
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

202

Manuscript received April 5, 2007

Manuscript revised April 25, 2007

A Study of the Parameters Concerning Load Balancing
Algorithms

Ioannis Psoroulas, Ioannis Anagnostopoulos, Vassili Loumos and Eleftherios Kayafas

National Technical University of Athens,
School of Electrical & Computer Engineering

Department of Communications, Electronics and Information Systems
 Zographou Campus

15773 Athens, Greece

Summary
Computer system performance depends on load balancing which
should concern communication delay, grid topology, workload
and the negotiation protocol. The interactions and
interdependences between these factors and their correlation with
the selected load balancing algorithms are studied in the current
paper. Vital issues are considered and extensively examined
through the systematic introspection and the comparison of two
load balancing algorithms, a static and a dynamic one. The
former is the well-known deterministic Round-Robin, whereas
the latter has been developed for the needs of our research. In
addition, a flexible simulation framework is implemented where
the experiments take place. Appropriate metrics are formulated
so that their joint examination reveals the behaviour of the
system in terms of performance. Performance degradation might
result when high information policy complexity is combined
with important communication overheads. However, system
efficiency can be improved when intense workload is adequately
combined with increased delay. Precision of the system’s state
information is always compensated by the simplicity of the
negotiation protocol. Moreover, the grid’s topology is examined.
Equations, which reveal the dependency of performance and
topology, are derived, through the methodical analysis of
potential load balancing scenarios and they are confirmed by the
experimental results.
Key words:
Load balancing algorithms, Computational Grid, discrete event
simulation

1. Introduction

Several load balancing algorithms have been developed
aiming to improve the performance of a computing system.
Their complexity varies. Some of them are inspired or
conceptually designed according to physical disciplines
[1], [2]. Others are based on adaptive [3], [4] and dynamic
policies [5] or even apply innovative methods such as
partitioning [6]; whereas there are some which are simple
[7] but effective under particular conditions.

Our consideration is focused on the description of main
factors, such as communication delay, topology, workload,
and the complexity of the negotiation protocol [8] (in this
study the negotiation protocol includes all the exchanged
messages), which strongly affect the system’s performance
and consequently determine the issues that an algorithm
should have the capacity for. In the respective research
field, numerous studies have already been published. For
example, Mirchandaney et al. [9] analyze the effects of the
delay on the performance of three algorithms formulating
theoretic models, and Banawan et. al [10] verify its
significant impact. Zhou [11] simulates seven algorithms
and compared their performance in respect of the applied
workload and other vital factors. Eager et al. [12] study
the appropriate level of complexity for load sharing
policies.

Our conclusive results are based on the examination and
the comparison of two algorithms; the classic static
Round-Robin and a dynamic one, the Live Update
Information Algorithm (LUIA) which is accordingly
framed for the current research. We have implemented a
flexible framework where our experiments are performed.
The framework is based on an existing discrete event
simulation platform and supports additional simulation
scenarios since its abstract design and its extensive
external configuration, through an XML file, allows the
user to form in a simple way basic models. Furthermore,
performance metrics such as the mixed processing time,
the execution time and the percentage of idleness have
been formulated in order to evaluate the system’s
behaviour.

The remainder of this paper is organized as follows: In
Section 2 the simulation framework is described. The
basic components are reported along with the state
variables of the system. The principles of modelling the
central processing unit (CPU) are also defined. Section 3
details the used metrics, outlines the performed

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

203

experiments and discusses their results, whereas, Section 4
summarises our work. Finally, Appendices I and II
respectively present the essential classes of the
implemented framework and briefly describe the XML
configuration file, in order to make our work easily
understood.

2. Simulation framework

The study of the examined load-balancing algorithms is
realized by the development of a proper simulation
framework based on the event generation in certain time
points (discrete event simulation) [13], [14], [15]. It is
implemented by using the Java programming language
with the assistance of the core features of the J-Sim
platform [16], and supports the simulation of simple load
balancing algorithms with the following characteristics:
i) They follow centralized policies [17]. A central entity is
responsible for collecting the information about the state
of the system and choosing the most appropriate candidate
for the task assignment.
ii) They do not apply any special selection policy; the
tasks are generated and sequentially dispatched to the
proper processor.
iii) The update of the system’s state information takes
place either by explicit requests of the entity in which this
information resides (Demand-driven policy), or by the
processors in case their states change by a certain degree
(State-change-driven policy) [17], [8].
iv) The location policy is performed via a function, the
efficiency function, which takes into account the features
and the state of the processor (see Appendix I).

A presentation of the fundamental classes of our
framework is laid out in Appendix I. Furthermore,
Appendix II presents a short description of the XML
configuration file by which the parameters of the
simulated system are defined.

2.1 Basic Components

In order to simulate a computing system, the
implementation of at least two vital entities is required; the
processor (or computing unit) and the task. Table 1
outlines the quantities which describe the state of these
entities, comprising the fundamental state variables [15]
of the system, along with those which designate their
features. The latter arise mainly from the model of the
central processing unit (CPU) as it is presented in Section
2.2.

Table 1 - Stare variables (s) and features (f) of the simulated entities
(f)Resource units: The magnitude of the resource of
the processor.
(f)Processing speed: the processing speed, in
arbitrary units.
(f)Topology factor: the “distance” from a reference
point (in current model the reference point is the
entity that is responsible for the task generation), in
arbitrary units. This magnitude results from the
requirement of a general expression for the delay
originating from the communication among the
components of the system.
(f)Delay per topology factor unit: the delay, in
time units, per topology factor unit. It is realized in
order to quantify the topology factor with specific
metric units.
(s)Remaining task units: the task units that remain
to be executed by the processor.
(s)Active tasks: the number of the tasks that are still
being processed.
(s)Completed tasks: the number of the tasks that
has already been processed.

Pr
oc

es
so

r

(s)Rejected tasks: the number of tasks which is
rejected from the processor due to their non-
compliance with its policy.
(f)Task units: the magnitude of a task, in arbitrary
units.
(f)Priority: the execution priority.
(s)Generation time: the time of the generation of
the task.
(s)Arrival time: the time when the task arrives at
the processor.

T
as

k

(s)Completion time: the time when the processor
completes the execution of the task.

2.2 The CPU model

We assumed that the simulation model of the CPU of the
processor complies with the Proportional Share Resource
Allocation policy (a time-shared policy) [18], which is
based on the following statements:
i) The resource is split into discrete quantities which are
bound, for certain time units, to process a task.
ii) For each task, the weight defines the relative percentage
of the resource which is allocated for this task per time
unit.
Thus, if wi represents the weight of the task i, and A(t) the
set of the active tasks at the time t, then fi(t) denotes the
fraction of the resource that is committed for processing
the task i at the time t; as it is expressed by Equation 1.

