
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

156

Manuscript received April 5, 2007

Manuscript revised April 25, 2007

On Deviations of the AES S-box when Represented as Vector
Valued Boolean Function

Danilo Gligoroski† and Marie Elisabeth Gaup Moe†,

†Centre for Quantifiable Quality of Service in Communication Systems, Norwegian University of Science and
Technology, O.S.Bragstads plass 2E, N-7491 Trondheim, NORWAY

Summary
In this paper we give an explicit representation of the AES S-box
as a vector valued Boolean function in GF(2)8 and show several
significant deviations in the number of terms that follows from
that representation when it is compared with the algebraic
representation of randomly generated permutations of 256
elements. We see this as a potential research direction in
cryptanalysis of AES.
Key words:
AES, S-box, cryptanalysis, algebraic presentation.

1. Introduction

Algebraic attacks on AES have become an attractive
research field in cryptology in recent years. It all started
when the Rijndael designers (Daemen and Rijmen) in their
proposal [1] for the NIST standard, used a permutation of
256 elements in the field GF(28) which allowed the S-box
to be algebraically described. They decided to use an
affine transformation of the permutation presented by
Nyberg in [2]. In their book about the block cipher
Rijndael [3], the authors explain in more detail how the S-
box looks like in GF(28). They first take the function

⎪⎩

⎪
⎨
⎧

=
≠=

−

0 , 0
0 ,)(

1

x
xxxg (1)

where every byte represents a polynomial. Then, they
apply the affine transformation

f(x) = 05·x + 09·x2 + F9·x22

 + 25· x23
 + F4· x24

+ 01· x25

+ B5· x26
 + 8F· x27

 + 63

and obtain the S-box permutation in GF(28) that can be
expressed as

Sbox(x) = f(g(x)) = 05·x254 + 09·x253 + F9·x251 +
25·x247 + F4·x239+ 01·x223 + B5·x191 + 8F·x127 + 63.

In the beginning of the second round of the NIST

selection of the AES, Murphy and Robshaw [4] gave
comments and remarks about the algebraic properties of

Rijndael's S-box and the whole structure of the block
cipher, as a possible weak point of the cipher. In 2001,
Ferguson, Schroeppel and Whiting [5], using again
algebraic properties of Rijndael derived a closed formula
for the cipher as a continued fraction. Full development of
that formula would generate multivariate polynomials of
higher order with 226 unknown variables and 250 terms.
This approach was considered a promising direction for
the algebraic attacks, however, no successful reports since
then have appeared on solving such a complex systems of
equations. Then in CRYPTO'02, using again the algebraic
structures of Rijndael-AES, Murphy and Robshaw
published a paper [6] in which they embedded the cipher
into a bigger block cipher called the Big Encryption
System or BES, and discussed how to make a
cryptanalysis of that cipher. At the same conference,
Courtois and Pieprzyk [7] proposed an attack to the AES
by solving a system of multivariate quadratic equations by
the extended sparse linearisation or XSL algorithm. That
method is a version of the extended linearisation or XL
algorithm that was presented by Shamir et al. [8] in
Eurocrypt 2000. In the attack of Courtois and Pieprzyk,
authors claimed that for 128-bit block and 128-bit key
Rijndael, recovering the secret key from one single
plaintext can be accomplished if a system of 8000
quadratic equations with 1600 binary unknowns is solved
in GF(2), and that this has an equivalent workload of
about 2100 AES encryptions. The claims in that paper were
debated and criticized by several authors (see for example
[9] and references there). Several other authors have given
good surveys about algebraic attacks on block ciphers, see
for example [10, 11]. In [12] more precise upper bounds
on the dimensions of the spaces of equations in the XL-
algorithm were obtained, giving pessimistic evidence for
the running time of the algorithm. In [13] the XL method
was compared with the Buchberger method for calculation
of reduced Groebner bases.

In spite of the large number of papers about algebraic
attacks on the AES, we did not find any reference in
which its S-box is explicitly represented as a nonlinear
Boolean vector function in GF(2)8. The authors of [14]

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

157

Table 1: Comparing obtained statistics from randomly generated
permutations of 256 elements and actual values for the AES S-box

Nr. of
terms

Random
(μ,σ2) AES

S-box
Nr. of
terms

Random
(μ,σ2) AES

S-box
|B0| (127.4, 8.0) 110 |B1∩B5| (63.7, 7.0) 63
|B1| (127.5, 8.0) 112 |B1∩B6| (63.7, 7.0) 59
|B2| (127.5, 8.0) 114 |B1∩B7| (63.8, 6.9) 56
|B3| (127.4, 8.0) 131 |B2∩B3| (63.8, 6.9) 54
|B4| (127.6, 7.9) 136 |B2∩B4| (63.8, 7.0) 60
|B5| (127.5, 8.0) 145 |B2∩B5| (63.8, 6.9) 66
|B6| (127.5, 8.0) 133 |B2∩B6| (63.7, 6.8) 63
|B7| (127.6, 8.0) 132 |B2∩B7| (63.8, 7.0) 56

|B0∩B1| (63.6, 6.9) 52 |B3∩B4| (63.7, 6.9) 59
|B0∩B2| (63.7, 6.9) 45 |B3∩B5| (63.7, 6.8) 74
|B0∩B3| (63.7, 6.9) 50 |B3∩B6| (63.8, 6.9) 75
|B0∩B4| (63.7, 6.9) 60 |B3∩B7| (63.7, 6.9) 68
|B0∩B5| (63.7, 6.9) 66 |B4∩B5| (63.8, 6.9) 80
|B0∩B6| (63.7, 6.9) 52 |B4∩B6| (63.7, 6.9) 77
|B0∩B7| (63.7, 6.9) 61 |B4∩B7| (63.8, 6.9) 74
|B1∩B2| (63.7, 6.9) 55 |B5∩B6| (63.7, 6.9) 77
|B1∩B3| (63.6, 7.0) 54 |B5∩B7| (63.8, 7.0) 68

|B1∩B4| (63.8, 6.8) 59 |B6∩B7| (63.8, 6.9) 76

have discussed some linear redundancy properties of these
functions but did not provide the functions explicitly in the
paper.

