no possibility to
become weighted frequent in the future. On the contrary,
we must keep such candidates that have a possibility to
become weighted frequent in the future. Main concern is
how to decide such possibility.

Definition 7. A pattern P is said to be feasible when it has
a possibility to become weighted frequent in the future if
extended to longer patterns. In other words, when some
future patterns containing P will be possibly weighted
frequent.

Now, the pruning problem is converted to the
feasibility problem. For the decision of such feasibility, we
will first devise the weight bound of a pattern. Let the
maximum possible length of weighted frequent patterns be
u, which may be the length of longest traversal in the
traversal database. Given a k-pattern P, suppose l-pattern
containing P, denoted by (P, l), where k < l ≤ u. For the
additional (l – k) vertices, if we can estimate upper bounds
of the weights as klrrr www −,,, 21 K , then the upper bound
of the weight of the l-pattern (P, l) is given by

∑∑
−

=∈

+=
kl

j

r

Pv

j j

j

wwlPwbound
1

),(
 (7)

We call this upper bound as l-weight bound of P. The

first sum is the sum of the weights for the k-pattern P. The
second one is the sum of the (l − k) estimated weights,
which can be estimated in several ways. We will propose
two estimation methods in the following section.

From (5) and (7), we can derive the lower bound of the
support count for l-pattern containing P to be weighted
frequent. Such lower bound, called l-support bound of P,
is given by

⎥
⎥

⎤
⎢
⎢

⎡ ×
=

),(
),(

lPwbound
Dminwsup

lPsbound (8)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

143

Lemma 1. A pattern P is feasible if scount(P) ≥ sbound(P,
l) for some k < l ≤ u, but not feasible if scount(P) <
sbound(P, l) for all k < l ≤ u.

Proof. Let li be anyone out of l. If scount(P) ≥ sbound(P,
li), then because scount(P) ≥ scount(P, li) by Property 2,
there is a possibility to be scount(P, li) ≥ sbound(P, li). It
means that (P, li) will possibly be weighted frequent. On
the contrary, if scount(P) < sbound(P, li), then because
scount(P) ≥ scount(P, li) by Property 2, scount(P, li) <
sbound(P, li). It means that (P, li) will definitely not be
weighted frequent.

If a pattern P is feasible then some l-patterns
containing P will be possibly weighted frequent. In other
word, P has a possibility to be subpatterns of some
weighted frequent l-patterns. Therefore, P must be kept to
be extended to longer patterns for possible weighted
frequent patterns in the coming passes. On the contrary, if
a pattern P is not feasible, then all l-patterns containing P
will not be weighted frequent. In other word, P certainly
has no possibility to be subpattern of any weighted
frequent l-patterns. Therefore, P must be pruned.

For example, referring to Fig. 1 and Fig. 2, given a 2-
pattern <B, C>, suppose 3-pattern <B, C, −>. For the
additional vertex ‘−’, we can estimate a possible upper
bound of the weight as 12.0, which is the greatest weight
among the remaining vertices besides B and C. Therefore,
the 3-support bound of <B, C> is

2
)0.12()0.70.5(

60.5)3,,(=⎥
⎥

⎤
⎢
⎢

⎡
++
×

=>< CBsbound

It means if the support count of <B, C> is greater than

or equal to 2, some 3-patterns will be possibly weighted
frequent. In other word, <B, C> has a possibility to be
subpatterns of some weighted frequent 3-patterns. Because
the support count of the pattern <B, C> is actually 2, the
pattern must be extended to 3-patterns for possible
weighted frequent patterns.

Corollary 1. A pattern P is feasible if scount(P) ≥
sbound(P).

Proof. From Equation (5), (7) and (8), sbound(P) ≥
sbound(P, l) for all k < l ≤ u. Therefore, scount(P) ≥
sbound(P, l) for all k < l ≤ u, which means P is feasible by
Lemma 1.

In this case, we don’t need to estimate sbound(P, l) to
decide the feasibility of P. On the contrary, in the case of
scount(P) < sbound(P), we can not decide the feasibility,
and therefore we need to estimate sbound(P, l) to decide
the feasibility by Lemma 1.