∑ ∈

=
)(

)(
tAj j

i
i w

w
tf (1)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

204

In case fi(t) remains constant during the time period [t1, t2],
the task i could use the resource for)()(12 tftt i×− time
units. The implementation of this model evinces the need
to define quantities which depict the resource of the
processor, the weight of the task, and its size. Moreover,
an association between the size of the task and the
required percentage of the resource for its completion
should be specified. Therefore, the following definitions
are made:
i) The resource of the processor consists of a set of units,
the resource units.
ii) The magnitude of a task is represented by a set of units,
the task units.
iii) A task allocates the maximum number of available
resource units.
iv) One time unit is the time period which is required by
one resource unit to process one task unit. The
aforementioned relation is valid for the processor, the so-
called baseline processor, which has the processing speed
of one unit.
v) The processing speed is denoted by a positive integer
number which indicates the speed ratio between a
processor and the baseline.
vi) The weight of a task is represented by the priority.

According to the previous analysis and during a random
period of time Δtm in which the number of active tasks in
the processor remains constant, the following equations
are derived. Equation 2 issues the available resource units
cpui for the execution of the task i. It is evaluated by the
ratio of the task’s priority pi over the sum of the priorities
of all the active tasks n, multiplied by the resource units
cpu of the processor. Whereas, Equation 3 calculates the
task units of the task i, m

itu , which are processed during

Δtm. The quantity m
itu is proportional to Δtm, the

processing speed sp of the processor, and the allocated
resource units for the task i.

cpu
p

p
cpu n

j
j

i
i ×=

∑
=1

 (2)

spcputtu im
m
i ××Δ= (3)

The elapsed time between the arrival and the completion
of the task i at the processor (the mixed processing time,

see Section 3.1) is given by the ∑
=

Δ
u

km
mt , where

i

u

km

m
i tutu =∑

=

 and tui the size of the task. In the study by

Gomoluch et al. [19] the CPU is modelled likewise.

3. Experiments

This section presents the results from the simulation of
two load balancing algorithms. The extensive study of the
influence of parameters, such as communication speed and
topology, on the system’s efficiency, discloses valuable
conclusions which could be generalized to any algorithm
which uses similar mechanisms. The examined algorithms
are described as follows:
i) The deterministic Round-Robin algorithm (RR) [7]: RR
does not take into account the state of the system since the
first task is assigned to the first processor and so on. The
exchanged messages are limited to those which are
required for the task dispatching (one message per task).
ii) The LUIA: Our algorithm could be characterized as
centralized [17] since the location and the information
policies are performed by a single entity. It does not abide
by any particular selection policy; the information policy
is sequentially applied to the tasks according to their
generation time, and their processing starts immediately
on their arrivals at the computing units. The most suitable
candidate for the task assignment becomes the one which
is able to complete its remaining task units in the shortest
period of time. This criterion is expressed by the
efficiency function speedtotalLoadf x /= , where
totalLoad and speed are the remaining task units for
processing and the processing speed of the processor
respectively. The required information for the evaluation
of fx, is acquired by explicit requests to the processors by
the entity in which this information resides. Therefore, for
each task, 12 +× n messages are exchanged (n pairs of
request and response, one of each processor, and one
message for the task dispatching).

The task generation is realized by an entity, the generator,
which does not participate in the processing of the tasks.
This entity also applies both the information and location
policy, justifying the titles “informant” and “regulator”
respectively which are additionally used to designate its
functionality in this paper. Furthermore, it is considered to
be the reference point for the construction of the grid, so
the locations of the remaining entities are relative to it.
Figure 1 illustrates LUIA based on the software
components of the simulation framework (see also
Appendix I).

Note that, although a Computational Grid could be
composed by thousand processors, in our simulations it
consists of a few ones only for simplicity reasons, since
the results for the selected topologies, could be
generalized.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

205

3.1 Performance metrics

The subsequent paragraphs present the quantities, the
performance metrics, which we have set in order to
evaluate system performance. Some conclusions deduced
from their study are also included. It is assumed that the
selection policy complies with the nonpreemptive transfer
[20], [21].

The mixed processing time is the elapsed time between
the arrival and the completion of the task at the processor.
It is essentially dependent on the percentage of the
resource units and the time period devoted to each task
execution. For example, if the resource is divided equally
into two tasks, their respective mixed processing times are
twice as much compared with those of in the case these
tasks are processed individually. During this time the
processor is busy, as its resource units are bound to
process the applied workload. The processing time of a
task is the actual time that the processor allocates for its
completion. It is exclusively dependent on the task size
and the processor’s features, since the relations among the
speed, the resource and the task unit are predefined. The
execution time is the elapsed time between the generation
and the completion of the task. For the above metrics, the
respective average metrics over the number of the
completed tasks in a processor are defined as mean mixed
processing, mean processing and mean execution time
(processor-based metrics). The percentage of idleness
(%idle time) is the percentage of the time period over the
simulation time, in which the processor is free of tasks.
Note that the simulation time is denoted as the elapsed
time from the generation of the first task until the
completion of all of them. Figure 2 illustrates the
aforementioned metrics accompanied by some
clarifications. These metrics could be generalized to the
entire system (system-based metrics). For example
the %idle time could be defined as the percentage of the
time that the system is inactive over the simulation time. It
derives from the intersection of the respective idle time
periods of the processors.

The comparison of the mean processing and the mean
mixed processing time designates whether the processor
responds properly or not to the applied workload. A slight
deviation between them signifies that the resource is
distributed to a few tasks, indicating that the performance
of the processor is probably satisfactory. Furthermore, the
combined examination of the mean execution time and the
mean mixed processing time denotes whether the
negotiation protocol converges quickly or not. Finally, a
great value of %idle time possibly indicates that the
processor does not participate significantly in the process.
This metric should be evaluated concerning the completed

tasks since the idleness could be attributed to the high
processing speed. In this case, the potential removal of the
processor could induce the overloading of the system and
consequently, performance degradation.

3.2 Communication speed influence

The communication speed among the entities has an
essential role to the performance of the system, especially
in cases where the negotiation protocol involves the
exchange of great numbers of messages. This is verified
by the comparison of simulation results of the
aforementioned algorithms. The parameters of the
simulated system are included in Table 2. The values of
the delay and the task size vary from 0.01 to 0.1 sec and
85 to 160 task units (t.u.) with increase step 0.01 sec and
15 t.u. respectively.