Additional motivation for obtaining an explicit
representation for the AES S-box we got from the paper
[15], where the author in order to obtain a minimal
hardware realization of DES, optimized Boolean
expressions that represents DES S-boxes. When
concerning a hardware realization, having explicit
relations of the S-boxes can lead to finding minimal
hardware implementations of AES as well.

Finally, an explicit algebraic representation can give
additional valuable information about how the S-box
correlates the bits when it is used in the block cipher. The
“algebraic distinguisher” was mentioned in the paper by
Cid, Murphy and Robshaw [16]. The authors refer to the
rich algebraic structure of AES as a possible source for
finding a polynomial-time distinguisher that can perform
successful distinguishing between the cipher and a truly
random source. In this paper we will show how the AES
S-box manifests some significant deviations from random
permutations of 256 elements when it is represented in
explicit algebraic form as a vector valued Boolean
function in GF(2)8. We point out to these deviations as a
possible research direction when attempting to build an

algebraic distinguisher. Our initial findings on this topic
will be presented in the following three sections.

The structure of the paper is the following. In Section
2 we give a brief description of the linear procedures by
which it is possible to obtain the representation of the AES
S-box as an 8 dimensional vector valued Boolean function.
In Section 3 we give a comparative analysis between the
AES S-box and randomly generated permutations of 256
elements based on the statistics of the number of used
terms in GF(2)8 and show several significant deviations
from randomly generated permutations, and in Section 4
we give some conclusions. In Appendix 1, we give an
explicit representation of all 8 Boolean functions that
represents the AES S-box.

2. Obtaining AES S-box representation in
GF(2)8

Obtaining a representation of the AES S-box as an 8
dimensional vector valued Boolean function is a linear
problem. It is relatively easy solvable by any modern
mathematical tool that can do symbolic calculations in
finite fields and the problem is the following:

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

158

Fig. 1 Distribution of the number of terms in the sets Bi, i = 0, 1, 2, 3. On x axes we represented the number of elements in Bi. The arrow shows
the actual number of terms in AES S-box representation.

Fig. 2 Distribution of the number of terms in the sets Bi, i = 4, 5, 6, 7. On x axes we represented the number of elements in Bi. The arrow shows

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

159

Having a permutation Sbox(x) : {0,1}8 → {0,1}8, find 8
Boolean functions f0, f1, … , f7, : {0,1}8 → {0,1} in GF(2),
such that

Sbox(x0, …, x7) = (f0(x0, …, x7), …, f7(x0, …, x7)).

Having in mind that in GF(2) multiplication x·y ≡ xy

is equivalent to logical AND, and addition x+y is
equivalent to logical XOR, the functions f0, f1, … , f7 can
be represented as

76543210
)(

255

76
)(

3610
)(

9

7
)(

80
)(

1

)(
070),,(

xxxxxxxxa

xxaxxa

xaxa

axxf

i

ii

ii

i
i

+

++++

++++

+=

M

L

L

K

 (2)

where)(i
ja ∈ {0,1} are unknown coefficients. So, for

every value x ∈ {0,1}8 we can find its image Sbox(x) ∈
{0,1}8, and replacing these values in Eq. 2 we can
establish a linear system with 256 x 8 = 2048 unknown
variables)(i

ja i = 0, 1, …, 7, j = 0, 1, …, 255 in GF(2).

For example, for x = 0 in GF(28), i.e. x = (0, 0, 0, 0, 0, 0, 0,
0) in GF(2)8 we have that Sbox(x) = 99 in GF(28), i.e.
Sbox(x) = (0, 1, 1, 0, 0, 0, 1, 1) in GF(2)8. From this we
can immediately obtain the values for the free constants

)(
0
ia i = 0, 1, …, 7. By exchanging all other 255 values for

x we will obtain a linear system with 2048 unknown
variables that is easy solvable. For example the function f0
can be represented as follows:

f0(x0, x1, …, x7) = x0 + x2 + x3 + x5 + x0x2 + x0x6 + x0x7
+ x1x3 + x1x5 + x1x7 + x2x4 + x3x5+ x5x6 + x5x7 + x0x1x3 +
x0x1x5 + x0x1x7 + x0x2x3 + x0x2x4 + x0x3x6 + x0x4x7 + x0x5x7 +
x1x2x3 + x1x2x5 + x1x2x7 + x1x3x5 + x1x4x6 + x1x4x7 + x1x5x6 +
x1x6x7 + x2x3x4 + x2x3x7 + x2x4x5+ x2x4x6 + x2x4x7 + x2x5x7 +
x2x6x7 + x3x6x7 + x4x5x6 + x4x5x7 + x0x1x2x3 + x0x1x2x5 +
x0x1x2x6 + x0x1x3x5 + x0x1x3x6 + x0x1x3x7 + x0x1x4x6 +
x0x1x4x7 + x0x2x3x6 + x0x2x4x7 + x0x3x4x5 + x0x3x4x6 + x0x3x4x7
+ x0x3x5x7 + x0x3x6x7 + x0x4x5x6 + x0x4x5x7 + x0x5x6x7 +
x1x2x3x4 + x1x2x4x7 + x1x3x4x7 + x1x3x5x6 + x1x3x5x7 +
x1x4x5x7 + x1x4x6x7 + x2x3x5x6 + x2x4x5x6 + x2x4x5x7 + x2x5x6x7
+ x3x4x5x6 + x3x4x6x7 + x3x5x6x7 + x4x5x6x7 + x0x1x2x3x4 +
x0x1x2x3x6 + x0x1x2x4x6 + x0x1x2x4x7 + x0x1x2x5x6 + x0x1x2x6x7
+ x0x1x3x4x7 + x0x1x3x5x6 + x0x1x5x6x7 + x0x2x3x6x7 +
x0x2x5x6x7 + x0x3x4x5x7 + x0x3x4x6x7 + x1x2x3x4x5 + x1x2x3x4x7
+ x1x2x3x5x6 + x1x2x3x6x7 + x1x2x4x5x6 + x1x3x4x5x7 +
x1x3x5x6x7 + x1x4x5x6x7 + x2x3x4x5x7 + x2x3x4x6x7 + x3x4x5x6x7
+ x0x1x2x3x4x6 + x0x1x2x3x5x7 + x0x1x2x4x5x7 + x0x1x2x4x6x7 +
x0x1x3x4x5x7 + x0x1x3x4x6x7 + x0x1x4x5x6x7 + x0x2x3x4x5x7 +
x0x2x3x4x6x7 + x0x2x3x5x6x7 + x1x2x3x4x5x7 + x0x1x2x3x4x5x7 +
x0x1x2x3x4x6x7

