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Summary 
Computer system performance depends on load balancing which 
should concern communication delay, grid topology, workload 
and the negotiation protocol. The interactions and 
interdependences between these factors and their correlation with 
the selected load balancing algorithms are studied in the current 
paper. Vital issues are considered and extensively examined 
through the systematic introspection and the comparison of two 
load balancing algorithms, a static and a dynamic one. The 
former is the well-known deterministic Round-Robin, whereas 
the latter has been developed for the needs of our research. In 
addition, a flexible simulation framework is implemented where 
the experiments take place. Appropriate metrics are formulated 
so that their joint examination reveals the behaviour of the 
system in terms of performance. Performance degradation might 
result when high information policy complexity is combined 
with important communication overheads. However, system 
efficiency can be improved when intense workload is adequately 
combined with increased delay. Precision of the system’s state 
information is always compensated by the simplicity of the 
negotiation protocol. Moreover, the grid’s topology is examined. 
Equations, which reveal the dependency of performance and 
topology, are derived, through the methodical analysis of 
potential load balancing scenarios and they are confirmed by the 
experimental results. 
Key words: 
Load balancing algorithms, Computational Grid, discrete event 
simulation 

1. Introduction 

Several load balancing algorithms have been developed 
aiming to improve the performance of a computing system. 
Their complexity varies. Some of them are inspired or 
conceptually designed according to physical disciplines 
[1], [2]. Others are based on adaptive [3], [4]  and dynamic 
policies [5] or even apply innovative methods such as 
partitioning [6]; whereas there are some which are simple 
[7] but effective under particular conditions.  
 

Our consideration is focused on the description of main 
factors, such as communication delay, topology, workload, 
and the complexity of the negotiation protocol [8] (in this 
study the negotiation protocol includes all the exchanged 
messages), which strongly affect the system’s performance 
and consequently determine the issues that an algorithm 
should have the capacity for. In the respective research 
field, numerous studies have already been published. For 
example, Mirchandaney et al. [9] analyze the effects of the 
delay on the performance of three algorithms formulating 
theoretic models, and Banawan et. al [10] verify its 
significant impact. Zhou [11] simulates seven algorithms 
and compared their performance in respect of the applied 
workload and other vital factors. Eager et al. [12] study 
the appropriate level of complexity for load sharing 
policies.   
 
Our conclusive results are based on the examination and 
the comparison of two algorithms; the classic static 
Round-Robin and a dynamic one, the Live Update 
Information Algorithm (LUIA) which is accordingly 
framed for the current research. We have implemented a 
flexible framework where our experiments are performed. 
The framework is based on an existing discrete event 
simulation platform and supports additional simulation 
scenarios since its abstract design and its extensive 
external configuration, through an XML file, allows the 
user to form in a simple way basic models. Furthermore, 
performance metrics such as the mixed processing time, 
the execution time and the percentage of idleness have 
been formulated in order to evaluate the system’s 
behaviour. 
 
The remainder of this paper is organized as follows: In 
Section 2 the simulation framework is described. The 
basic components are reported along with the state 
variables of the system. The principles of modelling the 
central processing unit (CPU) are also defined. Section 3 
details the used metrics, outlines the performed 
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experiments and discusses their results, whereas, Section 4 
summarises our work. Finally, Appendices I and II 
respectively present the essential classes of the 
implemented framework and briefly describe the XML 
configuration file, in order to make our work easily 
understood. 

2. Simulation framework 

The study of the examined load-balancing algorithms is 
realized by the development of a proper simulation 
framework based on the event generation in certain time 
points (discrete event simulation) [13], [14], [15]. It is 
implemented by using the Java programming language 
with the assistance of the core features of the J-Sim 
platform [16], and supports the simulation of simple load 
balancing algorithms with the following characteristics: 
i) They follow centralized policies [17]. A central entity is 
responsible for collecting the information about the state 
of the system and choosing the most appropriate candidate 
for the task assignment. 
ii) They do not apply any special selection policy; the 
tasks are generated and sequentially dispatched to the 
proper processor. 
iii) The update of the system’s state information takes 
place either by explicit requests of the entity in which this 
information resides (Demand-driven policy), or by the 
processors in case their states change by a certain degree 
(State-change-driven policy) [17], [8]. 
iv) The location policy is performed via a function, the 
efficiency function, which takes into account the features 
and the state of the processor (see Appendix I). 
 
A presentation of the fundamental classes of our 
framework is laid out in Appendix I. Furthermore, 
Appendix II presents a short description of the XML 
configuration file by which the parameters of the 
simulated system are defined.  

2.1 Basic Components 

In order to simulate a computing system, the 
implementation of at least two vital entities is required; the 
processor (or computing unit) and the task. Table 1 
outlines the quantities which describe the state of these 
entities, comprising the   fundamental state variables [15] 
of the system, along with those which designate their 
features. The latter arise mainly from the model of the 
central processing unit (CPU) as it is presented in Section 
2.2. 
 
