
 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007 189

An Event-Driven Pattern for Asynchronous Invocation in
Distributed Systems

Soheil Toodeh Fallah, Ehsan Zaeri Moghaddam, and Saeed Parsa

Iran University of Science and Technology, Tehran, Iran

Abstract
Asynchronous invocation reduces the average running time of
distributed programs by providing concurrency mechanisms.
The fact of occasionally having to check for return values in
calling asynchronous methods is a noticeable drawback in such
systems. We can cope with this issue by making instructions
dependent on the return values of asynchronous methods as
appropriate listener threads. In this paper, we have proposed a
pattern for asynchronous invocation in order to enhance the
client's performance in distributed systems. The layered model
of the proposed pattern led us to a middleware-independent
framework. The evaluation results indicate that our solution
shall introduce a unified pattern for asynchronous remote
method invocation.

Keywords
Asynchronous Invocation, Pattern, Distributed Systems,
Remote Method, Service, Framework

1. Introduction

Asynchronous remote calls enhance performance of
distributed code, by allowing concurrent execution of
the distributed components. Dependency of the
statements which are being executed after a remote
asynchronous invocation to the values affected by the
callee may be a barrier against concurrent execution of
the caller and the callee. To resolve the difficulty,
statement reordering algorithms may be applied to
increase the distance between the call statement and the
very first positions where the results of the call are
required [4,14,15,16]. A major difficulty in applying
reordering algorithms is necessity to predict the
execution time of the program code statically [13].
These algorithms are static and do not consider the
runtime behavior of the code to be reordered.

In order to achieve maximum concurrency in the
execution of distributed code, execution of the
statements which are dependent on any value affected by
an asynchronous call statement is delayed by inserting
them, at run time, into a separate thread which could be
executed when the results of the remote call are required.
This approach is offered in a framework introduced by
Zdun [3]. An important problem is that in Zdun
framework asynchronous method invocation are
restricted to web service technology. Also, in Zdun
framework the caller has to wait for the results of an
asynchronous call by applying a busy waiting method.
As described in Section 3.1 in the approach proposed in
this paper, notification of completion of asynchronous
calls is sent to the callers through events raised by the

callee. In addition, presenting a layered architecture for
asynchronous remote invocations has made it possible to
apply any middleware supporting remote calls, within
our proposed framework.

Asynchronous invocations are not directly supported
by the conventional programming languages. There are
several middlewares such as Apache Axis2 [7,8,9],
CORBA and Java symphony [6] which provide their
own interfaces and libraries to support remote
asynchronous calls. However, a major difficulty is that
there are no standard interfaces for asynchronous
method invocations [2,3,5,11,12]. To resolve the
difficulty, in Section 2, a layered architecture is
proposed for remote asynchronous calls.

The design of our framework for asynchronous
invocations is centered on a design pattern depicted in
Figure 2. This pattern is represented as a class diagram
including all the classes required to apply asynchronous
invocations independent of any underlying middleware
interfaces and communication protocols. There is an
interface class, within this pattern, which allows the
callee to raise events for notifying the caller when the
results of the invocation are ready.

The remaining parts of this paper are organized as
follows. A design pattern for asynchronous calls is
introduced in Section 2. Section 3 describes the design
and implementation of a framework for asynchronous
invocations. A practical evaluation of the speed and the
size of the code required to implement a worked
example within the proposed framework is presented in
Section 4. The conclusions and recommendation for
future improvement of the proposed approach is
presented in Section 5.

2. ED-AMI Pattern

As mentioned above, middleware or platform
dependency, large set of instructions required for
asynchronous invocations and the lack of a well-
accepted standard, have made it difficult to develop
distributed programs.

 Listing-1 represents an example of a typical
asynchronous call without the details of accessing
middleware. In this listing both the methods, f and g are
invoked asynchronously.

 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007 190

Listing-1

In Listing-1, there are two busy waiting while loops

labeled A and B. These loops terminate when the return
values of the asynchronous calls are ready. However,
there may be instructions, which are independent of the
call results and may execute in parallel with the called
methods, f and g.

In Listing 2 all those instructions in Listing 1 which
are, directly or indirectly, data dependent on the results
of the asynchronous calls to methods f and g are
threaded. These threads are executed whenever their
required data is ready. After the data dependent
instructions are threaded there will be no need to wait
for the results of asynchronous calls and the waiting
loops may be removed from within the program code.

Listing-2

Apparently, multi-threading itself incur excessive

runtime overheads. To alleviate the overheads, a thread
pooling [10] technique can be applied.