The actual representation of f1, f2, f3, f4, f5, f6 and f7
can be found in Appendix 1.

3. Significant deviations of the AES S-box
from random per mutations of order 256

It is easy to notice that the algebraic order of fi, i=0, 1,
…, 7 is 7. That is of course in compliance with the
theoretical result that Nyberg obtained in her paper [2].
Namely, for even n, the inversion mapping described by
Eq. 1 in GF(2n) has algebraic order n - 1. For the AES case,
we have n = 8, and indeed the order of the polynomials fi,
i=0, 1, …, 7 is 7.

We have performed several measurements, in order
to compare how much the AES S-box looks like or differs
from a randomly generated permutation of 256 elements.
Let us denote by B0, B1, …, B7 the sets of monomials in
the 8 coordinate Boolean functions fi, i=0, 1, …, 7. We
have generated 10,000 random permutations of 256
elements. To generate these random permutations we have
used the random generator that is built into Mathematica
5.1. Then we measured the distribution of the number of
used terms in all 8 coordinates, as well as distributions of
their intersections and compared them by the actual values
obtained from the AES S-box. Some of the statistical
measurements that we have made are given in Table 1 and
Figures 1 and 2. In Table 1 next to each column that gives
the average and standard deviation for each set Bi, i=0, 1,
…, 7, we have placed the actual values obtained from the
AES S-box. The graphical representations where the
actual values for AES S-box are positioned are given in
Figures 1 and 2 and are denoter by red arrows.

A standard procedure in this kind of measurement is
to compare an actual finding, in this case the values
obtained from the AES S-box, with the values we would
expect to find assuming that the number of terms is
normally distributed. We have performed an empirical
evaluation to confirm that the number of terms in the
randomly generated sample actually is normally
distributed. As an illustration, in Figure 2 we have plotted
the probability density function for the standard normal
distribution. The values for a random variable that deviate
from the mean with more than two times the standard
deviation have probability to occur less then 4%, i.e. 96%
of the observations will deviate less than 2.05 standard
deviations from the mean (the central shaded gray area in
Figure 3).

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

160

Fig. 4 The situations where the AES S-box representation in GF(2)8 gives significant deviation from “randomly generated” permutations. On x
axes we represented the number of elements in Bi. The arrow shows the actual number of terms in the AES S-box representation.

Fig. 3 Shaded area is 96% of the total area beneath the probability
density function.

The first impressions comparing the obtained
averages from the randomly generated permutations to the
actual values for the AES S-box, are that they do not differ
much. However, there are several situations where we
noticed significant deviations. For example, for the
situation |B0∩B2| (see Table 1) we have the values (μ,σ2) =
(63.7, 6.9) in the randomly generated sample, while for the
AES S-box we get |B0∩B2|=45. This value should only be
observed with a probability of 0.4% in the randomly
generated sample.

In Table 1 notice also high values obtained for the
AES S-box for the intersections |B4∩B5|= 80, |B4∩B6|= 77,
|B5∩B6|=77 and |B6∩B7|=76. All of them lie outside or at
the edge of the regions where 99%, 97%, 97% and 96% of
the observations would be expected to be found
correspondingly. That reflects further to the intersections
|B4∩B5∩B6|=46, |B4∩B5∩B7|=49 and |B4∩B5∩B6∩B7|=27,
and for them we can say that they lie outside the regions
where 99.6%, 99.9% and 99.7% of the observations are
expected to be found. These situations are illustrated in
Figure 4.

It would be interesting to see, how this observed
biases will be reflected on the output of the whole cipher,
as S-box is the only nonlinear part in AES.

4. Conclusion

In this paper we have given explicit representation of
the AES S-box as a vector of 8 Boolean functions in
GF(2). We have also computed several statistical
properties of obtained Boolean functions and found
several situations where significant deviations from a
randomly generated permutation of 256 elements can be
seen. It is natural to ask how these findings could be used
to build a distinguisher for the AES, and this will be the
subject of our further research.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

161

References
[1] J. Daemen, V. Rijmen, “The block cipher Rijndael,”

available from NIST's AES homepage, URL:
http://www.nist.gov/aes

[2] K. Nyberg, “Differentially uniform mappings for
cryptography,” Advances in Cryptology, Proc. Eurocrypt'93,
LNCS 765, Springer-Verlag, 1994, pp. 55-64.

[3] J. Daemen, V. Rijmen, “The Design of Rijndael: AES - The
Advanced Encryption Standard,” ISBN 3-540-42580-2,
Springer-Verlag Berlin Heidelberg, 2002.

[4] S. Murphy and M. Robshaw, “New Observations on
Rijndael”, initial draft note submitted to NIST as an AES
Round Two comment,
http://www.isg.rhul.ac.uk/~mrobshaw/rijndael/rijndael.pdf

[5] N. Ferguson, R. Schroeppel and Doug Whiting “A simple
algebraic representation of Rijndael”, in S. Vaudenay and
A.M. Youssef, ed., Proc. of Selected Areas in Cryptography
SAC01, nr. 2259 in LNCS, pp. 103-111. Springer-Verlag,
2001.