Table 2 - Simulation parameters

Grid
Number of
Processors

Resource
units
(cpu)

Processing
speed (sp)

Topology
factor (tf)

Delay per
topology

factor unit
(delay)
(in sec)

3 100 1 1
2 100 3 1

0.01...0.1
step: 0.01

Tasks
Task generation

distribution
constant rate: 10 tasks/sec

Task units distribution task units(t.u.): 85...160/step: 15
Priority distribution constant priority: 1

Task generation time 300 sec
Critical simulation parameters:
The selection of the task generation distribution along with
the delay takes place in such a fashion that: in RR, the
execution time of the smallest task in the processor with the
lowest sp is greater than the task inter-arrival time to that
processor.
Assuming that a task of 85 units is processed alone in the
slowest computing unit, its execution time is sec85.0

1100
85

=
×

.

The task inter-arrival time:
(total number of processors) × (task generation rate)-1 =

sec5.01.05 =× . Thereby, the aforementioned condition is
satisfied since 0.85 > 0.5. Otherwise, the system is capable of
processing each task individually and the simulation results
are without purpose.

The curves in Figure 3 illustrate the variation of the mean
execution time with respect to delay per task size, for the
applied algorithms. For example, LUIA(160) denotes the
mean execution time, of the LUIA under the workload of
160 t.u. It should be mentioned that the curves of RR
which illustrate considerably inferior system performance
than the respective ones of LUIA (RR(115) to RR(160)),
are excluded in favour of the figure’s simplicity.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

206

In LUIA, the performance of the system is profoundly
affected by the pending time (PQ) of the tasks in the
generator’s queue until the application of the information
policy. This time is inclusively determined by the quantity
((task generation rate)-1) (SG) and the entailed time in
information assembly (TP). The relation between SG and
TP controls the grid’s behaviour, which is to be examined
presently.

In our model, TP is twice the amount compared with the
time that the informant needs to communicate with the
most distant processor. This occurs since the termination
of the processors’ state retrieval is triggered upon receipt
of the last status message (see Appendix I). SG is 0.1 sec,
and all the processors have a topology factor equal to one
unit, so the value of the delay where the equality TP = SG
takes place is 0.05 sec. This time, called as behaviour
threshold time, it is characteristic of this system, and it is
denoted by tb.

In the case that SG>TP, the generator’s queue is empty.
The information policy is applied directly to a newly
produced task and the appropriate processor is selected in
TP sec. In this scenario, the execution time essentially
depends on the task generation rate, the workload and the
features of the processor, whereas the communication
speed has a secondary role. This behaviour is confirmed in
Figure 3, where for delay < tb, the mean execution times
are virtually the same.

On the contrary, when SG<TP a task is dispatched to the
processor within time greater than TP, since the
information policy is not immediately applied to this task.
In this situation, the efficiency of the system is controlled
by PQ and the applied workload. Low values of PQ and
high workload can improve it, as the delayed arrival of the
tasks at the processors causes an increment of the
available resource units per task. This provokes the
diminution of the mixed processing time and subsequently
the improvement of the execution time. The curves
LUIA(130), LUIA(145) for 0.05<delay<0.07 and
LUIA(160) for 0.05<delay<0.08, are considered
characteristic examples. In the case of low workloads, the
influence of PQ on the reduction of the mixed processing
time is not significant, since the processors are already
capable of processing them quickly enough. The
performance is mainly controlled by PQ causing its
degradation as LUIA(85) depicts. There are also some
cases where a balance between the mixed processing time
and PQ is achieved, so that the mean execution time will
remain finally constant (LUIA(100), 0.05<delay<0.07).
Nevertheless, high values of PQ, irrespective of workload,
cause the deterioration of system efficiency since TP is the
dominant stage of the whole procedure; an example

comprises the whole series of the LUIA, for delay > 0.07
sec, where all the curves eventually assimilate into a single
one. Furthermore, the following conclusions can be
deducted.

In a static algorithm, like RR, the mean execution time is
not affected by the communication speed, since there are
no message exchanges among the processors.

In systems where the decisions are accomplished by
exchanging large numbers of messages, the influence of
communication speed on their performance is decisive.
LUIA(145) shows that an increase of the delay by 0.01 sec
could cause a change in the percentage of the average
execution time, up to 32% approximately.

A dynamic algorithm may have considerably better
performance than a static one apart form the cases where
the communication overhead has a negative impact on the
progress of the negotiation protocol. For example, LUIA
outperforms RR, with the exception of some regions of the
LUIA(85) where the high delay (delay>0.8) and the low
workload give an advantage to RR. Eager et al. [12] have
also concluded that extremely simple load sharing policies
perform virtually as well as complex ones which utilize
more system information.

Finally, it should be mentioned that the increased delay
can enhance system efficiency under high workload, an
observation which has also been verified in a previous
study [9]. This becomes evident in Figure 3 where the
curves LUIA(115) to LUIA(160) display that the
minimum values of the average execution time reside in
the region in which the delay has a dominant influence on
the system’s performance (delay > tb).

3.3 Topology influence

Topology is regarded as one of the utmost important
factors since it could strongly affect grid performance. A
measure of its impact can be the convergence of the
location policy resolutions (with respect to diverse
topologies), provoked by the elimination of the out-of-date
state information (or stale information) problem [17], [22].
This aspect is accordingly clarified in the subsequent
sections.

In our experiments, the grid which is considered has two
groups of processors at its disposal. The group of high and
low speed, which in short are called VPCs(high) and
VPCs(low) respectively. The difference between them is
spotted in the processing speed. The processors of
VPCs(high) have greater speed than those of VPCs(low).
The examined topologies are two. The first one brings

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

207

VPCs(high) to a comparatively shorter distance from the
regulator than VPCs(low), and is called near layout (NL),
whereas the other, which is called far layout (FL), works
the opposite way. For each topology, two experimental
series are carried out applying the LUIA algorithm. The
difference between them lies in the absence or presence of
the out-of-date state information problem by accordingly
introducing the proper correction factor in the efficiency
function.

3.3.1 Correction factor evaluation

In LUIA the deviation between the real state of the system
and the state where the decisions of the location policy are
derived from, is attributed to the time difference between
the record and the use of the required information for that
decision making. In the ideal scenario where the regulator
acknowledges the state of every single processor the
moment that a task arrives there, the decisions are based
on accurate information. This scenario is accomplished by
calculating the divergence, ΔStatus, between the
processor’s state at the time when it receives the request
for recording it, and that when the arrival of the task takes
place there.