As mentioned, simplifying asynchronous mechanism
and creating a middleware independent approach was
another consideration during designing our pattern.

To achieve this goal, we recommend a pervasive
pattern, which is applied in a layered architecture that is
illustrated in Figure 1.
In this architecture, service or remote method caller
layer is separated from middleware-dependent
invocation implementation layer by using AMI layer
that is a framework based on ED-AMI pattern.

Developer implements method invocation in service
handler layer and then uses that implementation in
method caller layer using ED-AMI pattern.

Fig. 1 Proposed Layered Architecture

Listing-3 and Listing-4 represent asynchronous

invocation in Apache Axis 2 and Java Symphony. The
samples show that each framework provides different
way of asynchronous invocation, which is specific to its
approach.

Listing-3

Listing-4

Service or Remote Method Caller

Asynchronous Method Invocation
(AMI) Framework

Service Handler
(Method Implementation)

Middleware

Web Service CORBA DCOM RMI

JSObject obj = new JSObject("ClassName'');
//invoke remote method with parameters;
Object[] params = {new Param1(), new Param2()};
Class[] paramTypes = new Class[] {

Param1.getClass(),
Param2.getClass() };
ResultHandle handle =

 obj.ainvoke("methodName",params [,paramType]);
.....
//**** verify whether result is available
if (handle.isReady()) {
 // wait for result to arrive in blocking mode
 ResultClass result =
 (ResultClass)handle.getResult ();
}

OMElement payload=…
Call call=new Call();
call.setTo(
 new EndpointReference(

 AddressingConstant.WSA_TO,"http://...")
);

call.setTransportInfo(
 Constants.TRANSPORT_HTTP,
 Constants.TRANSPORT_HTTP,false);
Callback callback=new Callback() {
 public void onComplete(AsyncResult result){
 //What user can do to result
 }
 public void reportError(Exception e) {
 //on error
 }
};
call.invokeNonBlocking(
 operationName.getLocalPart(),

payload,callback);

….
AsyncResult a = threadExecutionOf (f(x,y));
….
AsyncResult b= threadExecutionOf (a*2);
AsyncResult c= threadExecutionOf (g(t,p));
….
AsyncResult d= threadExecutionOf (c+5);
….

 ….
 a=f(x,y); // 1st remote asynch. call point
 ….
A: while (a is not ready){ } //wait for the 1st call
 b=a*2; // Use point
 c=g(t,p); // 2nd remote asynch. call point
 ….
B: while (c is not ready) { } // wait for the 2nd call
 d=c+5; //Use point
 ….

 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007 191

The structure of our proposed pattern is depicted in
Figure 2. The collaboration of these classes and
interfaces will be described in Section 3.

Fig. 2 Structure of Proposed Pattern

Following code illustrates a sample of asynchronous

invocation using AMI.

Listing-5

By executing this statement, getResult method from

ServiceA class in iust.serviechandler package execute in
a separated thread. getResult can be implementation of a
web service invocation or CORBA remote method call,
which need cityId as its input parameter. As you can see,
there is no middleware dependency in the caller side.

Result value will be returned to caller using an event
driven approach that is illustrated as follows:

Listing-6

Finally, according to features like middleware-

independency and event driven architecture and also
simplifying asynchronous invocation, the proposed
approach can be considered as an standard pattern in
different environment.

In other words, ED-AMI pattern can be applied in
the following conditions:

• When software is developed in a distributed
environment using a Grid or Service-oriented
architecture.

• While two or more remote methods can be invoked
interchangeably and the fastest result is used. (We
will discuss this matter in Section 3.1)

• When the results of different services can be sent
separately for user in an interactive environment.

• When developers seeking an approach, which is
efficient and still simple and easy to use.

In the next section, we will describe our proposed
framework and its structure.

3. The Proposed Framework

In this section, we will introduce a framework based on
ED-AMI pattern. Figure 3 depicted the structure of
framework components in the form of layered
architecture that is shown in Figure 1.

Fig. 3 The Structure of Proposed Framework

Thread Pool and WS-Handler are two components
added to the main part to enhance and extend our
approach.

The reason of using thread pool is discussed in
Section 2. But WS-Handler is another supplementary
and extendable component which provides some facility
to invoke web services.

3.1. Collaboration

The sequence of operations execution is described in this
section. An important note is that our approach provides
some more features such as policy definition and passing
call-by-reference arguments to service invocations.