[6] S. Murphy and M. Robshaw, “Essential Algebraic Structure
Within the AES”, Advances in Cryptology, Crypto 2002,
LNCS 2442, pp. 1-16, Springer-Verlag, 2002.

[7] N. Courtois and J. Pieprzyk, “Cryptanalysis of Block
Ciphers with Overdefined Systems of Equations”, Advances
in Cryptology, Asiacrypt 2002, LNCS 2501, pp. 267-287,
Springer-Verlag, 2002.

[8] A. Shamir, J. Patarin, N. Courtois and A. Klimov, “Efficient
Algorithms for solving Overdefined Systems of
Multivariate Polynomial Equations”, Advances in
Cryptology, Eurocrypt2000, LNCS 1807, Springer-Verlag
Berlin Heilderberg 2000, pp. 392-407.

[9] S. Murphy and M. Robshaw, “Comments on the Security of
the AES and the XSL Technique”,
http://www.isg.rhul.ac.uk/~mrobshaw/rijndael/xslnote.pdf

[10] A. Biryukov and C. De Canniere, “Block Ciphers and
Systems of Quadratic Equations”, Fast Software Encryption,
FSE 2003, LNCS 2887, pp. 274-289, Springer-Verlag, 2003.

[11] A. J. M. Sedgers, A Master's Thesis: “Algebraic Attacks
from a Groebner Basis Perspective”, TECHNISCHE
UNIVERSITEIT EINDHOVEN, 2004.

[12] C. Diem, “The XL-Algorithm and a Conjecture from
Commutative Algebra”, Advances in Cryptology,
ASIACRYPT 2004, LNCS 3329, pp. 323-337, Springer-
Verlag Berlin Heidelberg, 2004.

[13] G. Ars, J.C. Faugµere, H. Imai, M. Kawazoe, and M. Sugita,
“Comparison Between XL and Groebner Basis Algorithms”,

Advances in Cryptology, ASIACRYPT 2004, LNCS 3329,
pp. 338-353, Springer-Verlag Berlin Heidelberg, 2004.

[14] J. Fuller and W. Millan, “On Linear Redundancy in the
AES S-Box”, http://eprint.iacr.org/2002/111

[15] M. Kwan, “Reducing the Gate Count of Bitslice DES”,
http://eprint.iacr.org/2000/051

[16] C. Cid, S. Murphy and Matthew Robshaw, “Computational
and Algebraic Aspects of the Advanced Encryption
Standard”, Proceedings of the Seventh International
Workshop on Computer Algebra in Scientific Computing -
CASC 2004, pp.93-103, St. Petersburg, 2004.

 Danilo Gligoroski received the PhD
degree in Computer Science from
Institute of Informatics, Faculty of
Natural Sciences and Mathematics, at
University of Skopje – Macedonia in
1997. His research interests are
Cryptography, Computer Security,
Discrete algorithms and Information
Theory and Coding. Currently he is
PostDoc at Q2S – Centre for
Quantifiable Quality of Service in

Communication Systems at Norwegian University of Science
and Technology - Trondheim, Norway.

Marie Elisabeth Gaup Moe received
MS in Industrial Mathematics in 2004
from NTNU - Norwegian University
of Science and Technology in
Trondheim. Her research interests are
Cryptography and Computer Security.
Currently she is a doctoral student at
Q2S – Centre for Quantifiable
Quality of Service in Communication
Systems.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

162

Manuscript received April 5, 2007

Manuscript revised April 25, 2007

Appendix 1. Representations of all 8 Boolean functions fi, i=0, 1, …, 7 of the AES S-box

f0(x0, x1, …, x7) = x0 + x2 + x3 + x5 + x0x2 + x0x6 + x0x7 + x1x3 + x1x5 + x1x7 + x2x4 + x3x5+ x5x6 + x5x7 + x0x1x3 + x0x1x5 + x0x1x7
+ x0x2x3 + x0x2x4 + x0x3x6 + x0x4x7 + x0x5x7 + x1x2x3 + x1x2x5 + x1x2x7 + x1x3x5 + x1x4x6 + x1x4x7 + x1x5x6 + x1x6x7 + x2x3x4 +
x2x3x7 + x2x4x5+ x2x4x6 + x2x4x7 + x2x5x7 + x2x6x7 + x3x6x7 + x4x5x6 + x4x5x7 + x0x1x2x3 + x0x1x2x5 + x0x1x2x6 + x0x1x3x5 + x0x1x3x6
+ x0x1x3x7 + x0x1x4x6 + x0x1x4x7 + x0x2x3x6 + x0x2x4x7 + x0x3x4x5 + x0x3x4x6 + x0x3x4x7 + x0x3x5x7 + x0x3x6x7 + x0x4x5x6 + x0x4x5x7
+ x0x5x6x7 + x1x2x3x4 + x1x2x4x7 + x1x3x4x7 + x1x3x5x6 + x1x3x5x7 + x1x4x5x7 + x1x4x6x7 + x2x3x5x6 + x2x4x5x6 + x2x4x5x7 + x2x5x6x7
+ x3x4x5x6 + x3x4x6x7 + x3x5x6x7 + x4x5x6x7 + x0x1x2x3x4 + x0x1x2x3x6 + x0x1x2x4x6 + x0x1x2x4x7 + x0x1x2x5x6 + x0x1x2x6x7 +
x0x1x3x4x7 + x0x1x3x5x6 + x0x1x5x6x7 + x0x2x3x6x7 + x0x2x5x6x7 + x0x3x4x5x7 + x0x3x4x6x7 + x1x2x3x4x5 + x1x2x3x4x7 + x1x2x3x5x6 +
x1x2x3x6x7 + x1x2x4x5x6 + x1x3x4x5x7 + x1x3x5x6x7 + x1x4x5x6x7 + x2x3x4x5x7 + x2x3x4x6x7 + x3x4x5x6x7 + x0x1x2x3x4x6 + x0x1x2x3x5x7
+ x0x1x2x4x5x7 + x0x1x2x4x6x7 + x0x1x3x4x5x7 + x0x1x3x4x6x7 + x0x1x4x5x6x7 + x0x2x3x4x5x7 + x0x2x3x4x6x7 + x0x2x3x5x6x7 +
x1x2x3x4x5x7 + x0x1x2x3x4x5x7 + x0x1x2x3x4x6x7

