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Summary 
In this paper we give an explicit representation of the AES S-box 
as a vector valued Boolean function in GF(2)8 and show several 
significant deviations in the number of terms that follows from 
that representation when it is compared with the algebraic 
representation of randomly generated permutations of 256 
elements. We see this as a potential research direction in 
cryptanalysis of AES. 
Key words: 
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1. Introduction 

Algebraic attacks on AES have become an attractive 
research field in cryptology in recent years. It all started 
when the Rijndael designers (Daemen and Rijmen) in their 
proposal [1] for the NIST standard, used a permutation of 
256 elements in the field GF(28) which allowed the S-box 
to be algebraically described. They decided to use an 
affine transformation of the permutation presented by 
Nyberg in [2]. In their book about the block cipher 
Rijndael [3], the authors explain in more detail how the S-
box looks like in GF(28). They first take the function 
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where every byte represents a polynomial. Then, they 
apply the affine transformation 

 
f(x) = 05·x + 09·x2 + F9·x22

 + 25· x23
 + F4· x24

+ 01· x25
 

+ B5· x26
 + 8F· x27

 + 63 
 

and obtain the S-box permutation in GF(28) that can be 
expressed as 
 

Sbox(x) = f(g(x)) = 05·x254 + 09·x253 + F9·x251 + 
25·x247 + F4·x239+ 01·x223 + B5·x191 + 8F·x127 + 63. 
 
In the beginning of the second round of the NIST 

selection of the AES, Murphy and Robshaw [4] gave 
comments and remarks about the algebraic properties of 

Rijndael's S-box and the whole structure of the block 
cipher, as a possible weak point of the cipher. In 2001, 
Ferguson, Schroeppel and Whiting [5], using again 
algebraic properties of Rijndael derived a closed formula 
for the cipher as a continued fraction. Full development of 
that formula would generate multivariate polynomials of 
higher order with 226 unknown variables and 250 terms. 
This approach was considered a promising direction for 
the algebraic attacks, however, no successful reports since 
then have appeared on solving such a complex systems of 
equations. Then in CRYPTO'02, using again the algebraic 
structures of Rijndael-AES, Murphy and Robshaw 
published a paper [6] in which they embedded the cipher 
into a bigger block cipher called the Big Encryption 
System or BES, and discussed how to make a 
cryptanalysis of that cipher. At the same conference, 
Courtois and Pieprzyk [7] proposed an attack to the AES 
by solving a system of multivariate quadratic equations by 
the extended sparse linearisation or XSL algorithm. That 
method is a version of the extended linearisation or XL 
algorithm that was presented by Shamir et al. [8] in 
Eurocrypt 2000. In the attack of Courtois and Pieprzyk, 
authors claimed that for 128-bit block and 128-bit key 
Rijndael, recovering the secret key from one single 
plaintext can be accomplished if a system of 8000 
quadratic equations with 1600 binary unknowns is solved 
in GF(2), and that this has an equivalent workload of 
about 2100 AES encryptions. The claims in that paper were 
debated and criticized by several authors (see for example 
[9] and references there). Several other authors have given 
good surveys about algebraic attacks on block ciphers, see 
for example [10, 11]. In [12] more precise upper bounds 
on the dimensions of the spaces of equations in the XL-
algorithm were obtained, giving pessimistic evidence for 
the running time of the algorithm. In [13] the XL method 
was compared with the Buchberger method for calculation 
of reduced Groebner bases. 

In spite of the large number of papers about algebraic 
attacks on the AES, we did not find any reference in 
which its S-box is explicitly represented as a nonlinear 
Boolean vector function in GF(2)8. The authors of [14] 
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Table 1: Comparing obtained statistics from randomly generated  
permutations of 256 elements and actual values for the AES S-box 

Nr. of 
terms 

Random 
(μ,σ2) AES 

S-box
Nr. of 
terms 

Random 
(μ,σ2) AES 

S-box 
|B0| (127.4, 8.0) 110 |B1∩B5| (63.7, 7.0) 63 
|B1| (127.5, 8.0) 112 |B1∩B6| (63.7, 7.0) 59 
|B2| (127.5, 8.0) 114 |B1∩B7| (63.8, 6.9) 56 
|B3| (127.4, 8.0) 131 |B2∩B3| (63.8, 6.9) 54 
|B4| (127.6, 7.9) 136 |B2∩B4| (63.8, 7.0) 60 
|B5| (127.5, 8.0) 145 |B2∩B5| (63.8, 6.9) 66 
|B6| (127.5, 8.0) 133 |B2∩B6| (63.7, 6.8) 63 
|B7| (127.6, 8.0) 132 |B2∩B7| (63.8, 7.0) 56 

|B0∩B1| (63.6, 6.9) 52 |B3∩B4| (63.7, 6.9) 59 
|B0∩B2| (63.7, 6.9) 45 |B3∩B5| (63.7, 6.8) 74 
|B0∩B3| (63.7, 6.9) 50 |B3∩B6| (63.8, 6.9) 75 
|B0∩B4| (63.7, 6.9) 60 |B3∩B7| (63.7, 6.9) 68 
|B0∩B5| (63.7, 6.9) 66 |B4∩B5| (63.8, 6.9) 80 
|B0∩B6| (63.7, 6.9) 52 |B4∩B6| (63.7, 6.9) 77 
|B0∩B7| (63.7, 6.9) 61 |B4∩B7| (63.8, 6.9) 74 
|B1∩B2| (63.7, 6.9) 55 |B5∩B6| (63.7, 6.9) 77 
|B1∩B3| (63.6, 7.0) 54 |B5∩B7| (63.8, 7.0) 68 

|B1∩B4| (63.8, 6.8) 59 |B6∩B7| (63.8, 6.9) 76 
 

have discussed some linear redundancy properties of these 
functions but did not provide the functions explicitly in the 
paper. 