In our model, the estimation of Δstatus is realized by the
evaluation of the difference of the remaining task units,
since this is the only state variable that takes part in the
efficiency function. For each processor, let VPCx, ΔStatusx
is formed cumulatively in the following three time periods.
The quantities tfx and delay denote the topology factor and
the delay per topology factor unit of VPCx respectively.
i) Response time (tresp(x)). It represents the time period that
VPCx requires to send a status message to the informant.
The evaluation of this quantity is performed by the
product of tfx, and delay, as it is expressed by Equation 4.

delaytft xxresp ×=)((4)

ii) Pending time (tpend(x)). It defines the time period that the
VPCx’s status message suspends in the informant until the
completion of information retrieval procedure. This
procedure, the duration of which is expressed by the
Equation 5, is terminated with the reception of the last
status message by the informant, which inevitably comes
from the most distant processor, VPCmax.

delaytftassem ××= max2 (5)
Equation 5 derives from Equation 6 which expresses the
required time, tassem(x), for the informant to acquire the
information of the VPCx. It is represented by the sum of
the time period, treq(x), which the informant’s request for a
status message requires to arrive at VPCx, and the time
period tresp(x) that the VPCx’s reply needs to get into the
informant.

delaytft xxassem ××= 2)((6)

Finally, the pending time tpend(x) equals to the subtraction of
the time period that informant needs to gather the
information of the VPCx from which it is required to form
the system state on the whole. Thereby, the combination of
Equations (5) and (6), results in Equation 7.

)(2 max)(xxpend tftfdelayt −××= (7)

iii) Sending time (tsend(x)), which represents the requisite
time period for a task to arrive from the regulator to the
VPCx, and it is expressed by Equation 8.

delaytft xxsend ×=)((8)

Thus, the task units that are completed from VPCx during
the time period)()()(xsendxpendxresp ttt ++ , express

ΔStatusx (Equation 9). This quantity represents the
correction factor that should be taken into account for the
evaluation of the remaining task units of the VPCx.

xspxcputfdelay
xspxcpuxsendtxpendtxresptxStatus

××××=

××++=Δ

max2

))()()((
 (9)

where cpux and spx, represent the resource units and the
processing speed of the processor VPCx respectively.

Assuming that t1 is the time when a VPCx receives the
informant’s request for recording and dispatching a
message with its state to it, and TUs(t1) is the remaining
task units of the VPCx, the reported value TUSr is
expressed by Equation 10.

xr StatustTUstTUs Δ−=)()(11 (10)

3.3.2 Decision differentiation

The research of the cases under which the result of the
comparison between two processor units (VPC1 and
VPC2) depends on the applying efficiency function, leads
to the detection of the system’s decisions convergence due
to the insertion of the correction factor. In our experiments,
the quantification of a VPCi’s efficiency, fxi(t), at the time
point t, is performed by Equation 11.

i

i
i sp

tTUs
tfx

)(
)(= (11)

where TUsi(t) and spi, signify the remaining workload and
the processing speed of the processor VPCi respectively.
The evaluation of the above relation enacts virtually a
metric of the time that VPCi needs to accomplish TUsi task
units. The combination of Equations 9, 10 and 11 results
in Equation 12 expressing the efficiency function, fxci,
which encapsulates the correction factor.

Si
i

iii

i

ii
i

Ctfx
sp

spcputfdelaytTUs
sp

StatustTUs
tfxc

−=
××××−

=

Δ−
=

)(
2)(

)(
)(

max
(12)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

208

Considering that all processors have identical resource
units, then cputfdelayCS ×××= max2 .

To determine when the variation in location policy
decisions occurs, let fxc1, fx1 and fxc2, fx2 be the efficiency
functions with and without the correction factor, for the
processors VPC1 and VPC2 respectively, and let us
consider the following statements:
i) According to location policy, the most proper processor
for the task assignment is considered to be that with
smaller fxi, whereas, in the case of equality the one with
the higher processing speed is chosen.
ii) Zero value of the fxi or fxci indicates a processor which
is in idle state.
iii) The relation Si Cfx < (0=ifxc) affirms that VPCi
gets to the idle state at best for the remaining time
(commencing from the time that VPCi receives the request
for sending a status message to the informant) which is
necessary for the completion of the information and
location policy.
iv) The inequality 21 fxfx < denotes that the execution
time of the remaining workload of VPC1 is less than that
of VPC2 (VPC1 comes to idle state faster than the VPC2,
when the relation 021 == fxcfxc holds additionally).
The variation in location policy decisions occurs
when SCfxfx << 21 (021 == fxcfxc) and the compared
processors differ in processing speed. Indeed, presuming
that VPC1 has lower processing speed than VPC2, the use
of fxi entitles VPC1 as the most convenient candidate
(since 21 fxfx <), whereas the application of fxci inducts
VPC2 (since the processors are idle and 12 spsp > , where
sp1 and sp2 are the processing speeds of VPC1 and VPC2
respectively).

In conclusion, when the correction factor is present, the
system tends to allocate more tasks to the high speed
processors, as compared to those allocated during its
absence.

3.3.3 Cost Evaluation

It was proved that the differentiation of the decisions, with
the use of fxc instead of fx, has as a direct outcome the
assignment of additional tasks to VPCs(high). The
following paragraphs demonstrate how this divergent
behaviour, namely the case where the location policy
delegates the task to an idle low speed processor (VPC1)
instead of an idle high speed processor (VPC2), affects the
system’s performance concerning the topology. These
alternative behaviours are illustrated in Figure 4.

The influence of the decision differentiation, in the way of
cost or benefit to the grid’s performance, could be
represented by Equation 13.

type)execution(ype)topology(tcost(type) += (13)
where type defines the corresponding topology, near and
far, for NL and FL respectively. The quantity cost(type) is
the total cost/benefit, and topology(type) is the cost/benefit
due to the topology. The latter is expressed by the task
units that could have been processed or are processed by
the processor as a consequent effect of its location in the
grid. The term execution(type) designates the execution
cost that emerges from processing a task in the low speed
processor. It is assumed that in cases where the above
quantities express benefit, their values are negative.
Equation 13, the so-called cost layout function, serves as
an indicator of the system’s behaviour and is used to
interpret the experimental results.

Concerning the NL, Equation 13 converts into 14

)(
)(2122

nearexecution
tftfdelayspcpucost(near)

+
−×××= (14)

where)tf(tfdelayspcpuear)topology(n 2122 −×××= and
21 tftf > . The term topology(near) depicts the task units

that could have been processed by VPC2 during its transfer
to VPC1, and consequently represents cost. The term
execution(near) also expresses cost since the task is
executed in the low speed processor.
Similarly, Equation 15 expresses the cost layout function
for the FL.