f1(x0, x1, …, x7) = 1 + x1 + x2 + x4 + x0x2 + x0x4 + x0x6 + x0x7 + x1x3 + x2x4 + x2x7 + x3x7 + x4x5 + x4x6 + x0x1x2 + x0x1x4 + x0x1x6
+ x0x2x4 + x0x2x7 + x0x3x5 + x0x3x6 + x0x3x7 + x0x4x5 + x0x5x6 + x1x2x3 + x1x2x6 + x1x2x7 + x1x3x4 + x1x3x5 + x1x3x6 + x1x3x7 +
x1x4x6 + x1x4x7 + x1x5x6 + x1x5x7 + x2x3x7 + x2x4x7 + x2x5x6 + x2x5x7 + x2x6x7 + x3x4x5 + x3x4x6 + x3x5x7 + x3x6x7 + x4x6x7 +
x0x1x2x3 + x0x1x3x6 + x0x1x3x7 + x0x1x6x7 + x0x2x3x6 + x0x2x4x5 + x0x2x4x6 + x0x2x5x7 + x0x3x4x6 + x0x3x4x7 + x0x3x5x6 + x0x4x5x7 +
x0x4x6x7 + x1x2x4x5 + x1x3x4x5 + x1x3x4x6 + x1x3x4x7 + x1x3x5x7 + x1x4x5x6 + x1x4x5x7 + x1x4x6x7 + x2x3x4x5 + x2x3x5x6 + x2x3x5x7 +
x2x4x5x6 + x2x4x5x7 + x2x5x6x7 + x3x4x5x6 + x3x4x6x7 + x3x5x6x7 + x0x1x2x3x4 + x0x1x2x3x6 + x0x1x2x3x7 + x0x1x2x4x5 + x0x1x2x5x6 +
x0x1x2x5x7 + x0x1x3x4x5 + x0x1x3x4x7 + x0x1x3x5x7 + x0x1x4x6x7 + x0x2x3x4x6 + x0x2x3x5x7 + x0x2x3x6x7 + x0x2x4x5x6 + x0x3x4x5x6 +
x0x4x5x6x7 + x1x2x3x4x6 + x1x2x3x5x6 + x1x2x4x5x7 + x1x4x5x6x7 + x2x3x4x5x6 + x2x3x4x5x7 + x2x3x4x6x7 + x2x4x5x6x7 + x0x1x2x3x4x6 +
x0x1x2x4x6x7 + x0x1x2x5x6x7 + x0x1x3x4x6x7 + x0x1x3x5x6x7 + x0x2x3x4x6x7 + x0x2x3x5x6x7 + x0x3x4x5x6x7 + x1x2x3x4x6x7 +
x1x2x3x5x6x7 + x1x2x4x5x6x7 + x0x1x2x3x4x6x7 + x0x1x2x3x5x6x7

f2(x0, x1, …, x7) = 1 + x0 + x1 + x3 + x0x2 + x1x3 + x1x6 + x2x6 + x3x4 + x3x5 + x4x7 + x0x1x2 + x0x1x5 + x0x1x6 + x0x2x3 + x0x2x4 +
x0x2x5 + x0x2x6 + x0x3x5 + x0x3x6 + x0x3x7 + x0x4x5 + x0x4x6 + x0x6x7 + x1x2x6 + x1x2x7 + x1x3x6 + x1x4x5 + x1x4x6 + x1x5x6 + x1x5x7
+ x1x6x7 + x2x3x4 + x2x3x5 + x2x4x6 + x2x4x7 + x2x5x6 + x2x6x7 + x3x5x6 + x3x5x7 + x3x6x7 + x4x6x7 + x5x6x7 + x0x1x2x7 + x0x1x3x4 +
x0x1x3x7 + x0x2x3x4 + x0x2x3x5 + x0x2x3x6 + x0x2x4x6 + x0x2x6x7 + x0x3x4x5 + x0x3x4x6 + x0x3x4x7 + x0x3x5x6 + x0x3x6x7 + x0x4x6x7 +
x1x2x3x4 + x1x2x4x5 + x1x2x4x6 + x1x2x6x7 + x1x3x4x5 + x1x3x4x6 + x1x3x6x7 + x1x4x5x6 + x2x3x4x5 + x2x3x5x6 + x2x3x5x7 + x2x3x6x7 +
x2x4x5x6 + x2x4x5x7 + x2x5x6x7 + x3x4x5x7 + x3x4x6x7 + x4x5x6x7 + x0x1x2x3x5 + x0x1x2x3x7 + x0x1x2x4x5 + x0x1x2x6x7 + x0x1x3x4x6 +
x0x1x3x6x7 + x0x1x4x5x7 + x0x1x5x6x7 + x0x2x3x4x7 + x0x2x3x5x7 + x0x2x3x6x7 + x0x2x4x5x7 + x0x2x4x6x7 + x0x3x4x5x6 + x0x3x4x5x7 +
x0x4x5x6x7 + x1x2x3x4x5 + x1x2x3x4x6 + x1x2x3x4x7 + x1x2x3x5x6 + x1x2x3x6x7 + x1x3x4x5x6 + x1x3x5x6x7 + x1x4x5x6x7 + x2x3x5x6x7 +
x2x4x5x6x7 + x3x4x5x6x7 + x0x1x2x3x5x6 + x0x1x2x3x5x7 + x0x1x2x4x5x6 + x0x1x3x4x5x6 + x0x1x3x4x5x7 + x0x2x3x5x6x7 + x0x2x4x5x6x7 +
x1x2x3x5x6x7 + x1x2x4x5x6x7 + x2x3x4x5x6x7 + x0x1x2x3x5x6x7 + x0x1x2x4x5x6x7