Additional motivation for obtaining an explicit 
representation for the AES S-box we got from the paper 
[15], where the author in order to obtain a minimal 
hardware realization of DES, optimized Boolean 
expressions that represents DES S-boxes. When 
concerning a hardware realization, having explicit 
relations of the S-boxes can lead to finding minimal 
hardware implementations of AES as well. 

Finally, an explicit algebraic representation can give 
additional valuable information about how the S-box 
correlates the bits when it is used in the block cipher. The 
“algebraic distinguisher” was mentioned in the paper by 
Cid, Murphy and Robshaw [16]. The authors refer to the 
rich algebraic structure of AES as a possible source for 
finding a polynomial-time distinguisher that can perform 
successful distinguishing between the cipher and a truly 
random source. In this paper we will show how the AES 
S-box manifests some significant deviations from random 
permutations of 256 elements when it is represented in 
explicit algebraic form as a vector valued Boolean 
function in GF(2)8. We point out to these deviations as a 
possible research direction when attempting to build an 

algebraic distinguisher. Our initial findings on this topic 
will be presented in the following three sections. 

The structure of the paper is the following. In Section 
2 we give a brief description of the linear procedures by 
which it is possible to obtain the representation of the AES 
S-box as an 8 dimensional vector valued Boolean function. 
In Section 3 we give a comparative analysis between the 
AES S-box and randomly generated permutations of 256 
elements based on the statistics of the number of used 
terms in GF(2)8 and show several significant deviations 
from randomly generated permutations, and in Section 4 
we give some conclusions. In Appendix 1, we give an 
explicit representation of all 8 Boolean functions that 
represents the AES S-box. 

2. Obtaining AES S-box representation in 
GF(2)8 

Obtaining a representation of the AES S-box as an 8 
dimensional vector valued Boolean function is a linear 
problem. It is relatively easy solvable by any modern 
mathematical tool that can do symbolic calculations in 
finite fields and the problem is the following: 
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Fig. 1  Distribution of the number of terms in the sets Bi, i = 0, 1, 2, 3. On x axes we represented the number of elements in Bi. The arrow shows 
the actual number of terms in AES S-box representation. 

 

Fig. 2  Distribution of the number of terms in the sets Bi, i = 4, 5, 6, 7. On x axes we represented the number of elements in Bi. The arrow shows 

                                                                            



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007 
 

 

159

 

Having a permutation Sbox(x) : {0,1}8 → {0,1}8, find 8 
Boolean functions f0, f1, … , f7, : {0,1}8 → {0,1} in GF(2), 
such that 

 
Sbox(x0, …, x7) = (f0(x0, …, x7), …, f7(x0, …, x7)). 
 
Having in mind that in GF(2) multiplication x·y ≡ xy 

is equivalent to logical AND, and addition x+y is 
equivalent to logical XOR, the functions f0, f1, … , f7 can 
be represented as 
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where )(i
ja ∈ {0,1} are unknown coefficients. So, for 

every value x ∈ {0,1}8 we can find its image Sbox(x) ∈ 
{0,1}8, and replacing these values in Eq. 2 we can 
establish a linear system with 256 x 8 = 2048 unknown 
variables )(i

ja  i = 0, 1, …, 7, j = 0, 1, …, 255 in GF(2). 

For example, for x = 0 in GF(28), i.e. x = (0, 0, 0, 0, 0, 0, 0, 
0) in GF(2)8 we have that Sbox(x) = 99 in GF(28), i.e. 
Sbox(x) = (0, 1, 1, 0, 0, 0, 1, 1) in GF(2)8. From this we 
can immediately obtain the values for the free constants 

)(
0
ia  i = 0, 1, …, 7. By exchanging all other 255 values for 

x we will obtain a linear system with 2048 unknown 
variables that is easy solvable. For example the function f0 
can be represented as follows: 