)(
)()(1211

farexecution
tftfdelayspcpufarcost

+
−×××−= (15)

where)tf(tfdelayspcpuar)topology(f 1211 −×××−= and

21 tftf < . An imminent task dispatching to VPC2 would
have as a consequence the deprivation of processing time
equal to)tf-(tfdelay 12× time units in VPC1. Therefore,
topology(far) represents benefit. The term execution(far)
reflects cost as long as the task is executed in VPC1. In FL
the system behaviour is diverse. In the case
that)(far executionar)topology(f > , the quantity cost(far) is
negative. Consequently, the task is better executed in
VPC1, since the profit that could be obtained from the task
completion in VPC2 is scattered away by the time loss due
to its transfer.

The above study demonstrates that topology is one of the
uppermost factors that should be taken into account by a
location policy. For instance, in cases where the decisions
are made among idle processors with different processing
speeds, the efficiency of LUIA algorithm (which does not
consider the topology) would be improved if it took also
into account the outcome of equations which are akin to
Equations 14 and 15 (and does not simply choose the one

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

209

with the higher processing speed). On the contrary, when
the processors have identical speeds, the system
performance would be improved if the processor with the
smaller topology factor was chosen.

3.3.4 Results

In this section, the aforementioned considerations are
confirmed by the simulation of LUIA in a grid which its
parameters are depicted in Table 3.

Table 3 - Simulation parameters
Grid

Number of
Processors

Resource
units
(cpu)

Processing
speed (sp)

Topology
factor (tf)

Delay per
topology

factor unit
(delay)
 (in sec)

3 100 1 1/0

3 100 2 0/1
0.01...0.115
step: 0.005

Tasks

Task generation
distribution

constant rate: 10 tasks/sec

Task units
distribution

task units (t.u.): 70

Priority distribution constant priority 1
Task generation time 300 sec

Critical simulation parameters:
The decision differentiation (fx1<fx2<CS.) is reinforced by the
proper adjustment of the workload. It is regulated so that the task
assignment in VPCs(low) may take place marginally. This
occurs when the execution time (tex) of a task in a high speed
processor, is approximately equal to the sum of the time which is
required for its potential re-election for a task assignment
(treassign), and the necessary time (tsend) for transferring a task
from the generator to the processor. Since VPCs(low) in this
borderline situation is not included in the possible choices of
location policy, the computation of the re-election time is based
on VPCs(high). According to the former considerations, it is
deduced that:

sec3.031.0
)(

)(1

=×=
×

= −

processors speedhigh of number

rate generation tasktreassign

and
05.0005.0)10(or or delaytftsend =×=×=

The execution time of 70 task units equals

to sec35.0
2100

7070
=

×
=

×
=

spcpu
tex . Thereby,

exsendreassign ttt ≅+ indicating that a task of 70 task units is

appropriate for performing the experiments.

The grid consists of two groups of processors, VPCs(low)
and VPCs(high), which interchange in order to form the
desired topologies, the NL and FL. For each topology a

series of experiments is carried out, where the value of the
delay ranges from 0.01 to 0.115 sec, with increase step
0.005 sec. The results of the simulation are depicted in
Figures 5, 6, 7 and 8 where the following naming
conventions are adopted. The terms fx, and fxc refer to
experiments which were performed with the application of
fx and fxc. The terms near, and far denote the topology of
the grid, NL and FL, while low, and high are used to
classify the group of low and high speed processors
respectively.

Figure 5 illustrates the variation of the mean execution
time over the delay, for both topologies and the applied
efficiency functions. The delay is confined to the range
[0.01, 0.05) since for values grater than 0.05, the
execution times are essentially determined by the pending
time of the tasks in generator’s queue. Hence, the effect of
the correction factor on the grid’s efficiency is not
distinctive. According to this figure, the following
observations are made.

The divergence of curves fx-near and fxc-near increases
with the augmentation of the delay. This behaviour
complies with the description of Equation 14 since in NL,
the choice of an idle low speed instead of high speed
processor, always leads to a proportional reduction in the
system’s performance with respect to delay.

In FL, the examination of curves fx-far and fxc-far
discloses that for delay<0.035 the mean execution times
of the tasks which result from the application of fxc are
better than the ones which derive from the fx usage. For
the specific range of delay, the absolute value of the
topology(far) factor is smaller than execution(far)
indicating that the decision differentiation between fx and
fxc has negative impact on the system’s performance. The
reduction of the divergence between the aforesaid curves
while delay is enlarging is interpreted by the decrement of
the difference between the quantities topology(far) and
execution(far), since topology(far) proportionally
increases with delay, as it is expressed by Equation 15. For
the marginal value of delay, 0.035 sec,
where)farexecution()fartopology(≅ , the system’s
performance is independent of the applied efficiency
function, and the respective mean execution times are
virtually the same.

The deviation between the curves fx-near and fxc-near is
greater than the respective one of fx-far and fxc-far. This
is an anticipatory behaviour, as in NL the decision
differentiation has stronger impact on the system
efficiency than in FL ()()(farcostnearcost >).
Figures 6 and 7 depict the variation of the average number
of completed tasks and the average percentage of idleness

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

210

per processor group, over the delay, for the applied
topologies and efficiency functions. The examination of
these figures leads to the following conclusions.

The insertion of the correction factor in fx induces the
diminution of the completed tasks; and consequently an
increase in the percentage of the idleness of VPCs(low),
regardless of topology, takes place. Considering that the
total number of completed tasks remains constant, the
above change provokes a reverse one of the respective
quantities of VPCs(high). This is a presumed behaviour
since fxc forces the system to assign more tasks to
VPCs(high) than fx does.

The deviations of the curves fx-near-low, fxc-near-low
and fx-near-high, fxc-near-high, for the variations of the
completed tasks and the percentage of the idleness, are
greater than the respective ones of the FL. This grounds as
the influence of the decision differentiation on system’s
behaviour is greater in NL.

The out-of-date state information also plays a significant
role in the configuration of the grid. Concerning Figure 7,
for delay=0.075, the average values of the percentage
idleness indicated by the curves fx-near-low and fxc-near-
low are 62% and 96% respectively. Computing units with
a high percentage of idleness are feasibly withdrawn from
the system without any considerable change in its
performance. Thereby, the application of fxc gives the
choice of removing or using those processors in a different
activity.

Figure 8 describes the variation of the mean execution
time per processor group versus the delay, for fx and fxc,
in NL. It is noted that the aforementioned variation is
limited to the delay<0.05, whereas for higher values, the
contribution of the decision differentiation to the mean
execution time is negligible. This figure reveals that the
diminution of the mean execution time with the insertion
of the correction factor is essentially provoked by the
decrease in the mean execution time of the VPCs(low),
since the deviation of the curves fx-near-low and fxc-near-
low is considerably greater than the respective one of fx-
near-high and fxc-near-high. Considering that fxc
provokes a kind of task transfers from VPCs(low) to
VPCs(high), it is deduced that VPCs(low) appears to be
more susceptible to the changes of the workload. It is clear
that the cost of an imminent increase of tasks in
VPCs(high) is less than the corresponding benefit which is
achieved by their disposal of VPCs(low).