f3(x0, x1, …, x7) = x2 + x4 + x5 + x6 + x7 + x0x1 + x0x2 + x0x4 + x0x7 + x1x3 + x1x6 + x1x7 + x2x3 + x2x4 + x2x5 + x2x6 + x2x7 + x3x4
+ x3x6 + x3x7 + x4x5 + x6x7 + x0x1x2 + x0x1x3 + x0x1x4 + x0x1x5 + x0x1x6 + x0x1x7 + x0x2x3 + x0x2x4 + x0x2x6 + x0x3x4 + x0x3x5 +
x0x3x7 + x1x2x4 + x1x2x5 + x1x3x4 + x1x3x7 + x1x4x5 + x1x5x7 + x2x3x4 + x2x3x5 + x2x3x6 + x2x3x7 + x2x4x5 + x2x4x6 + x2x4x7 + x3x4x5
+ x3x4x7 + x3x5x6 + x4x5x7 + x0x1x2x4 + x0x1x3x4 + x0x1x3x7 + x0x1x4x7 + x0x1x5x6 + x0x1x6x7 + x0x2x3x4 + x0x2x4x5 + x0x2x4x7 +
x0x2x5x6 + x0x2x5x7 + x0x2x6x7 + x0x3x4x5 + x0x3x4x6 + x0x3x4x7 + x0x4x6x7 + x1x2x3x7 + x1x2x4x5 + x1x2x4x7 + x1x2x6x7 + x1x3x4x7 +
x1x3x5x6 + x1x3x6x7 + x1x4x6x7 + x1x5x6x7 + x2x3x4x6 + x2x3x4x7 + x2x3x6x7 + x2x4x5x6 + x2x4x6x7 + x3x4x5x6 + x3x4x5x7 + x0x1x2x3x4
+ x0x1x2x3x5 + x0x1x2x3x6 + x0x1x2x3x7 + x0x1x2x4x6 + x0x1x2x4x7 + x0x1x2x5x6 + x0x1x2x6x7 + x0x1x3x4x5 + x0x1x3x4x7 + x0x1x3x5x7 +
x0x1x4x6x7 + x0x1x5x6x7 + x0x2x3x4x5 + x0x2x3x4x6 + x0x2x3x5x6 + x0x2x4x5x6 + x0x2x4x5x7 + x0x2x4x6x7 + x0x2x5x6x7 + x0x4x5x6x7 +
x1x2x3x4x5 + x1x2x3x4x6 + x1x2x3x5x6 + x1x2x3x6x7 + x1x2x4x5x6 + x1x2x4x5x7 + x1x3x4x5x6 + x1x3x4x5x7 + x1x3x4x6x7 + x1x4x5x6x7 +
x2x3x4x5x7 + x2x3x5x6x7 + x3x4x5x6x7 + x0x1x2x3x4x7 + x0x1x2x4x5x6 + x0x1x3x4x5x6 + x0x2x3x4x5x6 + x0x2x3x4x5x7 + x0x3x4x5x6x7 +
x1x2x3x4x5x6 + x1x2x3x4x6x7 + x1x2x3x5x6x7 + x1x2x4x5x6x7 + x2x3x4x5x6x7 + x0x1x2x3x4x5x7 + x0x1x3x4x5x6x7 + x0x2x3x4x5x6x7

f4(x0, x1, …, x7) = x0 + x1 + x3 + x7 + x0x1 + x0x2 + x0x4 + x0x6 + x0x7 + x1x2 + x1x4 + x2x3 + x4x5 + x4x7 + x5x6 + x0x1x2 + x0x2x4 +
x0x2x5 + x0x3x4 + x0x4x5 + x0x4x7 + x0x5x6 + x0x5x7 + x0x6x7 + x1x2x4 + x1x2x6 + x1x3x7 + x1x4x7 + x1x5x6 + x1x5x7 + x1x6x7 + x2x3x5
+ x2x3x7 + x2x4x5 + x2x5x6 + x2x6x7 + x3x4x5 + x3x4x6 + x3x4x7 + x3x5x7 + x3x6x7 + x4x5x6 + x4x5x7 + x4x6x7 + x0x1x2x3 + x0x1x2x4 +
x0x1x2x6 + x0x1x2x7 + x0x1x3x4 + x0x1x3x5 + x0x1x3x6 + x0x1x4x7 + x0x1x5x6 + x0x1x5x7 + x0x1x6x7 + x0x2x3x5 + x0x2x3x6 + x0x2x5x6 +
x0x3x4x6 + x0x3x5x6 + x0x3x5x7 + x0x4x5x6 + x0x4x5x7 + x1x2x3x4 + x1x2x3x5 + x1x2x3x6 + x1x2x3x7 + x1x2x4x6 + x1x2x5x7 + x1x2x6x7 +
x1x3x4x6 + x1x3x4x7 + x1x3x5x7 + x1x3x6x7 + x1x4x5x6 + x1x4x6x7 + x2x3x4x5 + x2x3x4x6 + x2x3x5x6 + x2x4x5x6 + x2x5x6x7 + x3x5x6x7 +
x4x5x6x7 + x0x1x2x3x4 + x0x1x2x3x5 + x0x1x2x3x7 + x0x1x2x4x6 + x0x1x2x4x7 + x0x1x2x5x6 + x0x1x2x5x7 + x0x1x2x6x7 + x0x1x3x4x6 +