f0(x0, x1, …, x7) = x0 + x2 + x3 + x5 + x0x2 + x0x6 + x0x7 
+ x1x3 + x1x5 + x1x7 + x2x4 + x3x5+ x5x6 + x5x7 + x0x1x3 + 
x0x1x5 + x0x1x7 + x0x2x3 + x0x2x4 + x0x3x6 + x0x4x7 + x0x5x7 + 
x1x2x3 + x1x2x5 + x1x2x7 + x1x3x5 + x1x4x6 + x1x4x7 + x1x5x6 + 
x1x6x7 + x2x3x4 + x2x3x7 + x2x4x5+ x2x4x6 + x2x4x7 + x2x5x7 + 
x2x6x7 + x3x6x7 + x4x5x6 + x4x5x7 + x0x1x2x3 + x0x1x2x5 + 
x0x1x2x6 + x0x1x3x5 + x0x1x3x6 + x0x1x3x7 + x0x1x4x6 + 
x0x1x4x7 + x0x2x3x6 + x0x2x4x7 + x0x3x4x5 + x0x3x4x6 + x0x3x4x7 
+ x0x3x5x7 + x0x3x6x7 + x0x4x5x6 + x0x4x5x7 + x0x5x6x7 + 
x1x2x3x4 + x1x2x4x7 + x1x3x4x7 + x1x3x5x6 + x1x3x5x7 + 
x1x4x5x7 + x1x4x6x7 + x2x3x5x6 + x2x4x5x6 + x2x4x5x7 + x2x5x6x7 
+ x3x4x5x6 + x3x4x6x7 + x3x5x6x7 + x4x5x6x7 + x0x1x2x3x4 + 
x0x1x2x3x6 + x0x1x2x4x6 + x0x1x2x4x7 + x0x1x2x5x6 + x0x1x2x6x7 
+ x0x1x3x4x7 + x0x1x3x5x6 + x0x1x5x6x7 + x0x2x3x6x7 + 
x0x2x5x6x7 + x0x3x4x5x7 + x0x3x4x6x7 + x1x2x3x4x5 + x1x2x3x4x7 
+ x1x2x3x5x6 + x1x2x3x6x7 + x1x2x4x5x6 + x1x3x4x5x7 + 
x1x3x5x6x7 + x1x4x5x6x7 + x2x3x4x5x7 + x2x3x4x6x7 + x3x4x5x6x7 
+ x0x1x2x3x4x6 + x0x1x2x3x5x7 + x0x1x2x4x5x7 + x0x1x2x4x6x7 + 
x0x1x3x4x5x7 + x0x1x3x4x6x7 + x0x1x4x5x6x7 + x0x2x3x4x5x7 + 
x0x2x3x4x6x7 + x0x2x3x5x6x7 + x1x2x3x4x5x7 + x0x1x2x3x4x5x7 + 
x0x1x2x3x4x6x7 

The actual representation of f1, f2, f3, f4, f5, f6 and f7 
can be found in Appendix 1. 

3. Significant deviations of the AES S-box 
from random per mutations of order 256 

It is easy to notice that the algebraic order of fi, i=0, 1, 
…, 7 is 7. That is of course in compliance with the 
theoretical result that Nyberg obtained in her paper [2]. 
Namely, for even n, the inversion mapping described by 
Eq. 1 in GF(2n) has algebraic order n - 1. For the AES case, 
we have n = 8, and indeed the order of the polynomials fi, 
i=0, 1, …, 7 is 7. 

We have performed several measurements, in order 
to compare how much the AES S-box looks like or differs 
from a randomly generated permutation of 256 elements. 
Let us denote by B0, B1, …, B7 the sets of monomials in 
the 8 coordinate Boolean functions fi, i=0, 1, …, 7. We 
have generated 10,000 random permutations of 256 
elements. To generate these random permutations we have 
used the random generator that is built into Mathematica 
5.1. Then we measured the distribution of the number of 
used terms in all 8 coordinates, as well as distributions of 
their intersections and compared them by the actual values 
obtained from the AES S-box. Some of the statistical 
measurements that we have made are given in Table 1 and 
Figures 1 and 2. In Table 1 next to each column that gives 
the average and standard deviation for each set Bi, i=0, 1, 
…, 7, we have placed the actual values obtained from the 
AES S-box. The graphical representations where the 
actual values for AES S-box are positioned are given in 
Figures 1 and 2 and are denoter by red arrows. 

A standard procedure in this kind of measurement is 
to compare an actual finding, in this case the values 
obtained from the AES S-box, with the values we would 
expect to find assuming that the number of terms is 
normally distributed. We have performed an empirical 
evaluation to confirm that the number of terms in the 
randomly generated sample actually is normally 
distributed. As an illustration, in Figure 2 we have plotted 
the probability density function for the standard normal 
distribution. The values for a random variable that deviate 
from the mean with more than two times the standard 
deviation have probability to occur less then 4%, i.e. 96% 
of the observations will deviate less than 2.05 standard 
deviations from the mean (the central shaded gray area in 
Figure 3). 
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Fig. 4  The situations where the AES S-box representation in GF(2)8 gives significant deviation from “randomly generated” permutations. On x 
axes we represented the number of elements in Bi. The arrow shows the actual number of terms in the AES S-box representation. 

 

Fig. 3  Shaded area is 96% of the total area beneath the probability 
density function. 

The first impressions comparing the obtained 
averages from the randomly generated permutations to the 
actual values for the AES S-box, are that they do not differ 
much. However, there are several situations where we 
noticed significant deviations. For example, for the 
situation |B0∩B2| (see Table 1) we have the values (μ,σ2) = 
(63.7, 6.9) in the randomly generated sample, while for the 
AES S-box we get |B0∩B2|=45. This value should only be 
observed with a probability of 0.4% in the randomly 
generated sample. 

In Table 1 notice also high values obtained for the 
AES S-box for the intersections |B4∩B5|= 80, |B4∩B6|= 77, 
|B5∩B6|=77 and |B6∩B7|=76. All of them lie outside or at 
the edge of the regions where 99%, 97%, 97% and 96% of 
the observations would be expected to be found 
correspondingly. That reflects further to the intersections 
|B4∩B5∩B6|=46, |B4∩B5∩B7|=49 and |B4∩B5∩B6∩B7|=27, 
and for them we can say that they lie outside the regions 
where 99.6%, 99.9% and 99.7% of the observations are 
expected to be found. These situations are illustrated in 
Figure 4. 