4. Summary-Conclusions

In the current work, a flexible simulation framework for
the examination of certain types of load balancing
algorithms is implemented and performance metrics are
formulated. The interpretation of the experimental results
of two algorithms, a classic static (RR) and a dynamic
(LUIA) reveal the following points.

The communication delay and the workload can be
regarded as two of the utmost issues that affect system
performance, since they regulate and dictate directly or
indirectly its behaviour. An algorithm should accordingly
adjust its policies preserving high efficiency. For example,
an algorithm resulting from the combination of LUIA and
RR could operate better than either one individually.

The communication overhead emerging from the
application of complex policies with the aim of ensuring
up-to-date information, can eventually lead to adverse
effects. A simple static algorithm, like RR, could be
proved more effective than a dynamic one. Therefore,
there is a compelling need to balance the cost of the
acquisition and the accuracy of the information on which
the decisions of an algorithm are based. Nevertheless, it
appears that increased delay could benefit the system’s
efficiency under high workload.

Equations 14 and 15 confirm the interdependence between
the topology and the performance of the system. It is
shown that an algorithm should consider not only the state
and the features of the processors, but also their relative
positions in the grid.

The out-of-date state information problem should be
appropriately dealt with since it provokes deficiency in the
utilization of the system. For example, processors that
could have been idle are instead occupied, depriving the
capability of their use in a different activity.

Under the particular conditions of NL, it has been proven
that disposing workload from processors with low
processing speed, and allocating it to those with
comparatively higher processing speed improves the
system’s performance.

Appendix I

In the following paragraphs, some of the most important
classes are described in order for an overview of the
system architecture to be formed.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

211

VPC represents the processor (VirtualPC) and implements
the CPU model. It reacts to three types of messages: one
that represents a task (VTask), another being the message
that holds the state of the processor (StatusMessage), and
the third internally used for indicating the completion of a
task. VPC uses StatusMessage to inform InfoCenter about
its state. StatusMessage is dispatched by an explicit
request from InfoCenter or by the percent variation of the
processor’s state variables over or below a specific
threshold. Both the state variables and the threshold could
be accordingly defined in the XML configuration file.

InfoCenter represents the entity which is dedicated to
preserving a list with the states (state list) of the processors
so that TaskGenerator can make the selection of the most
appropriate one for the task assignment. It has two
operational modes designating the two information
policies (defined in the XML configuration file):
a) the LIVE_MODE where the decisions are based on the
state of the system at the time when the request for the
grid’s information retrieval takes place. In this case,
InfoCenter dispatches requests for receiving the status
messages of all the processors. The evaluation of the best
is performed when all the responses are received
b) the NO_LIVE_MODE where the decisions are realized
according to the information that has already been stored
in the state list.

TaskGenerator is responsible for the task generation and
the task assignment. The task generation distribution is
customized via the XML configuration file.

WMessage is the base class of the message hierarchy. It
encapsulates the important events occuring during its life
cycle (creation, destruction, departure and arrival at the
various components), providing valuable information for
the simulation progress.

VTask represents the task. Its life cycle consists of the
following stages in order:
a) the generation stage, in which the task generation takes
place
b) the processing stage, where the task has partially been
completed
c) the completion stage, where the task has been
completed.

StatusMessage realizes the message (status message),
which contains the vital information (such as the active
tasks, remaining task units for processing) about the state
of a processor. The state list resides in the InfoCenter and
actually consists of these kinds of messages.
StatusMessage implements the method (efficiency
function), which dictates the selection of the most

appropriate candidate for the task assignment, ordering the
status messages in the state list. The efficiency function is
currently expressed by Equation 16.

topoFactortopoCoef
speedspCoef

nTasksntCoeftotalLoadtLCoeffx

×+
×

××
=

)/()(
 (16)

where totalLoad, nTasks, speed and topoFactor are the
remaining task units for processing, the number of active
tasks, the processing speed and the topology factor
respectively. The coefficients spCoef, topoCoef, tLCoef
and ntCoef, and the implementation method are declared
in the XML configuration file.
The application of the efficiency function comprises the
default location policy. The user can externally either
modify it or utilize his own policies by appropriately
defining them in the processor selectors section (see
Appendix II).

Appendix II

The simulation is dictated by an XML file (an example is
depicted in Figure 9). This file consists of four sections,
each of which is responsible for a particular configuration.
A short description of these sections follows:

Processors section. This area describes the processors.
The user could easily modify the features of a processor
by assigning the desirable value in the appropriate
attribute of the XML element. For example, the processing
speed, the resource units, and the topology factor are
housed in the “speed”, “cpu_power”, “topology_factor”
attributes respectively. In addition, there are attributes
which contain information about the processor’s
behaviour and the applied policies. For example, a positive
value of the attribute “above_notify_thres” defines the
threshold of the percent variation of the state variable (the
remaining workload or the number of active tasks), above
which the processor sends a status message to InfoCenter,
whereas a negative value deactivates the aforementioned
procedure.

Task inter-arrival section. The methods used for the
estimation of the task generation distribution are described
in this section. The user should accordingly define the
implementation class and the method name as values of
the attributes “class_name” and “method_name”
respectively of the element “arrival_gen_functions”.
Moreover, there is the capability of declaring an array of
parameters, in the form of name/values pairs, which could
be invoked and utilized inside the method.

Processor selectors section. The methods used for the
selection of the proper processor for the task assignment

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

212

TaskGenerator
VTask

InfoCenter
Apply the information

policy

ArrivalFuncs

Dictates the
location policy

Designates the
task generation

distribution

Retrieve the best VPC

VPC1
VPC2
VPC3

…
VPCn

state list

SMComparator

Holds the VPCs’ status
messages

Determines the order of the
status messages in the state

list according to the efficiency
function

VPC1

VPC2 VPC3

VPCn

InfoCenter requests for
retrieving the status

messages of all the VPC

request

request
request

request

response

response
response

response

VPCs dispatch their status
messages

Apply the location
policy

VTask

t0

t1

t2 t3

t4t5

t6

t0 – t6 : time points where the various events take place (ti < ti+1)