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

163

x0x1x3x4x7 + x0x1x4x5x7 + x0x2x3x4x5 + x0x2x3x4x7 + x0x2x3x5x7 + x0x2x3x6x7 + x0x2x4x5x7 + x0x2x5x6x7 + x0x3x4x6x7 + x0x3x5x6x7 +
x0x4x5x6x7 + x1x2x3x4x5 + x1x2x3x4x7 + x1x2x3x5x6 + x1x2x3x5x7 + x1x2x4x5x6 + x1x2x4x5x7 + x1x2x4x6x7 + x1x2x5x6x7 + x1x3x4x6x7 +
x2x3x4x5x7 + x2x3x4x6x7 + x2x4x5x6x7 + x3x4x5x6x7 + x0x1x2x3x4x5 + x0x1x2x3x5x6 + x0x1x2x4x5x6 + x0x1x2x4x5x7 + x0x1x3x4x5x6 +
x0x1x3x4x5x7 + x0x1x3x5x6x7 + x0x1x4x5x6x7 + x0x2x3x4x5x6 + x0x2x3x4x6x7 + x0x2x3x5x6x7 + x0x2x4x5x6x7 + x0x3x4x5x6x7 +
x1x2x3x4x5x6 + x1x2x4x5x6x7 + x1x3x4x5x6x7 + x0x1x2x3x4x5x7 + x0x1x2x3x4x6x7 + x0x1x2x4x5x6x7 + x1x2x3x4x5x6x7

f5(x0, x1, …, x7) = x0 + x2 + x6 + x7 + x0x1 + x0x3 + x0x7 + x1x2 + x1x7 + x2x7 + x3x4 + x3x6 + x3x7 + x4x5 + x4x7 + x5x7 + x0x1x3 +
x0x1x5 + x0x1x7 + x0x2x6 + x0x2x7 + x0x3x6 + x0x3x7 + x0x4x5 + x0x4x6 + x0x4x7 + x0x5x6 + x0x5x7 + x0x6x7 + x1x2x4 + x1x2x6 + x1x3x4
+ x1x3x7 + x1x4x5 + x1x4x7 + x1x5x6 + x1x6x7 + x2x3x4 + x2x3x5 + x2x3x6 + x2x3x7 + x2x4x6 + x2x4x7 + x2x5x6 + x2x5x7 + x2x6x7 +
x3x4x5 + x3x4x6 + x3x4x7 + x3x5x6 + x3x5x7 + x3x6x7 + x4x5x7 + x4x6x7 + x0x1x2x3 + x0x1x2x4 + x0x1x2x5 + x0x1x2x6 + x0x1x3x5 +
x0x1x4x6 + x0x1x5x6 + x0x2x3x5 + x0x2x3x6 + x0x2x4x6 + x0x2x4x7 + x0x2x5x6 + x0x3x4x5 + x0x3x4x7 + x0x3x5x6 + x0x3x5x7 + x0x4x5x7 +
x0x5x6x7 + x1x2x3x4 + x1x2x3x5 + x1x2x4x5 + x1x2x4x7 + x1x2x6x7 + x1x3x4x5 + x1x3x4x7 + x1x3x5x7 + x1x3x6x7 + x1x4x5x6 + x1x4x6x7 +
x2x4x5x6 + x2x4x5x7 + x2x4x6x7 + x2x5x6x7 + x3x4x5x6 + x3x4x5x7 + x3x4x6x7 + x0x1x2x3x4 + x0x1x2x3x6 + x0x1x2x3x7 + x0x1x2x4x5 +
x0x1x2x4x6 + x0x1x2x4x7 + x0x1x2x5x7 + x0x1x3x4x5 + x0x1x3x4x6 + x0x1x3x5x6 + x0x1x3x6x7 + x0x1x4x5x6 + x0x1x4x6x7 + x0x1x5x6x7 +
x0x2x3x4x7 + x0x2x3x5x6 + x0x2x4x5x7 + x0x2x4x6x7 + x0x2x5x6x7 + x0x3x4x5x7 + x0x3x4x6x7 + x0x3x5x6x7 + x0x4x5x6x7 + x1x2x3x4x6 +
x1x2x3x5x6 + x1x2x3x5x7 + x1x3x4x5x6 + x1x3x4x6x7 + x1x4x5x6x7 + x2x3x4x5x6 + x2x3x5x6x7 + x2x4x5x6x7 + x3x4x5x6x7 + x0x1x2x3x4x5 +
x0x1x2x3x5x7 + x0x1x2x3x6x7 + x0x1x2x4x5x7 + x0x1x2x4x6x7 + x0x1x3x4x5x6 + x0x1x3x4x5x7 + x0x1x3x4x6x7 + x0x2x3x4x5x6 +
x0x2x3x4x6x7 + x0x2x3x5x6x7 + x0x3x4x5x6x7 + x1x2x3x4x5x7 + x1x2x3x5x6x7 + x1x2x4x5x6x7 + x1x3x4x5x6x7 + x2x3x4x5x6x7 +
x0x1x2x3x4x5x6 + x0x1x2x3x4x5x7 + x0x1x2x3x4x6x7 + x0x1x2x4x5x6x7 + x0x1x3x4x5x6x7