It would be interesting to see, how this observed 
biases will be reflected on the output of the whole cipher, 
as S-box is the only nonlinear part in AES. 

4. Conclusion 

In this paper we have given explicit representation of 
the AES S-box as a vector of 8 Boolean functions in 
GF(2). We have also computed several statistical 
properties of obtained Boolean functions and found 
several situations where significant deviations from a 
randomly generated permutation of 256 elements can be 
seen. It is natural to ask how these findings could be used 
to build a distinguisher for the AES, and this will be the 
subject of our further research. 
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Appendix 1. Representations of all 8 Boolean functions fi, i=0, 1, …, 7 of the AES S-box 
 
f0(x0, x1, …, x7) = x0 + x2 + x3 + x5 + x0x2 + x0x6 + x0x7 + x1x3 + x1x5 + x1x7 + x2x4 + x3x5+ x5x6 + x5x7 + x0x1x3 + x0x1x5 + x0x1x7 
+ x0x2x3 + x0x2x4 + x0x3x6 + x0x4x7 + x0x5x7 + x1x2x3 + x1x2x5 + x1x2x7 + x1x3x5 + x1x4x6 + x1x4x7 + x1x5x6 + x1x6x7 + x2x3x4 + 
x2x3x7 + x2x4x5+ x2x4x6 + x2x4x7 + x2x5x7 + x2x6x7 + x3x6x7 + x4x5x6 + x4x5x7 + x0x1x2x3 + x0x1x2x5 + x0x1x2x6 + x0x1x3x5 + x0x1x3x6 
+ x0x1x3x7 + x0x1x4x6 + x0x1x4x7 + x0x2x3x6 + x0x2x4x7 + x0x3x4x5 + x0x3x4x6 + x0x3x4x7 + x0x3x5x7 + x0x3x6x7 + x0x4x5x6 + x0x4x5x7 
+ x0x5x6x7 + x1x2x3x4 + x1x2x4x7 + x1x3x4x7 + x1x3x5x6 + x1x3x5x7 + x1x4x5x7 + x1x4x6x7 + x2x3x5x6 + x2x4x5x6 + x2x4x5x7 + x2x5x6x7 
+ x3x4x5x6 + x3x4x6x7 + x3x5x6x7 + x4x5x6x7 + x0x1x2x3x4 + x0x1x2x3x6 + x0x1x2x4x6 + x0x1x2x4x7 + x0x1x2x5x6 + x0x1x2x6x7 + 
x0x1x3x4x7 + x0x1x3x5x6 + x0x1x5x6x7 + x0x2x3x6x7 + x0x2x5x6x7 + x0x3x4x5x7 + x0x3x4x6x7 + x1x2x3x4x5 + x1x2x3x4x7 + x1x2x3x5x6 + 
x1x2x3x6x7 + x1x2x4x5x6 + x1x3x4x5x7 + x1x3x5x6x7 + x1x4x5x6x7 + x2x3x4x5x7 + x2x3x4x6x7 + x3x4x5x6x7 + x0x1x2x3x4x6 + x0x1x2x3x5x7 
+ x0x1x2x4x5x7 + x0x1x2x4x6x7 + x0x1x3x4x5x7 + x0x1x3x4x6x7 + x0x1x4x5x6x7 + x0x2x3x4x5x7 + x0x2x3x4x6x7 + x0x2x3x5x6x7 + 
x1x2x3x4x5x7 + x0x1x2x3x4x5x7 + x0x1x2x3x4x6x7 

 
f1(x0, x1, …, x7) = 1 + x1 + x2 + x4 + x0x2 + x0x4 + x0x6 + x0x7 + x1x3 + x2x4 + x2x7 + x3x7 + x4x5 + x4x6 + x0x1x2 + x0x1x4 + x0x1x6 
+ x0x2x4 + x0x2x7 + x0x3x5 + x0x3x6 + x0x3x7 + x0x4x5 + x0x5x6 + x1x2x3 + x1x2x6 + x1x2x7 + x1x3x4 + x1x3x5 + x1x3x6 + x1x3x7 + 
x1x4x6 + x1x4x7 + x1x5x6 + x1x5x7 + x2x3x7 + x2x4x7 + x2x5x6 + x2x5x7 + x2x6x7 + x3x4x5 + x3x4x6 + x3x5x7 + x3x6x7 + x4x6x7 + 
x0x1x2x3 + x0x1x3x6 + x0x1x3x7 + x0x1x6x7 + x0x2x3x6 + x0x2x4x5 + x0x2x4x6 + x0x2x5x7 + x0x3x4x6 + x0x3x4x7 + x0x3x5x6 + x0x4x5x7 + 
x0x4x6x7 + x1x2x4x5 + x1x3x4x5 + x1x3x4x6 + x1x3x4x7 + x1x3x5x7 + x1x4x5x6 + x1x4x5x7 + x1x4x6x7 + x2x3x4x5 + x2x3x5x6 + x2x3x5x7 + 
x2x4x5x6 + x2x4x5x7 + x2x5x6x7 + x3x4x5x6 + x3x4x6x7 + x3x5x6x7 + x0x1x2x3x4 + x0x1x2x3x6 + x0x1x2x3x7 + x0x1x2x4x5 + x0x1x2x5x6 + 
x0x1x2x5x7 + x0x1x3x4x5 + x0x1x3x4x7 + x0x1x3x5x7 + x0x1x4x6x7 + x0x2x3x4x6 + x0x2x3x5x7 + x0x2x3x6x7 + x0x2x4x5x6 + x0x3x4x5x6 + 
x0x4x5x6x7 + x1x2x3x4x6 + x1x2x3x5x6 + x1x2x4x5x7 + x1x4x5x6x7 + x2x3x4x5x6 + x2x3x4x5x7 + x2x3x4x6x7 + x2x4x5x6x7 + x0x1x2x3x4x6 + 
x0x1x2x4x6x7 + x0x1x2x5x6x7 + x0x1x3x4x6x7 + x0x1x3x5x6x7 + x0x2x3x4x6x7 + x0x2x3x5x6x7 + x0x3x4x5x6x7 + x1x2x3x4x6x7 + 
x1x2x3x5x6x7 + x1x2x4x5x6x7 + x0x1x2x3x4x6x7 + x0x1x2x3x5x6x7 
 