SelectionFuncs

Task dispatching

TaskGeneratorTaskGenerator
VTaskVTask

InfoCenterInfoCenter
Apply the information

policy

ArrivalFuncsArrivalFuncs

Dictates the
location policy

Designates the
task generation

distribution

Retrieve the best VPC

VPC1
VPC2
VPC3

…
VPCn

state list

SMComparatorSMComparator

Holds the VPCs’ status
messages

Determines the order of the
status messages in the state

list according to the efficiency
function

VPC1

VPC2 VPC3

VPCn

InfoCenter requests for
retrieving the status

messages of all the VPC

requestrequest

requestrequest
requestrequest

requestrequest

responseresponse

responseresponse
responseresponse

responseresponse

VPCs dispatch their status
messages

Apply the location
policy

VTaskVTask

t0

t1

t2 t3

t4t5

t6

t0 – t6 : time points where the various events take place (ti < ti+1)

SelectionFuncs

Task dispatching

tg1 ta1 tc1Task#1

Task#3

tg2Task#2
ta2 tc2

tg3 ta3 tc3

Task#4
tg4 ta4 tc4

ts

Task#(n-1)

Task#n

tg(n-1) ta(n-1) tc(n-1)

tgn tan tcn

processor is idle

t

The execution timetei = tci – tgi

The processing time of a task i with
size tui in a processor with resource
units cpu and processing speed sp

tpi = tui/(cpu x sp)

The mixed processing timetmi = tci - tai

The completion timetci

The arrival timetai

The generation timetgi

Fundamental times/ Metrics for a task i

Mean execution
time

Mean mixed
processing time

Simulation timetS

Percentage
of idleness

Mean metrics for Processor

1001 ×
∑
=

s

m

j
j

t

idle

n

tm
n

i
i∑

=1

mixed processing time

processor is busy

execution time

idlej

n

te
n

i
i∑

=1

tg1 ta1 tc1Task#1

Task#3

tg2Task#2
ta2 tc2

tg3 ta3 tc3

Task#4
tg4 ta4 tc4

ts

Task#(n-1)

Task#n

tg(n-1) ta(n-1) tc(n-1)

tgn tan tcn

processor is idle

t

The execution timetei = tci – tgi

The processing time of a task i with
size tui in a processor with resource
units cpu and processing speed sp

tpi = tui/(cpu x sp)

The mixed processing timetmi = tci - tai

The completion timetci

The arrival timetai

The generation timetgi

Fundamental times/ Metrics for a task i

Mean execution
time

Mean mixed
processing time

Simulation timetS

Percentage
of idleness

Mean metrics for Processor

1001 ×
∑
=

s

m

j
j

t

idle

n

tm
n

i
i∑

=1

mixed processing time

processor is busy

execution time

idlej

n

te
n

i
i∑

=1

are defined here. Its descriptive rules are similar to task
inter arrival section.

Tasks section. The features of the generated tasks (task
units and priority) are described in this area either directly
by assigning the value, or indirectly by indicating the
implementation class and the method which returns its
value.

References
[1] Frank C. H. LIN and Robert M. Keller, “The Gradient Model Load

Balancing Method”, IEEE transactions on software engineering vol.
SE-13, No. 1, January 1987.

[2] Hans-Ulrich Heiss and Michael Schmitz, “Decentralized Dynamic
Load Balancing: The Particles Approach”, Information Sciences vol.
84, issue 1&2, 1995, pp. 115-128.

[3] Phillip Krueger and Niranjan G. Shivaratri, “Adaptive Location
Policies for Global Scheduling”, IEEE Transactions on Software
Engineering, vol. 20, no. 6, June 1994, pp. 432-444.

[4] Chin LU and Sau-Ming LAU, “An Adaptive Load Balancing
Algorithm for Heterogeneous Distributed Systems with Multiple
Task Classes”, IEEE Proceedings of the 16th International
Conference on Distributed Computing Systems, 1996, pp. 629 –636.

[5] Hwa-Chun Lin and C.S. Raghavendra, “A Dynamic Load-
Balancing Policy With a Central Job Dispatcher (LBC)”, IEEE
Transactions on Software Engineering, vol. 18, no. 2, February
1992, pp. 148-158.

[6] Gurdeep S. Hura, Sheeja Mohan and T. Srikanthan, “On Load
Sharing in Distributed Systems: A Novel Approach”, Transactions
of the SDPS, March 2002, Vol. 6, No. 1, pp. 59-81.

[7] Philip J. Rasch, “A Queuing Theory Study of Round-Robin
Scheduling of Time-Shared Computer Systems”, Journal of the
ACM, vol. 17, no.1 , pp. 131-145, January 1970.

[8] Orly Kremien and Jeff Kramer, “Methodical Analysis of Adaptive
Load Sharing Algorithms”, IEEE Transactions on Parallel and
Distributed Systems, Vol. 3 , No. 6, 1992, pp 747-760.

[9] R. Mirchandaney, D., Towsley and J. A. Stankovic, “Analysis of
the effect of delays on load sharing”, IEEE Transactions on
Computers, vol. C-38, no. 11, November 1989, pp. 1513-1525.

[10] Sayed A. Banawan and Nidal M. Zeidat, “A Comparative Study of
Load Sharing in Heterogeneous Multicomputer Systems”, IEEE
Conference Proceedings of the 25th Annual Simulation Symposium,
April 1992, pp. 22-31.

[11] Songnian Zhou, “A Trace-Driven Simulation Study of Dynamic
Load Balancing”, IEEE Transactions on Software Engineering, vol.
14, no.9, 1988, pp. 1327-1341.

[12] D. L. Eager, E. D. Lazowska and J. Zahorjan, “Adaptive Load
Sharing in Homogeneous Distributed Systems”, IEEE Transactions
on Software Engineering, vol. SE-12, no. 5, May 1986, pp. 662-675.

[13] Thomas J. Schriber and Daniel T. Brunner, “Inside Discrete-Event
Simulation Software: How it Works and Why it Matters”,
Proceedings of the 2005 Winter Simulation Conference, pp.167-177.

[14] Harry Perros, “Computer Simulation Techniques: The definitive
introduction!”, Computer Science Department NC State University,
Raleigh, 2003, pp. 1-19.

[15] Richard M. Fujimoto, “Parallel and Distributed Simulation
Systems”, Wiley-Interscience, United States of America, 2000,
ISBN: 0-471-18383-0, pp. 27-48.

[16] Hung-ying Tyan, “Design, Realization And Evaluation Of A
Component-Based Compositional Software Architecture For
Network Simulation”, Phd thesis, Ohio State University, USA, URL
http://www.j-sim.org/, 2002.

[17] Niranjan G. Shivaratri, Phillip Krueger, and Mukesh Singhal, “Load
Distributing for Locally Distributed Systems”, IEEE Computer,
December 1992, pp. 33-44.