According to Lemma 1 along with Corollary 1, we can
devise a pruning algorithm, called ‘pruning by support
bounds’, as follows.

Algorithm. Pruning-SB
 for each pattern P in candidates set Ck {
 if (scount(P) ≥ sbound(P))
 continue; // P is feasible. keep
 for each l from k+1 to u {
 estimate sbound(P, l);
 if (scount(P) ≥ sbound(P, l))
 break; // P is feasible. keep
 }
 if (l > u)
 Ck = Ck – {P}; // P is not feasible. prune
 }

We can devise another pruning algorithm by using the
minimum of l-support bounds.

Definition 8. The max l-weight bound, wbound(P, +), and
the min l-support bound of a pattern P, sbound(P, +), are
defined as follows.
 wbound(P, +) = max(wbound(P, l)),
 sbound(P, +) = min(sbound(P, l)), k < l ≤ u.

Corollary 2. A pattern P is feasible if scount(P) ≥
sbound(P, +), but not feasible if scount(P) < sbound(P, +).

Proof. If scount(P) ≥ sbound(P, +), then there is at least
one li such that scount(P) ≥ sbound(P, li), where sbound(P,
li) = sbound(P, +). On the contrary, if scount(P) <
sbound(P, +), then scount(P) < sbound(P, l) for all k < l ≤
u.

According to Corollary 2 along with Corollary 1, we
can devise another pruning algorithm, called ‘pruning by
min support bound’, as follows.

Algorithm. Pruning-MSB
 for each pattern P in candidates set Ck {
 if (scount(P) ≥ sbound(P))
 continue; // P is feasible. keep
 estimate sbound(P, +);
 if (scount(P) ≥ sbound(P, +))
 continue; // P is feasible. keep
 Ck = Ck – {P}; // P is not feasible. prune
 }

4.2 Candidate Generation

We will devise candidate generation algorithms by
defining downward closure properties between feasible
patterns. If there is a downward closure property between

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

144

feasible patterns, new candidates can be generated from
current feasible patterns.

Definition 9. We say that there is partial downward
closure property when the (k-1)-subpattern <p1, p2, …, pk-

1> of a feasible k-pattern <p1, p2, …, pk> is also feasible.
We say that there is full downward closure property when
two (k-1)-subpatterns <p1, p2, …, pk-1> and <p2, p3, …,
pk> of a feasible k-pattern <p1, p2, …, pk> are also feasible.

Note that there are only two (k-1)-subpatterns of a k-
pattern by Property 1. When there is the partial downward
closure property, we can generate candidate (k+1)-patterns,
Ck+1, from feasible k-patterns, Ck, as follows.

Algorithm. Gen-PDC
 for each P = <p1, p2, …, pk> in Ck {
 for each edge <pk, v> in G
 if v is not already in P // not repeated vertex
 P is extended to P' = <p1, p2, …, pk, v>;
 }

When there is the full downward closure property, we
can generate Ck+1 in a similar way.

Algorithm. Gen-FDC
 for each P = <p1, p2, …, pk> in Ck {
 for each edge <pk, v> in G
 if (v is not already in P) and (Q = <p2, …, pk, v> is
in Ck)
 P is extended to P' = <p1, p2, …, pk, v>;
 }

This algorithm will generate less number of candidates
than Algorithm Gen-PDC.

When there is the full downward closure property,
Ck+1 can be alternatively obtained by self-joining Ck. That
is, two k-patterns P = <p1, p2, …, pk> and Q = <q1, q2, …,
qk> will be joined if p2 = q1, p3 = q2, … pk = qk-1, and
p1 != qk. This results in a new candidate pattern <p1, p2, …,
pk, qk>. For example, the join of <A B C> and <B C D>
results in <A B C D>. This method need not refer to the
base graph G, besides for C2 generation. For C2 generation,
each generated 2-pattern must be excluded if there is no
corresponding edge in G.

Algorithm. Gen-SQL
 select P.p1, P.p2, …, P.pk, Q.qk
 from Ck P, Ck Q
 where P.p2 = Q.q1, P.p3 = Q.q2, … P.pk = Q.qk-1,
 and P.p1 != Q.qk.