 
 
 
 

Table 1 - Stare variables (s) and features (f) of the simulated entities 
(f)Resource units: The magnitude of the resource of 
the processor. 
(f)Processing speed: the processing speed, in 
arbitrary units.  
(f)Topology factor: the “distance” from a reference 
point (in current model the reference point is the 
entity that is responsible for the task generation), in 
arbitrary units. This magnitude results from the 
requirement of a general expression for the delay 
originating from the communication among the 
components of the system. 
(f)Delay per topology factor unit: the delay, in 
time units, per topology factor unit. It is realized in 
order to quantify the topology factor with specific 
metric units. 
(s)Remaining task units: the task units that remain 
to be executed by the processor. 
(s)Active tasks: the number of the tasks that are still 
being processed. 
(s)Completed tasks: the number of the tasks that 
has already been processed. 

Pr
oc

es
so

r 

(s)Rejected tasks: the number of tasks which is 
rejected from the processor due to their non-
compliance with its policy. 
(f)Task units: the magnitude of a task, in arbitrary 
units. 
(f)Priority: the execution priority. 
(s)Generation time: the time of the generation of 
the task.  
(s)Arrival time: the time when the task arrives at 
the processor. 

T
as

k 

(s)Completion time: the time when the processor 
completes the execution of the task. 

 

2.2 The CPU model 

We assumed that the simulation model of the CPU of the 
processor complies with the Proportional Share Resource 
Allocation policy (a time-shared policy) [18], which is 
based on the following statements: 
i) The resource is split into discrete quantities which are 
bound, for certain time units, to process a task.  
ii) For each task, the weight defines the relative percentage 
of the resource which is allocated for this task per time 
unit. 
Thus, if wi represents the weight of the task i, and A(t) the 
set of the active tasks at the time t, then fi(t) denotes the 
fraction of the resource that is committed for processing 
the task i at the time t; as it is expressed by Equation 1. 

∑ ∈

=
)(

)(
tAj j

i
i w

w
tf   (1) 
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In case fi(t) remains constant during the time period [t1, t2], 
the task i could use the resource for )()( 12 tftt i×−  time 
units. The implementation of this model evinces the need 
to define quantities which depict the resource of the 
processor, the weight of the task, and its size. Moreover, 
an association between the size of the task and the 
required percentage of the resource for its completion 
should be specified. Therefore, the following definitions 
are made: 
i) The resource of the processor consists of a set of units, 
the resource units. 
ii) The magnitude of a task is represented by a set of units, 
the task units. 
iii) A task allocates the maximum number of available 
resource units. 
iv) One time unit is the time period which is required by 
one resource unit to process one task unit. The 
aforementioned relation is valid for the processor, the so-
called baseline processor, which has the processing speed 
of one unit. 
v) The processing speed is denoted by a positive integer 
number which indicates the speed ratio between a 
processor and the baseline. 
vi) The weight of a task is represented by the priority.  
 
According to the previous analysis and during a random 
period of time Δtm in which the number of active tasks in 
the processor remains constant, the following equations 
are derived. Equation 2 issues the available resource units 
cpui for the execution of the task i. It is evaluated by the 
ratio of the task’s priority pi over the sum of the priorities 
of all the active tasks n, multiplied by the resource units 
cpu of the processor. Whereas, Equation 3 calculates the 
task units of the task i, m

itu , which are processed during 

Δtm. The quantity m
itu  is proportional to Δtm, the 

processing speed sp of the processor, and the allocated 
resource units for the task i. 

cpu
p

p
cpu n

j
j

i
i ×=

∑
=1

  (2)    

spcputtu im
m
i ××Δ=    (3) 

The elapsed time between the arrival and the completion 
of the task i at the processor (the mixed processing time, 

see Section 3.1) is given by the ∑
=

Δ
u

km
mt , where 

i

u

km

m
i tutu =∑

=

 and tui the size of the task. In the study by 

Gomoluch et al. [19] the CPU is modelled likewise.  

3. Experiments 

This section presents the results from the simulation of 
two load balancing algorithms. The extensive study of the 
influence of parameters, such as communication speed and 
topology, on the system’s efficiency, discloses valuable 
conclusions which could be generalized to any algorithm 
which uses similar mechanisms. The examined algorithms 
are described as follows:  
i) The deterministic Round-Robin algorithm (RR) [7]: RR 
does not take into account the state of the system since the 
first task is assigned to the first processor and so on. The 
exchanged messages are limited to those which are 
required for the task dispatching (one message per task). 
ii) The LUIA: Our algorithm could be characterized as 
centralized [17] since the location and the information 
policies are performed by a single entity. It does not abide 
by any particular selection policy; the information policy 
is sequentially applied to the tasks according to their 
generation time, and their processing starts immediately 
on their arrivals at the computing units. The most suitable 
candidate for the task assignment becomes the one which 
is able to complete its remaining task units in the shortest 
period of time. This criterion is expressed by the 
efficiency function speedtotalLoadf x /= , where 
totalLoad and speed are the remaining task units for 
processing and the processing speed of the processor 
respectively. The required information for the evaluation 
of fx, is acquired by explicit requests to the processors by 
the entity in which this information resides. Therefore, for 
each task, 12 +× n messages are exchanged (n pairs of 
request and response, one of each processor, and one 
message for the task dispatching).  
 