As shown in Figure 4, the requester calls static
method invoke() from AsyncHandler class in order to
create an instance of ServiceRunner and obtain locks for
reference arguments. If one of these objects is already
locked by another thread, this runner is added to the
waiting queue of that object. AsyncHandler class is the
beginning point of asynchronous invocation and
ServiceRunner is a thread which is responsible for
parallel execution of service or method invocation. An
AsyncResult instance is created and the runner assigns to
it. In order to complete this relation between
AsyncResult instance and the runner, the instance
registers itself as a listener in ServiceRunner,

WS-Handler

Service or Remote Method Caller

Asynchronous Method
Invocation Framework

Service Handler
(Method Implementation)

Middleware

Web Service CORBA DCOM RMI

Thread
Pool

public void resultArrived(ResultArrivedEvent e){
 try{

((AsyncResult)e.getSource()).getResult();
 }
 catch (ServiceInvocationException ex){
 //handle exception
 }
}

ResultArrivedEvent

Container

AFRContainer

ServiceRunner

ResultArrivedListener

AMIObject AsyncResult

AsyncHandler

AsyncResult resultA=
AsyncHandler.invoke (
"iust.servicehandler.ServiceA","getResult",cityId);

 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007 192

consequently, AsyncResult is informed as soon as
results are available.

Fig. 4 Initializing AsyncHandler

The operations in the caller side continue while

invoke() result, which is an instance of AsyncResult class,
returns to main thread (caller) and then, service runner
executes method in parallel. As illustrated in Figure 5, to
start the execution of invoked method, it is needed to
check arguments type. If the argument is an AsyncResult
instance and its result is not ready yet, the current
service runner should wait until all parameters values
become available, and then starts the execution. At the
end of execution, the notification of completion is sent
to the caller by raising an event.

Fig. 5 Executed Instructions From Beginning Until The End of

Invocation

Up to here, we have discussed the main sequences of
Asynchronous method invocation. However, as
mentioned before, arguments passed to an asynchronous
invocation can be an instance of AsyncResult,
AMIObject or Container. The proposed approach
employing the above types to make it possible to control

every implicit and explicit relation between method
invocations.

AMIObject is a class that facilitates the process of
sending a call-by-reference argument to more than one
invocation. There is a lock and a waiting queue in this
class to manage all requests for obtaining lock from
invocation runners. This class handles requests itself and
creates a queue from requesters (service runners) and
chooses next requester and notify it to begin execution
while receives the notification of completion from last
runner which owns the lock.

The Container interface makes it possible to define
special policies for a set of invocations. A typical
Container contains some asynchronous invocations
which are invoked by a requester that considered some
predefined conditions for their return values. For
example, the AFRContainer class which is an
implementation of Container interface, returns the most
ready response from among a collection of services or
methods invocations contained.

Figure 6 shows the sequence diagram of the method
waitForParams from ServiceRunner class. The
following operations will be done according to
parameters passed to this method.

If the parameter is an instance of AsyncResult, the
current runner links itself to the runner of this instance to
continue execution after the execution of AsyncResult
runner ended (State A in diagram).

If the passed parameter is a type of Container
interface, the current thread waits to receive the
Container result, which is based on a defined policy
(State B).

Fig. 6 Waiting For Passed Parameters to Invocation

Finally, if the parameter were an instance of

AMIObject the current runner can get its content after
obtaining its lock (State C).

When all parameters value become available to
runner thread, the waitForParams() method ended and
the runner can continue execution.

3.2. Implementation

The proposed structure for developing AMI-Framework
has some essential points, which must be considered.

:

ServiceRunner
anotherServiceRunner ::

ServiceRunner
: Container : AMIObject

waitForParams()

The Runner of AsyncResult
param

join()

getResult()

getContent()

A

B

C

 : AsyncResult :
ServiceRunner

 : ServiceA

start()

run()

waitForParams()

getValue(StringBuffer)

fireEvent(ResultArrivedEvent)

resultArrived(ResultArrivedEvent)

Notification of completion of
asynchronous calls is sent to the
AsyncResult through events raised
by the Runner.

:
AsuncHandler :

 :

ServiceRunner

ServiceRunner(Object, String, Object[])

lockAMIObjects()

AsyncResult(ServiceRunner)

addResultArrivedListener(ResultArrivedListener)

start()

AsynchResult instance
would be created after
calling invoke()
method with appropriate
arguments.

Before executing Runner, it should
obtain all reference arguments
lock.
If another runner locked one of
these objects, the runner queued
for that lock.