f2(x0, x1, …, x7) = 1 + x0 + x1 + x3 + x0x2 + x1x3 + x1x6 + x2x6 + x3x4 + x3x5 + x4x7 + x0x1x2 + x0x1x5 + x0x1x6 + x0x2x3 + x0x2x4 + 
x0x2x5 + x0x2x6 + x0x3x5 + x0x3x6 + x0x3x7 + x0x4x5 + x0x4x6 + x0x6x7 + x1x2x6 + x1x2x7 + x1x3x6 + x1x4x5 + x1x4x6 + x1x5x6 + x1x5x7 
+ x1x6x7 + x2x3x4 + x2x3x5 + x2x4x6 + x2x4x7 + x2x5x6 + x2x6x7 + x3x5x6 + x3x5x7 + x3x6x7 + x4x6x7 + x5x6x7 + x0x1x2x7 + x0x1x3x4 + 
x0x1x3x7 + x0x2x3x4 + x0x2x3x5 + x0x2x3x6 + x0x2x4x6 + x0x2x6x7 + x0x3x4x5 + x0x3x4x6 + x0x3x4x7 + x0x3x5x6 + x0x3x6x7 + x0x4x6x7 + 
x1x2x3x4 + x1x2x4x5 + x1x2x4x6 + x1x2x6x7 + x1x3x4x5 + x1x3x4x6 + x1x3x6x7 + x1x4x5x6 + x2x3x4x5 + x2x3x5x6 + x2x3x5x7 + x2x3x6x7 + 
x2x4x5x6 + x2x4x5x7 + x2x5x6x7 + x3x4x5x7 + x3x4x6x7 + x4x5x6x7 + x0x1x2x3x5 + x0x1x2x3x7 + x0x1x2x4x5 + x0x1x2x6x7 + x0x1x3x4x6 + 
x0x1x3x6x7 + x0x1x4x5x7 + x0x1x5x6x7 + x0x2x3x4x7 + x0x2x3x5x7 + x0x2x3x6x7 + x0x2x4x5x7 + x0x2x4x6x7 + x0x3x4x5x6 + x0x3x4x5x7 + 
x0x4x5x6x7 + x1x2x3x4x5 + x1x2x3x4x6 + x1x2x3x4x7 + x1x2x3x5x6 + x1x2x3x6x7 + x1x3x4x5x6 + x1x3x5x6x7 + x1x4x5x6x7 + x2x3x5x6x7 + 
x2x4x5x6x7 + x3x4x5x6x7 + x0x1x2x3x5x6 + x0x1x2x3x5x7 + x0x1x2x4x5x6 + x0x1x3x4x5x6 + x0x1x3x4x5x7 + x0x2x3x5x6x7 + x0x2x4x5x6x7 + 
x1x2x3x5x6x7 + x1x2x4x5x6x7 + x2x3x4x5x6x7 + x0x1x2x3x5x6x7 + x0x1x2x4x5x6x7 
 