This method need not refer to the base graph G,
besides for C2 generation. For C2 generation, each

generated 2-pattern must be excluded if there is no
corresponding edge in G.

4.3 Mining Algorithm

By combing the pruning and candidate generation
algorithms as a whole, we can devise an algorithm for
mining weighted frequent patterns. Fig. 3 shows the
algorithm proposed in this paper, which performs in a
level-wise manner.

Algorithm. Mining weighted frequent patterns

Inputs: Base graph G, Traversal database D, Minimum weighted

support minwsup
Output: List of weighted frequent patterns Lk

{
 // 1. maximum length of weighted frequent patterns
 u = max(length(t)), t ∈ D;

 // 2. initialize candidate patterns of length 1
 C1 = V(G);

 for (k = 1; k ≤ u and Ck ≠ ∅; k++) {

 // 3. obtain support counts
 for each traversal t ∈ D {
 for each pattern p ∈ Ck
 If p is contained in t, then p.scount++;
 }

// 4. determine weighted frequent patterns
 Lk = {p | p ∈ Ck, p.weightedSupport ≥ minwsup};
 (equivalently, p.scount ≥ p.sbound)

 if (k < u) {

// 5. prune candidates
 Ck = pruneCandidates(Ck, G, u);

 // 6. generate new candidates for next pass
 Ck+1 = genCandidates(Ck, G);
 }
 }
}

Fig.3 Algorithm for mining weighted frequent patterns

In the algorithm, each step is outlined as follows. Step
1 is to find out the maximum possible length of weighted
frequent patterns, which is limited by the maximum length
of traversals. Step 2 initializes candidate patterns of length
1 with the vertices of base graph. In Step 3, traversal
database is scanned to obtain the support counts of
candidate patterns. Step 4 is to determine weighted

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

145

frequent patterns if the weighted support is greater than or
equal to the specified minimum weighted support.
Equivalently, if the support count is greater or equal to the
support bound. In Step 5, the subroutine
pruneCandidates(Ck, G, u) is to prune candidate patterns
by checking their feasibility. The algorithm Pruning-SB or
Pruning-MSB can be used according to their efficiency.
The remaining patterns are feasible patterns. In Step 6, the
subroutine genCandidates(Ck, G) generates new candidate
patterns of length k+1 from the feasible patterns of length
k for the next pass. The algorithm Gen-PDC, Gen-FDC or
Gen-SQL can be used according to its applicability and
efficiency.

5. Estimations of Support Bound

We propose two methods for the estimation of weight and
support bound.

5.1 Estimation by All Vertices

Given a k-pattern P, suppose l-pattern containing P, where
k < l ≤ u. Let V be the set of all vertices in the base graph.
Among the remaining vertices (V − P), let the vertices
with the (l − k) greatest weights be .21 ,,, klrrr vvv −K Then,
the l-weight bound, wbound(P, l), and the l-support bound,
sbound(P, l), of P are defined same as Equation (7) and
(8), respectively.

For example, refer to Fig. 1 and Fig. 2, the 3-support
bound for the pattern <A> is

2
)0.70.12()0.2(

60.5)3,(=⎥
⎥

⎤
⎢
⎢

⎡
++

×
=>< Asbound

Corollary 3. wbound(P, l) increases monotonically, and
accordingly sbound(P, l) decreases monotonically as l
increases.

Let the upper limit of the length of possible weighted
frequent patterns be known as u. By Corollary 3, the min
support bound of P is the u-support bound of P,

sbound(P, +) = sbound(P, u) (9)

By Equation (9) along with Corollary 2, if scount(P) ≥

sbound(P, u), then P is feasible. On the contrary, if
scount(P) < sbound(P, u), then P is not feasible. This
means that we do not need to calculate l-support bounds of
P for k < l < u. Therefore, the pruning algorithm Pruning-
MSB is more efficient than Pruning-SB.

Corollary 4. For any pi in P=<p1, p2, …, pk>,
wbound(P−{pi}, l) ≥ wbound(P, l), and accordingly
sbound(P−{pi}, l) ≤ sbound(P, l).