f6(x0, x1, …, x7) = 1 + x0 + x1 + x4 + x7 + x0x4 + x0x5 + x0x6 + x0x7 + x1x3 + x1x5 + x2x3 + x3x6 + x3x7 + x4x5 + x4x6 + x4x7 + x5x7 +
x6x7 + x0x1x2 + x0x1x4 + x0x1x5 + x0x1x7 + x0x2x4 + x0x2x5 + x0x2x7 + x0x3x4 + x0x3x6 + x0x3x7 + x0x4x6 + x0x5x7 + x1x2x4 + x1x2x6 +
x1x3x4 + x1x3x7 + x1x4x5 + x1x4x6 + x1x6x7 + x2x3x7 + x2x4x5 + x2x4x6 + x3x4x5 + x3x4x6 + x3x4x7 + x3x5x6 + x3x6x7 + x4x5x6 + x4x5x7
+ x4x6x7 + x0x1x3x4 + x0x1x3x5 + x0x1x3x6 + x0x1x3x7 + x0x1x5x6 + x0x2x3x4 + x0x2x3x5 + x0x2x3x6 + x0x2x3x7 + x0x2x4x5 + x0x2x4x6 +
x0x2x5x6 + x0x3x4x5 + x0x3x4x6 + x0x3x5x6 + x0x3x6x7 + x1x2x3x4 + x1x2x3x7 + x1x2x4x6 + x1x2x5x6 + x1x2x5x7 + x1x2x6x7 + x1x3x4x7 +
x1x4x5x7 + x1x4x6x7 + x1x5x6x7 + x2x3x4x5 + x2x3x4x6 + x2x3x4x7 + x2x3x5x7 + x2x3x6x7 + x2x4x5x6 + x3x4x6x7 + x0x1x2x3x5 +
x0x1x2x3x7 + x0x1x2x4x7 + x0x1x2x5x7 + x0x1x2x6x7 + x0x1x3x4x5 + x0x1x4x5x7 + x0x1x4x6x7 + x0x1x5x6x7 + x0x2x3x4x5 + x0x2x3x4x6 +
x0x2x3x4x7 + x0x2x4x5x7 + x0x2x4x6x7 + x0x3x4x5x7 + x0x3x4x6x7 + x0x3x5x6x7 + x0x4x5x6x7 + x1x2x3x4x6 + x1x2x3x5x6 + x1x2x3x5x7 +
x1x2x3x6x7 + x1x2x4x5x6 + x1x2x4x6x7 + x1x3x4x5x6 + x1x3x4x6x7 + x1x3x5x6x7 + x1x4x5x6x7 + x2x3x4x5x7 + x2x3x5x6x7 + x3x4x5x6x7 +
x0x1x2x3x4x6 + x0x1x2x4x5x6 + x0x1x2x4x5x7 + x0x1x2x5x6x7 + x0x1x3x4x5x6 + x0x1x3x4x5x7 + x0x1x3x4x6x7 + x0x1x3x5x6x7 +
x0x2x3x4x5x7 + x0x2x3x5x6x7 + x0x3x4x5x6x7 + x1x2x3x4x5x6 + x1x2x3x4x5x7 + x1x2x3x4x6x7 + x1x2x4x5x6x7 + x1x3x4x5x6x7 +
x0x1x2x3x4x6x7 + x0x1x2x3x5x6x7 + x0x1x2x4x5x6x7 + x0x1x3x4x5x6x7

f7(x0, x1, …, x7) = 1 + x3 + x4 + x5 + x7 + x0x1 + x0x2 + x0x5 + x1x2 + x1x3 + x1x5 + x1x6 + x1x7 + x2x7 + x3x5 + x3x6 + x3x7 + x4x5 +
x4x6 + x5x6 + x6x7 + x0x1x2 + x0x1x4 + x0x1x5 + x0x2x4 + x0x2x5 + x0x3x4 + x0x3x5 + x0x3x7 + x0x4x5 + x0x4x6 + x0x5x7 + x0x6x7 +
x1x2x3 + x1x2x5 + x1x2x6 + x1x3x6 + x1x3x7 + x1x4x7 + x1x5x6 + x1x5x7 + x1x6x7 + x2x4x5 + x2x4x7 + x2x5x7 + x3x4x6 + x3x4x7 + x3x5x6
+ x3x5x7 + x3x6x7 + x4x5x6 + x0x1x2x4 + x0x1x2x6 + x0x1x3x7 + x0x1x4x5 + x0x1x4x6 + x0x1x5x6 + x0x2x3x5 + x0x2x3x6 + x0x2x3x7 +
x0x2x4x5 + x0x2x5x7 + x0x3x5x6 + x0x3x5x7 + x0x3x6x7 + x0x4x5x6 + x0x4x5x7 + x0x5x6x7 + x1x2x3x5 + x1x2x3x6 + x1x2x3x7 + x1x2x4x7 +
x1x2x5x7 + x1x3x4x6 + x1x3x4x7 + x1x3x5x6 + x1x4x5x6 + x1x5x6x7 + x2x3x5x7 + x2x3x6x7 + x2x4x5x6 + x2x4x5x7 + x2x5x6x7 + x4x5x6x7 +
x0x1x2x3x5 + x0x1x2x4x7 + x0x1x2x5x6 + x0x1x2x6x7 + x0x1x3x4x7 + x0x1x3x5x6 + x0x1x3x5x7 + x0x1x4x6x7 + x0x1x5x6x7 + x0x2x3x4x5 +
x0x2x3x4x6 + x0x2x3x4x7 + x0x2x3x5x7 + x0x2x4x5x6 + x0x2x4x6x7 + x0x2x5x6x7 + x0x3x5x6x7 + x0x4x5x6x7 + x1x2x3x4x5 + x1x2x3x4x7 +
x1x2x3x5x6 + x1x2x3x6x7 + x1x2x4x5x6 + x1x2x4x6x7 + x1x3x4x5x7 + x1x3x4x6x7 + x1x4x5x6x7 + x2x3x4x5x7 + x2x3x5x6x7 + x3x4x5x6x7 +
x0x1x2x3x4x5 + x0x1x2x3x4x6 + x0x1x2x3x5x6 + x0x1x2x3x6x7 + x0x1x2x4x5x7 + x0x1x2x5x6x7 + x0x1x3x4x5x6 + x0x1x3x4x6x7 +
x0x1x4x5x6x7 + x0x2x3x4x5x7 + x0x2x3x5x6x7 + x0x2x4x5x6x7 + x0x3x4x5x6x7 + x1x2x3x4x5x7 + x1x3x4x5x6x7 + x0x1x2x3x4x5x7 +
x0x1x2x3x5x6x7 + x0x1x3x4x5x6x7