f3(x0, x1, …, x7) = x2 + x4 + x5 + x6 + x7 + x0x1 + x0x2 + x0x4 + x0x7 + x1x3 + x1x6 + x1x7 + x2x3 + x2x4 + x2x5 + x2x6 + x2x7 + x3x4 
+ x3x6 + x3x7 + x4x5 + x6x7 + x0x1x2 + x0x1x3 + x0x1x4 + x0x1x5 + x0x1x6 + x0x1x7 + x0x2x3 + x0x2x4 + x0x2x6 + x0x3x4 + x0x3x5 + 
x0x3x7 + x1x2x4 + x1x2x5 + x1x3x4 + x1x3x7 + x1x4x5 + x1x5x7 + x2x3x4 + x2x3x5 + x2x3x6 + x2x3x7 + x2x4x5 + x2x4x6 + x2x4x7 + x3x4x5 
+ x3x4x7 + x3x5x6 + x4x5x7 + x0x1x2x4 + x0x1x3x4 + x0x1x3x7 + x0x1x4x7 + x0x1x5x6 + x0x1x6x7 + x0x2x3x4 + x0x2x4x5 + x0x2x4x7 + 
x0x2x5x6 + x0x2x5x7 + x0x2x6x7 + x0x3x4x5 + x0x3x4x6 + x0x3x4x7 + x0x4x6x7 + x1x2x3x7 + x1x2x4x5 + x1x2x4x7 + x1x2x6x7 + x1x3x4x7 + 
x1x3x5x6 + x1x3x6x7 + x1x4x6x7 + x1x5x6x7 + x2x3x4x6 + x2x3x4x7 + x2x3x6x7 + x2x4x5x6 + x2x4x6x7 + x3x4x5x6 + x3x4x5x7 + x0x1x2x3x4 
+ x0x1x2x3x5 + x0x1x2x3x6 + x0x1x2x3x7 + x0x1x2x4x6 + x0x1x2x4x7 + x0x1x2x5x6 + x0x1x2x6x7 + x0x1x3x4x5 + x0x1x3x4x7 + x0x1x3x5x7 + 
x0x1x4x6x7 + x0x1x5x6x7 + x0x2x3x4x5 + x0x2x3x4x6 + x0x2x3x5x6 + x0x2x4x5x6 + x0x2x4x5x7 + x0x2x4x6x7 + x0x2x5x6x7 + x0x4x5x6x7 + 
x1x2x3x4x5 + x1x2x3x4x6 + x1x2x3x5x6 + x1x2x3x6x7 + x1x2x4x5x6 + x1x2x4x5x7 + x1x3x4x5x6 + x1x3x4x5x7 + x1x3x4x6x7 + x1x4x5x6x7 + 
x2x3x4x5x7 + x2x3x5x6x7 + x3x4x5x6x7 + x0x1x2x3x4x7 + x0x1x2x4x5x6 + x0x1x3x4x5x6 + x0x2x3x4x5x6 + x0x2x3x4x5x7 + x0x3x4x5x6x7 + 
x1x2x3x4x5x6 + x1x2x3x4x6x7 + x1x2x3x5x6x7 + x1x2x4x5x6x7 + x2x3x4x5x6x7 + x0x1x2x3x4x5x7 + x0x1x3x4x5x6x7 + x0x2x3x4x5x6x7 
 
f4(x0, x1, …, x7) = x0 + x1 + x3 + x7 + x0x1 + x0x2 + x0x4 + x0x6 + x0x7 + x1x2 + x1x4 + x2x3 + x4x5 + x4x7 + x5x6 + x0x1x2 + x0x2x4 + 
x0x2x5 + x0x3x4 + x0x4x5 + x0x4x7 + x0x5x6 + x0x5x7 + x0x6x7 + x1x2x4 + x1x2x6 + x1x3x7 + x1x4x7 + x1x5x6 + x1x5x7 + x1x6x7 + x2x3x5 
+ x2x3x7 + x2x4x5 + x2x5x6 + x2x6x7 + x3x4x5 + x3x4x6 + x3x4x7 + x3x5x7 + x3x6x7 + x4x5x6 + x4x5x7 + x4x6x7 + x0x1x2x3 + x0x1x2x4 + 
x0x1x2x6 + x0x1x2x7 + x0x1x3x4 + x0x1x3x5 + x0x1x3x6 + x0x1x4x7 + x0x1x5x6 + x0x1x5x7 + x0x1x6x7 + x0x2x3x5 + x0x2x3x6 + x0x2x5x6 + 
x0x3x4x6 + x0x3x5x6 + x0x3x5x7 + x0x4x5x6 + x0x4x5x7 + x1x2x3x4 + x1x2x3x5 + x1x2x3x6 + x1x2x3x7 + x1x2x4x6 + x1x2x5x7 + x1x2x6x7 + 
x1x3x4x6 + x1x3x4x7 + x1x3x5x7 + x1x3x6x7 + x1x4x5x6 + x1x4x6x7 + x2x3x4x5 + x2x3x4x6 + x2x3x5x6 + x2x4x5x6 + x2x5x6x7 + x3x5x6x7 + 
x4x5x6x7 + x0x1x2x3x4 + x0x1x2x3x5 + x0x1x2x3x7 + x0x1x2x4x6 + x0x1x2x4x7 + x0x1x2x5x6 + x0x1x2x5x7 + x0x1x2x6x7 + x0x1x3x4x6 + 
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x0x1x3x4x7 + x0x1x4x5x7 + x0x2x3x4x5 + x0x2x3x4x7 + x0x2x3x5x7 + x0x2x3x6x7 + x0x2x4x5x7 + x0x2x5x6x7 + x0x3x4x6x7 + x0x3x5x6x7 + 
x0x4x5x6x7 + x1x2x3x4x5 + x1x2x3x4x7 + x1x2x3x5x6 + x1x2x3x5x7 + x1x2x4x5x6 + x1x2x4x5x7 + x1x2x4x6x7 + x1x2x5x6x7 + x1x3x4x6x7 + 
x2x3x4x5x7 + x2x3x4x6x7 + x2x4x5x6x7 + x3x4x5x6x7 + x0x1x2x3x4x5 + x0x1x2x3x5x6 + x0x1x2x4x5x6 + x0x1x2x4x5x7 + x0x1x3x4x5x6 + 
x0x1x3x4x5x7 + x0x1x3x5x6x7 + x0x1x4x5x6x7 + x0x2x3x4x5x6 + x0x2x3x4x6x7 + x0x2x3x5x6x7 + x0x2x4x5x6x7 + x0x3x4x5x6x7 + 
x1x2x3x4x5x6 + x1x2x4x5x6x7 + x1x3x4x5x6x7 + x0x1x2x3x4x5x7 + x0x1x2x3x4x6x7 + x0x1x2x4x5x6x7 + x1x2x3x4x5x6x7 
 