Proof. wbound(P−{pi}, l) is the sum of the vertex weights
of P excluding pi and (l−k+1) greatest vertex weights
among the vertices including pi. This sum is always
greater than or equal to the sum of the vertex weights of P
and (l−k) greatest vertex weights.

Lemma 2. There is the full downward closure property
among feasible patterns. That is, if a k-pattern P=<p1, p2,
…, pk> is feasible, then the two (k−1)-subpatterns Pa=<p1,
p2, …, pk-1> and Pb=<p2, p3, …, pk> are also feasible.

Proof. The if condition means scount(P) ≥ sbound(P, u).
For Pa, scount(Pa) ≥ scount(P) by Property 2, and
sbound(Pa, u) ≤ sbound(P, u) by Corollary 4. Therefore
scount(Pa) ≥ sbound(Pa,, u), which implies Pa is feasible.
This is similar for Pb.

Therefore, the candidate generation algorithm Gen-
FDC or Gen-SQL can be applied.

Example.

From the Fig. 1 and 2, we will show how the weighted
frequent patterns are generated from the traversal database.
Suppose the minwsup (minimum weighted support
threshold) is 5.0.

1. In the upperLimit() subroutine, the algorithm will scan
the length of traversals, and returns the maximum length,
which is 4 in this example. The maximum length is the
upper limit of the length of weighted frequent patterns.

2. During the initialization step, the candidate patterns of
length 1 are generated with all vertices of the base graph.

C1 = {<A>, , <C>, <D>, <E>, <F>}

3. The algorithm repeats as followings.

Pattern

(P)
scount

(P)
sbound

(P)
wbound(P,4)
/ sbound(P,4)

Weight
frequent Feasible

<A> 4 15 27 / 2
 3 6 30 / 1
<C> 4 5 30 / 1
<D> 1 5 30 / 1
<E> 3 8 29 / 2
<F> 1 3 30 / 1

Candidates for next pass are generated by Gen-B or

Gen-C.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

146

Pattern
(P)

scount
(P)

sbound
(P)

wbound(P,4)
/ sbound(P,4) WF F

<A, B> 1 5 26 / 2
<A, C> 2 4 27 / 2
<B, C> 2 3 30 / 1
<B, D> 0 - -
<C, E> 3 3 -
<D, F> 0 - -
<E, D> 1 3 29 / 2
<E, F> 1 2 29 / 2

In the above table, ‘-’ denotes ‘not need’.

Pattern
(P)

scount
(P)

sbound
(P)

wbound(P,4)
/ sbound(P,4) WF F

<A, C, E> 1 3 25 / 2
<B, C, E> 2 2 -

The weighted frequent patterns are {<C, E>, <B, C,

E>}.

5.2 Estimation by Reachable Vertices

To prune unnecessary candidates as many as possible, the
support bounds need to be estimated as high as possible. It
means that we must estimate the weight bounds as low as
possible. The previous method, however, has a tendency
to over-estimate the weight bounds. This tendency is
mainly due to the non-consideration of the topology of
base graph. Specifically, the vertices with greatest weights
are chosen one after one, even though they can not be
reached from the corresponding pattern.

Definition 10. Given a base graph G, k-reachable vertices
from a vertex v is all the vertices reachable from v within
the distance k.

Such k-reachable vertices can be regarded as the
vertices within the radius k from v. Therefore, k-reachable
vertices include all the (k-1)-reachable vertices.

Given a k-pattern P, let R(P, l), k < l ≤ u, be the (l-k)-
reachable vertices from the head vertex of P, but not in P
and not through the vertices in P. They can be obtained by
a level wise manner.

Algorithm. R(P, l)
 T = {head vertex of P} for l = k+1, N otherwise;
 N = ∅;
 for each vertex v in T
 for each edge <v, w> in G
 if w is not in P and R(P, l-1) and N, then append w

to N;
 R(P, l) = R(P, l-1) ∪ N

For example, from Fig. 1, R(<A>, 2) is {B, C}, and
R(<A>, 3) is {B, C, D, E}.