 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007 193

First of all, developing environment must support multi
threading programming due to our proposed approach
which is based on ServiceRunner.

As the reason for using events in framework
implementation, supporting event driven programming
is another necessary feature for developing environment.
Also it is possible to use callback interface for
environment that doesn’t support events (Observer
pattern [1, 12]).

As mentioned in Section 2, we use thread pooling
technique to improve performance and minimize the
overhead of using multi-threading. This is very
important, because if we do not use this technique, it is
possible that the developer invokes too many services
and causes a very poor performance because of
execution of a large number of threads.

Another problem in implementing AMIObject class
is to control threads status, owning a lock, to be alive.
Note that if the runner obtains a lock and then
interrupted for any reason, other runners, which are
waiting for that lock, will be in wait forever. In addition,
while implementing lockAMIObject() method in
ServiceRunner class, it is very important to check all
needed locks and execute invocation only if all locks are
available. This is a conservative approach to prevent
deadlock.

4. Evaluation

In this section, we use execution time optimization,
reduction of the number of statements needed for an
asynchronous invocation and middleware independency
of invocation instructions as our evaluation parameters
in the form of an example.
We assumed that seven services named A to G, are
invoked by a requester, asynchronously. Figure 7
illustrated these services and their dependency.

Fig. 7 Invoked Services and Their Dependency

The dependency between B and C is from a shared

reference argument passed in their invocations. Service
F is dependent to Service A result and the earliest return
value of Service D and E. Service A and G are
independent in their execution. Table 1 shows the
execution time of these services.

Table 1: Services Execution Time

TG TF TE TD TC TB TA

8ms 10ms11ms 7ms 3ms 14ms5ms

The implementation of our example using ZDun
framework is illustrated in Listing-7.

Listing-7

The example implemented by our proposed

framework is presented in Listing-8.

AsyncRequester rA = new AsyncRequester();
PollObject pA = (PollObject) new SimplePollObject();
rA.invoke(pA, null, endpointURL,operationName, null, rt);

AsyncRequester rB = new AsyncRequester();
PollObject pB = (PollObject) new SimplePollObject();
rB.invoke(pB, null, endpointURL,operationName, null, rt);

AsyncRequester rD = new AsyncRequester();
PollObject pD = (PollObject) new SimplePollObject();
rD.invoke(pD, null, endpointURL,operationName, null, rt);

AsyncRequester rE = new AsyncRequester();
PollObject pE = (PollObject) new SimplePollObject();
rE.invoke(pE, null, endpointURL,operationName, null, rt);

AsyncRequester rG = new AsyncRequester();
PollObject pG = (PollObject) new SimplePollObject();
rG.invoke(pG, null, endpointURL,operationName, null, rt);

while (!pB.resultArrived()) {} //Busy wait
Object res=pB.getResult();
AsyncRequester rC = new AsyncRequester();
PollObject pC = (PollObject) new SimplePollObject();
rC.invoke(pC, null, endpointURL,operationName, res, rt);

while (!(pA.resultArrived() &&
 (pD.resultArrived() || pE.resultArrived()))) {}
AsyncRequester rF = new AsyncRequester();
PollObject pF = (PollObject) new SimplePollObject();
Object[] obj;
if (pD.resultArrived)
 obj={pA.getResult(),pD.getResult()};
else
 obj={pA.getResult(),pE.getResult()};
rF.invoke(pF, null, endpointURL,operationName, obj, rt);

// Use final results

AsyncResult resA=AsyncHandler.invoke(

 new WSHandler(endPointURL,operationName,rt));

AMIObject ami=new AMIObject(new Object());

AsyncResult resB=AsyncHandler.invoke(

 new WSHandler(endPointURL,operationName,rt),ami);

AsyncResult resC=AsyncHandler.invoke(

 new WSHandler(endPointURL,operationName,rt),ami);

AsyncResult resD=AsyncHandler.invoke(

 new WSHandler(endPointURL,operationName,rt));

 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007 194

Listing-8

Table 2 shows the invocation results. As shown in Table
2, AMI-Framework offers a better execution time and
the minimum line of code, while it is applicable in
different platforms and middlewares.

Table 2: Comparison of Results of Different Frameworks

AMI-Impl Axis2 ZDun Sequential

17 17 24 47-51 Execution Time (ms)
12 32 29 7 Line of Code
Yes No No* - Middleware independent

* It should be noted that ZDun solution is applicable just
in Web Service environment and it does not support
other technologies. In addition, this approach is
protocol independent.