f5(x0, x1, …, x7) = x0 + x2 + x6 + x7 + x0x1 + x0x3 + x0x7 + x1x2 + x1x7 + x2x7 + x3x4 + x3x6 + x3x7 + x4x5 + x4x7 + x5x7 + x0x1x3 + 
x0x1x5 + x0x1x7 + x0x2x6 + x0x2x7 + x0x3x6 + x0x3x7 + x0x4x5 + x0x4x6 + x0x4x7 + x0x5x6 + x0x5x7 + x0x6x7 + x1x2x4 + x1x2x6 + x1x3x4 
+ x1x3x7 + x1x4x5 + x1x4x7 + x1x5x6 + x1x6x7 + x2x3x4 + x2x3x5 + x2x3x6 + x2x3x7 + x2x4x6 + x2x4x7 + x2x5x6 + x2x5x7 + x2x6x7 + 
x3x4x5 + x3x4x6 + x3x4x7 + x3x5x6 + x3x5x7 + x3x6x7 + x4x5x7 + x4x6x7 + x0x1x2x3 + x0x1x2x4 + x0x1x2x5 + x0x1x2x6 + x0x1x3x5 + 
x0x1x4x6 + x0x1x5x6 + x0x2x3x5 + x0x2x3x6 + x0x2x4x6 + x0x2x4x7 + x0x2x5x6 + x0x3x4x5 + x0x3x4x7 + x0x3x5x6 + x0x3x5x7 + x0x4x5x7 + 
x0x5x6x7 + x1x2x3x4 + x1x2x3x5 + x1x2x4x5 + x1x2x4x7 + x1x2x6x7 + x1x3x4x5 + x1x3x4x7 + x1x3x5x7 + x1x3x6x7 + x1x4x5x6 + x1x4x6x7 + 
x2x4x5x6 + x2x4x5x7 + x2x4x6x7 + x2x5x6x7 + x3x4x5x6 + x3x4x5x7 + x3x4x6x7 + x0x1x2x3x4 + x0x1x2x3x6 + x0x1x2x3x7 + x0x1x2x4x5 + 
x0x1x2x4x6 + x0x1x2x4x7 + x0x1x2x5x7 + x0x1x3x4x5 + x0x1x3x4x6 + x0x1x3x5x6 + x0x1x3x6x7 + x0x1x4x5x6 + x0x1x4x6x7 + x0x1x5x6x7 + 
x0x2x3x4x7 + x0x2x3x5x6 + x0x2x4x5x7 + x0x2x4x6x7 + x0x2x5x6x7 + x0x3x4x5x7 + x0x3x4x6x7 + x0x3x5x6x7 + x0x4x5x6x7 + x1x2x3x4x6 + 
x1x2x3x5x6 + x1x2x3x5x7 + x1x3x4x5x6 + x1x3x4x6x7 + x1x4x5x6x7 + x2x3x4x5x6 + x2x3x5x6x7 + x2x4x5x6x7 + x3x4x5x6x7 + x0x1x2x3x4x5 + 
x0x1x2x3x5x7 + x0x1x2x3x6x7 + x0x1x2x4x5x7 + x0x1x2x4x6x7 + x0x1x3x4x5x6 + x0x1x3x4x5x7 + x0x1x3x4x6x7 + x0x2x3x4x5x6 + 
x0x2x3x4x6x7 + x0x2x3x5x6x7 + x0x3x4x5x6x7 + x1x2x3x4x5x7 + x1x2x3x5x6x7 + x1x2x4x5x6x7 + x1x3x4x5x6x7 + x2x3x4x5x6x7 + 
x0x1x2x3x4x5x6 + x0x1x2x3x4x5x7 + x0x1x2x3x4x6x7 + x0x1x2x4x5x6x7 + x0x1x3x4x5x6x7 
 