Among the vertices in R(P, l), let the vertices with the
(l − k) greatest weights be klrrr vvv −,,, 21 K . Then, the l-
weight bound, wbound(P, l), and the l-support bound,
sbound(P, l), of P are obtained by Equation (7) and (8),
respectively.

For example, refer to Fig. 1 and Fig. 2, the 3-support
bound for the pattern <A> is

2
)0.60.7()0.2(

60.5)3,(=⎥
⎥

⎤
⎢
⎢

⎡
++

×
=>< Asbound

Corollary 3'. wbound(P, l) increases monotonically, and
accordingly sbound(P, l) decreases monotonically as l
increases.

By Corollary 3', the min support bound of P is the u-
support bound of P,

sbound(P, +) = sbound(P, u) (9')

In spite of Equation (9'), however, the pruning

algorithm Pruning-SB may be more efficient than
Pruning-MSB because the pruning can be decided before u
due to the level wise characteristic of the algorithm R(P, l).

Corollary 4'. For pk in P=<p1, p2, …, pk>,
wbound(P−{pk}, l) ≥ wbound(P, l), and accordingly
sbound(P−{pk}, l) ≤ sbound(P, l).

Proof. wbound(P−{pk}, l) is the sum of the vertex weights
of P excluding pk and (l−k+1) greatest vertex weights
among the vertices of Rl-k+1(P−{pk}) which includes all the
vertices of Rl-k(P) and pk. This sum is always greater than
or equal to the sum of the vertex weights of P and (l−k)
greatest vertex weights among the vertices of Rl-k(P).

Lemma 2'. There is the partial downward closure property
among feasible patterns. That is, if a k-pattern P=<p1, p2,
…, pk> is feasible, then the (k−1)-subpattern Pa=<p1, p2,
…, pk-1> is also feasible.

Proof. The if condition means scount(P) ≥ sbound(P, u).
For Pa, scount(Pa) ≥ scount(P) by Property 2, and
sbound(Pa, u) ≤ sbound(P, u) by Corollary 4'. Therefore
scount(Pa) ≥ sbound(Pa,, u), which implies Pa is feasible.

Therefore, the candidate generation algorithm Gen-
PDC can be only applied.

Example.

wbound(P,l)
/ sbound(P,l) Pattern

(P)
scount

(P)
sbound

(P) l = 2 l = 3 l = 4
WF F

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

147

<A> 4 15 9 / 4 - -
 3 6 12 / 3 - -
<C> 4 5 11 / 3 - -
<D> 1 5 18 / 2 × ×
<E> 3 8 16 / 2 - -
<F> 1 3 × × ×
In the above table, ‘×’ denotes ‘not applicable’.
Candidates for next pass are generated by Gen-A.

wbound(P,l)
/ sbound(P,l) Pattern

(P)
scount

(P)
sbound

(P) l = 3 l = 4
WF F

<A, B> 1 5 14 / 3 26 / 2
<A, C> 2 4 13 / 3 27 / 2
<B, C> 2 3 16 / 2 -
<B, D> 0 - - -
<C, E> 3 3 - -
<E, D> 1 3 22 / 2 ×
<E, F> 1 2 × ×

wbound(P,l)
/ sbound(P,l) Pattern

(P)
scount

(P)
sbound

(P) l = 4
WF F

<A, C, E> 1 3 25 / 2
<B, C, E> 2 2 -
<C, E, D> 1 2 29 / 2
<C, E, F> 1 2 ×

Pattern

(P)
scount

(P)
sbound

(P) WF F

<B, C, E, D> 0 -
<B, C, E, F> 1 2

The weighted frequent patterns are {<C, E>, <B, C,

E>}.

6. Experimental Results

This section presents experimental results of the mining
algorithm, and compares two estimation algorithms, All
vertices and Reachable vertices, using synthetic dataset.
The algorithms are implemented with C++ language
running under Microsoft Visual C++ 6.0. All experiments
are performed on 3.0 GHz Pentium Ⅳ PC machine with 1
GB memory. The operating system is Windows XP
Professional and the database server is Microsoft SQL
Server 2000 for managing base graphs and traversals on
them.