[18] Kevin Jeffay, F. Donelson Smith, Arun Moorthy, James Anderson,
“Proportional Share Scheduling of Operating System Services for
Real-Time Applications”, in Proceedings of the 19th IEEE Real-
Time System Symposium, Madrid, Spain, December 1998, pp. 480-
491.

[19] Jacek Gomoluch and Michael Schroeder, “Market-based Resource
Allocation for Grid Computing: A Model and Simualtion”, 1st
International Workshop on Middleware for Grid Computing
(MGC2003), Rio de Janeiro, Brazil, June 2003.

[20] Phillip Krueger and Miron Livny, “A Comparison of Preemptive
and Non-Preemptive Load Distributing”, in 8th International
Conference on Distributed Computing Systems, June 1988, pp. 123-
130.

[21] M. Harchol-Balter and A. B. Downey, “Exploiting Process Lifetime
Distributions for Dynamic Load Balancing”, ACM Transactions on
Computer Systems, 1996.

[22] M. Mitzenmacher, “How Useful Is Old Information”, IEEE
Transactions on Parallel and Distributed Systems, vol. 11, no. 1, Jan.
2000.

List of Figures

Figure 1 - The software component based behaviour of LUIA.

Figure 2 - performance metrics.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

213

0

50

100

150

200

250

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

delay, sec

m
ea

n
ex

ec
ut

io
n

tim
e,

 s
ec Round-Robin(85)

LUIA(85)

Round-Robin(100)

LUIA(100)

LUIA(115)

LUIA(130)

LUIA(145)

LUIA(160)

Behavior Threshold

t b

VPC1
regulator

VPC2

time

idle

idle

VPC1regulator
VPC2

idle

idle

FL

NL

During this period the
topology(type) factor takes effectVPC2 becomes idle

later than VPC1

During this period,
VPC1 becomes idle

float point

steady point
relative to point 1

During this period,
VPC2 becomes idle

1

2

steady point
relative to point 2

VPC1
regulator

VPC2

time

idle

idle

VPC1regulator
VPC2

idle

idle

FL

NL

During this period the
topology(type) factor takes effectVPC2 becomes idle

later than VPC1

During this period,
VPC1 becomes idle

float point

steady point
relative to point 1

During this period,
VPC2 becomes idle

1

2

steady point
relative to point 2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

delay, sec

m
ea

n
ex

ec
ut

io
n

tim
e,

 s
ec

fx-near

fxc-near

fx-far

fxc-far

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

delay, sec

m
ea

n
ex

ec
ut

io
n

tim
e,

 s
ec

fx-near-low

fxc-near-low

fx-near-high

fxc-near-high

0

300

600

900

1200

1500

1800

2100

2400

2700

3000

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

delay, sec

av
er

ag
e

co
m

pl
et

ed
 ta

sk
s

fx-near-low

fxc-near-low

fx-near-high

fxc-near-high

fx-far-low

fxc-far-low

fx-far-high

fxc-far-high

0

10

20

30

40

50

60

70

80

90

100

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

delay, sec

av
er

ag
e

%
id

le fx-near-low

fxc-near-low

fx-near-high

fxc-near-high

fx-far-low

fxc-far-low

fx-far-high

fxc-far-high

Figure 3 – Mean execution time versus delay and workload, for the

applied algorithms.

Figure 4 - The states of the processors during the decision differentiation.

Figure 5 – Mean execution time versus delay.

Figure 6 – Average number of completed tasks per processor group,

versus delay.

Figure 7 – Average of the percentage of idleness per processor group,

versus delay.

Figure 8 - Mean execution time per processor group, versus delay.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

214

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configuration SYSTEM "config.dtd">
<configuration>

<description>The configuration file for the creation of VPCs grid</description>

<vpcs description="VPCS template">
<vpc id="vpc1" replicate=“2" speed="1" cpu_power="100" topology_factor="1"/>
<vpc id="vpc2" replicate=“3" speed=“2" cpu_power="100" topology_factor=“3"/>
<rest_info cpu_thres="0." above_notify_thres="-0.1" mdelay_per_tf="0."/>

</vpcs>

<arrival_gen_functions description="function of tasks inter arrival">
<fun_ar description="const_interval" class_name="vpcs.ArrivalFuncs" method_name="constIntervalFunc"

is_enable="true">
<param description="interval" val="0.05"/>
<task id=“taskv1”>

</fun_ar>
</arrival_gen_functions>

<comp_sel_functions description="function of VPC selection">
<fun_sel description="efficiency" class_name="vpcs.SelectionFuncs" method_name="effLiveUpdBasedSelection"

is_enable="true">
<param description="speed_cf" val="1"/>
<param description="topology_cf" val="0"/>
<param description="tload_cf" val="-1"/>
<param description="ntasks" val="0"/>

</fun_sel>
</comp_sel_functions>

<tasks>
<task id="taskv1" tunits="110" priority="1"/>

</tasks>

</configuration>

Figure 9 – XML configuration file.

Ioannis D. Psoroulas was born in Athens, Greece in 1972. He
received his Chemical Engineering Diploma from the National
University of Athens (NTUA) in 1998. Since 2002 has been a
PhD candidate in the Communications, Electronics &
Information Systems department, division of Electrical and
Computer Engineering of the NTUA. His research interests are
in the fields of Simulation Systems, Grid Computing, Internet
Technologies, and Multimedia Systems and Software.

Ioannis E. Anagnostopoulos was born in Athens, Greece in
1975. He received his Electrical and Computer Engineering
Diploma from the University of Patras in 1998, and his Ph.D.
from the School of Electrical and Computer Engineering of the
National Technical University of Athens (NTUA) in 2004. In
2004, he joined the University of the Aegean as a visiting
lecturer at the Department of Information and Communication
Systems Engineering. His research interests are in the fields of
Internet Technologies, Web Information Management,
Communication Networks, and Multimedia Systems and
Software.
Vassili Loumos received the Diploma of Electrical Engineering
and the PhD degree in Computer Science from the National
Technical University of Athens (NTUA), Greece. At present, he
is a Professor at the NTUA, teaching Multimedia Technologies
and Computer Graphics. His research and development activities
focus on the fields of Image Processing and Computer Vision,
Internet Technologies and Applications, and Computer Networks.

Eleftherios Kayafas received his B.Sc. degree from Athens
University in 1970, and the M.Sc. and Ph.D. degrees in electrical
engineering from the University of Salford, England, in 1975 and
1978, respectively. In 1979 he joined the National Technical
University of Athens (NTUA) as Lecturer in the Electrical
Engineering Department, then Asst. Professor (1987), Associate
Professor (1992) and finally Professor of Applied Electronics
(1996). His research interests are applied electronics, multimedia
applications and multimedia communication systems. He has

published more than 140 papers in journals and conferences, in
the above subjects.