f6(x0, x1, …, x7) = 1 + x0 + x1 + x4 + x7 + x0x4 + x0x5 + x0x6 + x0x7 + x1x3 + x1x5 + x2x3 + x3x6 + x3x7 + x4x5 + x4x6 + x4x7 + x5x7 + 
x6x7 + x0x1x2 + x0x1x4 + x0x1x5 + x0x1x7 + x0x2x4 + x0x2x5 + x0x2x7 + x0x3x4 + x0x3x6 + x0x3x7 + x0x4x6 + x0x5x7 + x1x2x4 + x1x2x6 + 
x1x3x4 + x1x3x7 + x1x4x5 + x1x4x6 + x1x6x7 + x2x3x7 + x2x4x5 + x2x4x6 + x3x4x5 + x3x4x6 + x3x4x7 + x3x5x6 + x3x6x7 + x4x5x6 + x4x5x7 
+ x4x6x7 + x0x1x3x4 + x0x1x3x5 + x0x1x3x6 + x0x1x3x7 + x0x1x5x6 + x0x2x3x4 + x0x2x3x5 + x0x2x3x6 + x0x2x3x7 + x0x2x4x5 + x0x2x4x6 + 
x0x2x5x6 + x0x3x4x5 + x0x3x4x6 + x0x3x5x6 + x0x3x6x7 + x1x2x3x4 + x1x2x3x7 + x1x2x4x6 + x1x2x5x6 + x1x2x5x7 + x1x2x6x7 + x1x3x4x7 + 
x1x4x5x7 + x1x4x6x7 + x1x5x6x7 + x2x3x4x5 + x2x3x4x6 + x2x3x4x7 + x2x3x5x7 + x2x3x6x7 + x2x4x5x6 + x3x4x6x7 + x0x1x2x3x5 + 
x0x1x2x3x7 + x0x1x2x4x7 + x0x1x2x5x7 + x0x1x2x6x7 + x0x1x3x4x5 + x0x1x4x5x7 + x0x1x4x6x7 + x0x1x5x6x7 + x0x2x3x4x5 + x0x2x3x4x6 + 
x0x2x3x4x7 + x0x2x4x5x7 + x0x2x4x6x7 + x0x3x4x5x7 + x0x3x4x6x7 + x0x3x5x6x7 + x0x4x5x6x7 + x1x2x3x4x6 + x1x2x3x5x6 + x1x2x3x5x7 + 
x1x2x3x6x7 + x1x2x4x5x6 + x1x2x4x6x7 + x1x3x4x5x6 + x1x3x4x6x7 + x1x3x5x6x7 + x1x4x5x6x7 + x2x3x4x5x7 + x2x3x5x6x7 + x3x4x5x6x7 + 
x0x1x2x3x4x6 + x0x1x2x4x5x6 + x0x1x2x4x5x7 + x0x1x2x5x6x7 + x0x1x3x4x5x6 + x0x1x3x4x5x7 + x0x1x3x4x6x7 + x0x1x3x5x6x7 + 
x0x2x3x4x5x7 + x0x2x3x5x6x7 + x0x3x4x5x6x7 + x1x2x3x4x5x6 + x1x2x3x4x5x7 + x1x2x3x4x6x7 + x1x2x4x5x6x7 + x1x3x4x5x6x7 + 
x0x1x2x3x4x6x7 + x0x1x2x3x5x6x7 + x0x1x2x4x5x6x7 + x0x1x3x4x5x6x7 
 
f7(x0, x1, …, x7) = 1 + x3 + x4 + x5 + x7 + x0x1 + x0x2 + x0x5 + x1x2 + x1x3 + x1x5 + x1x6 + x1x7 + x2x7 + x3x5 + x3x6 + x3x7 + x4x5 + 
x4x6 + x5x6 + x6x7 + x0x1x2 + x0x1x4 + x0x1x5 + x0x2x4 + x0x2x5 + x0x3x4 + x0x3x5 + x0x3x7 + x0x4x5 + x0x4x6 + x0x5x7 + x0x6x7 + 
x1x2x3 + x1x2x5 + x1x2x6 + x1x3x6 + x1x3x7 + x1x4x7 + x1x5x6 + x1x5x7 + x1x6x7 + x2x4x5 + x2x4x7 + x2x5x7 + x3x4x6 + x3x4x7 + x3x5x6 
+ x3x5x7 + x3x6x7 + x4x5x6 + x0x1x2x4 + x0x1x2x6 + x0x1x3x7 + x0x1x4x5 + x0x1x4x6 + x0x1x5x6 + x0x2x3x5 + x0x2x3x6 + x0x2x3x7 + 
x0x2x4x5 + x0x2x5x7 + x0x3x5x6 + x0x3x5x7 + x0x3x6x7 + x0x4x5x6 + x0x4x5x7 + x0x5x6x7 + x1x2x3x5 + x1x2x3x6 + x1x2x3x7 + x1x2x4x7 + 
x1x2x5x7 + x1x3x4x6 + x1x3x4x7 + x1x3x5x6 + x1x4x5x6 + x1x5x6x7 + x2x3x5x7 + x2x3x6x7 + x2x4x5x6 + x2x4x5x7 + x2x5x6x7 + x4x5x6x7 + 
x0x1x2x3x5 + x0x1x2x4x7 + x0x1x2x5x6 + x0x1x2x6x7 + x0x1x3x4x7 + x0x1x3x5x6 + x0x1x3x5x7 + x0x1x4x6x7 + x0x1x5x6x7 + x0x2x3x4x5 + 
x0x2x3x4x6 + x0x2x3x4x7 + x0x2x3x5x7 + x0x2x4x5x6 + x0x2x4x6x7 + x0x2x5x6x7 + x0x3x5x6x7 + x0x4x5x6x7 + x1x2x3x4x5 + x1x2x3x4x7 + 
x1x2x3x5x6 + x1x2x3x6x7 + x1x2x4x5x6 + x1x2x4x6x7 + x1x3x4x5x7 + x1x3x4x6x7 + x1x4x5x6x7 + x2x3x4x5x7 + x2x3x5x6x7 + x3x4x5x6x7 + 
x0x1x2x3x4x5 + x0x1x2x3x4x6 + x0x1x2x3x5x6 + x0x1x2x3x6x7 + x0x1x2x4x5x7 + x0x1x2x5x6x7 + x0x1x3x4x5x6 + x0x1x3x4x6x7 + 
x0x1x4x5x6x7 + x0x2x3x4x5x7 + x0x2x3x5x6x7 + x0x2x4x5x6x7 + x0x3x4x5x6x7 + x1x2x3x4x5x7 + x1x3x4x5x6x7 + x0x1x2x3x4x5x7 + 
x0x1x2x3x5x6x7 + x0x1x3x4x5x6x7 
 