During the experiment, base graph is generated
synthetically according to the parameters, i.e., number of
vertices and average number of edges per vertex. And then,
we assigned distinctive weight to each vertex of the base
graph. All the experiments use a base graph with 100
vertices and 300 edges, i.e., 3 average edges per vertex.
The number of traversals is 10,000 and the minimum

weighted support is 2.0. We generated six sets of
traversals, in each of which the maximum length of
traversals varies from 5 to 10.

Fig. 4 shows the trend of the number of feasible
patterns with respect to the max length of traversals. We
measured the number of feasible patterns when the length
of candidate patterns is (max length of traversals – 1). As
shown in the figure, the number of feasible patterns for
Reachable vertices is smaller than that of All vertices. The
difference of the number of feasible patterns between two
estimation algorithms becomes smaller as the max length
of traversals increases.

Fig. 4. Number of feasible patterns w.r.t diferrent max

length of patterns

Fig. 5 shows the trend of the execution time with

respect to the max length of traversals. As shown in Fig. 5,
when the max length of traversals is short, Reachable
vertices is more efficient than All vertices. When the max
length of traversals increases, however Reachable vertices
is less efficient. The performance difference becomes
larger when the max length of traversals becomes longer.
This is because Reachable vertices spends more time to
find reachable vertices as the max length of traversals
increases.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

148

Fig. 5. Execution time w.r.t diferrent max length of

patterns

7. Conclusions

This paper extended the mining problem to the
discovering of weighted frequent patterns from path
traversals on weighted graph. Differently from previous
approaches, vertices of graph are attached with weights
which reflect their importance. With this weight setting,
we presented the mining algorithm which takes the
weights into account in the measurement of support. This
algorithm is based on the notion of support bound. We
also proposed two methods for the estimation of support
bound, and then experimented on them. We are currently
working on the applications such as Web mining.

References

[1] M.S. Chen, J.S. Park and P.S. Yu, “Efficient Data
Mining for Path Traversal Patterns”, IEEE Trans. on
Knowledge and Data Engineering, vol. 10, no. 2, pp.
209-221, Mar. 1998.

[2] A. Nanopoulos and Y. Manolopoulos, “Finding
Generalized Path Patterns for Web Log Data Mining”,
Proc. of East-European Conf. on Advanced Databases
and Information Systems (ADBIS), Sep. 2000.

[3] A. Nanopoulos and Y. Manolopoulos, “Mining
Patterns from Graph Traversals”, Data and Knowledge
Engineering, vol. 37, no. 3, pp. 243-266, Jun. 2001.

[4] C.H. Cai, W.C. Ada, W.C. Fu, C.H. Cheng and W.W.
Kwong, “Mining Association Rules with Weighted
Items”, Proc. of International Database Engineering and
Applications Symposium (IDEAS), UK, Jul. 1998.

[5] W. Wang, J. Yang and P.S. Yu, “Efficient Mining of
Weighted Association Rules (WAR)”, Proc. of ACM

SIGKDD International Conference on Knowledge
Discovery and Data Mining (SIGKDD), USA, Aug.
2000.

[6] F. Tao, F. Murtagh and M. Farid, “Weighted
Association Rule Mining using Weighted Support and
Significance Framework”, Proc. of ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (SIGKDD), USA, Aug. 2003.

[7] U. Yun and J.J. Leggett, “WLPMiner: Weighted
Frequent Pattern Mining with Length-Decreasing
Support Constraints”, Proc. of Pacific-Asia
International Conference on Knowledge Discovery and
Data Mining (PAKDD), Vietnam, May 2005.

Seong Dae Lee received the M.S.
degree in Computer Engineering from
Korea Maritime University in 2001. He
is working for a Ph.D. His research
interests include Database, UML, and
Data Mining.

Hyu Chan Park received the M.S. and
Ph.D. in Computer Engineering from
Korea Advanced Institute of Science
and Technology in 1987 and 1995. He
has been an Associate Professor in
Korea Maritime University since 1997.
His research interests include Database,
Marine GIS, and Data Mining.