5. Conclusion and Future Work

In this paper, a new approach for asynchronous method
invocation is presented. This pattern is applicable in
distributed systems because of the importance of
asynchronous invocations which would lead to a better
performance specially for the service requester. In
addition to asynchronous invocation, the proposed
pattern supports the definition of particular policies and
parameter access control. ED-AMI pattern separates
service invocation from its implementation which would
facilitate extensibility in the form of flexible and distinct
layers.

There are many open areas to cater for as our future
work. Definitely, the employment of dependency graph
in order to recognize dependant statements would
optimize the current paradigm. This shall be
accomplished through some sort of precompliler or
runtime analyzer. We have also decided to develop this
framework under .Net platform. Finally, the ED-AMI
pattern can be extended so that it provides additional
management layers to monitor system performance and
enhanced traceability.

References
[1] Gamma. Eric, et al, Design Patterns, Elements of

Reusable Object-Oriented Software, Addison Wesley
Lonjman, Inc. 1998

[2] D. Schmidt, M. Rohnert, H. Buschmann, Pattern-
Oriented Software Architecture, Volume 2: Patterns for
Concurrent and Networked Objects. John Wiley & Sons,
2000

[3] ZDun. Uwe, et al, "Pattern-Based Design of an
Asynchronous Invocation Framework from Web
Services", International Journal of Web Service
Research, Volume 1, No. 3, 2004

[4] S.Parsa, O.Bushehrian, "Automatic Translation of Serial
to Distributed Code Using CORBA Event Channels",
Lecture Note in Computer Science(LNCS), Vol.3733, pp.
152-161, Springer-Verlag, 2005

[5] M.Voelter, et al, "Pattern for Asynchronous Invocation
in Distributed Object Frameworks", In proceedings of
EuroPlop, Germany, 2003

[6] Th.Fahringer, Java Symphony,
http://www.dps.uibk.ac.at/projects/javasymphony/, 2005

[7] S.Srinath, A.Ranabahu, "Axis2-Future of Web Services",
Jax Magazine, Jun 2005

[8] S.Perera, A.Ranabahu, "Web Services Messaging with
Apache Axis2: Concepts and Techniques", ONJava.com,
Jul 2005

[9] The Apache Software Foundation, Apache Axis2,
http://ws.apache.org/axis2/ , 2005

[10] J.Heaton, Creating a Thread Pool with Java, SAMS,
2003

[11] H.Adams, Asynchronous operations and Web services,
IBM, Jun 2002

[12] D.C.Schmidt, Monitor Object: An Object Behavorial
Pattern for Concurrent Programming, Washington
University, Department of Computer Science, 1999

[13] J.Hennessy, D.Patterson, Computer Architecture: A
Quantitative Approach (Third Edition), Morgan
Kaufmann Publishers, 2003.

[14] A. Alet´a, et al, Exploiting pseudo-schedules to guide
data dependence graph partitioning. In Proceedings of
the 2002 International Conference on Parallel
Architectures and Compilation Techniques,
Charlottesville, VA, Sep 2002

[15] M.C.Golumbic, V.Rainish, Instruction scheduling
beyond basic blocks. IBM 1. RES. DEVELOP. VOL. 34
NO. 1, Jan 1990

[16] M.Hagog, A.Zaks, Swing Modulo Scheduling for GCC,
GCC Developers’ Summit, 2004

Soheil Toodeh Fallah received the BS in Software
Engineering from Azad University, Tehran Central Branch,
Iran, and the MS degree in information technology from Iran
University of Science and Technology. His research interests
include middleware, distributed systems and software
engineering. He is a member of Computer Society of Iran.

Ehsan Zaeri Moghaddam received the BS in Software
Engineering from Azad University, Sari Branch, Iran, and the
MS degree in information technology from Iran University of
Science and Technology. His research interests include
semantic web, distributed systems and HCI.

Saeed Parsa received the BS in mathematics and computer
Science from Sharif University of Technology, Iran, and the
MS and PhD degrees in computer science from the University
of Salford at England. He is an associated professor of
computer science at Iran University of Science and
Technology. His research interests include software
engineering, soft computing and algorithms.

AsyncResult resE=AsyncHandler.invoke(

 new WSHandler(endPointURL,operationName,rt));

AFRContainer container=new AFRContainer();

container.add(resD);

container.add(resE);

Object[] obj={resA,container};

AsyncResult resF=AsyncHandler.invoke(

 new WSHandler(endPointURL,operationName,rt),obj);