The task generation is realized by an entity, the generator, 
which does not participate in the processing of the tasks. 
This entity also applies both the information and location 
policy, justifying the titles “informant” and “regulator” 
respectively which are additionally used to designate its 
functionality in this paper. Furthermore, it is considered to 
be the reference point for the construction of the grid, so 
the locations of the remaining entities are relative to it. 
Figure 1 illustrates LUIA based on the software 
components of the simulation framework (see also 
Appendix I). 
 
Note that, although a Computational Grid could be 
composed by thousand processors, in our simulations it 
consists of a few ones only for simplicity reasons, since 
the results for the selected topologies, could be 
generalized. 
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3.1 Performance metrics 

The subsequent paragraphs present the quantities, the 
performance metrics, which we have set in order to 
evaluate system performance. Some conclusions deduced 
from their study are also included. It is assumed that the 
selection policy complies with the nonpreemptive transfer 
[20], [21]. 
 
The mixed processing time is the elapsed time between 
the arrival and the completion of the task at the processor. 
It is essentially dependent on the percentage of the 
resource units and the time period devoted to each task 
execution. For example, if the resource is divided equally 
into two tasks, their respective mixed processing times are 
twice as much compared with those of in the case these 
tasks are processed individually. During this time the 
processor is busy, as its resource units are bound to 
process the applied workload. The processing time of a 
task is the actual time that the processor allocates for its 
completion. It is exclusively dependent on the task size 
and the processor’s features, since the relations among the 
speed, the resource and the task unit are predefined. The 
execution time is the elapsed time between the generation 
and the completion of the task. For the above metrics, the 
respective average metrics over the number of the 
completed tasks in a processor are defined as mean mixed 
processing, mean processing and mean execution time 
(processor-based metrics). The percentage of idleness 
(%idle time) is the percentage of the time period over the 
simulation time, in which the processor is free of tasks. 
Note that the simulation time is denoted as the elapsed 
time from the generation of the first task until the 
completion of all of them. Figure 2 illustrates the 
aforementioned metrics accompanied by some 
clarifications. These metrics could be generalized to the 
entire system (system-based metrics). For example 
the %idle time could be defined as the percentage of the 
time that the system is inactive over the simulation time. It 
derives from the intersection of the respective idle time 
periods of the processors.  
 
The comparison of the mean processing and the mean 
mixed processing time designates whether the processor 
responds properly or not to the applied workload. A slight 
deviation between them signifies that the resource is 
distributed to a few tasks, indicating that the performance 
of the processor is probably satisfactory. Furthermore, the 
combined examination of the mean execution time and the 
mean mixed processing time denotes whether the 
negotiation protocol converges quickly or not. Finally, a 
great value of %idle time possibly indicates that the 
processor does not participate significantly in the process. 
This metric should be evaluated concerning the completed 

tasks since the idleness could be attributed to the high 
processing speed. In this case, the potential removal of the 
processor could induce the overloading of the system and 
consequently, performance degradation. 

3.2 Communication speed influence 

The communication speed among the entities has an 
essential role to the performance of the system, especially 
in cases where the negotiation protocol involves the 
exchange of great numbers of messages. This is verified 
by the comparison of simulation results of the 
aforementioned algorithms. The parameters of the 
simulated system are included in Table 2. The values of 
the delay and the task size vary from 0.01 to 0.1 sec and 
85 to 160 task units (t.u.) with increase step 0.01 sec and 
15 t.u. respectively.  

 
Table 2 - Simulation parameters 

Grid 
Number of 
Processors

Resource 
units 
(cpu) 

Processing 
speed (sp) 

Topology 
factor (tf)

Delay per 
topology 

factor unit 
(delay)  
(in sec) 

3 100 1 1 
2 100 3 1 

0.01...0.1 
step: 0.01

Tasks 
Task generation 

distribution 
constant rate: 10 tasks/sec 

Task units distribution task units(t.u.): 85...160/step: 15 
Priority distribution constant priority: 1 

Task generation time 300 sec 
Critical simulation parameters: 
The selection of the task generation distribution along with 
the delay takes place in such a fashion that: in RR, the 
execution time of the smallest task in the processor with the 
lowest sp is greater than the task inter-arrival time to that 
processor.  
Assuming that a task of 85 units is processed alone in the 
slowest computing unit, its execution time is sec85.0

1100
85

=
×

. 

The task inter-arrival time: 
(total number of processors) ×  (task generation rate)-1 = 

sec5.01.05 =× . Thereby, the aforementioned condition is 
satisfied since 0.85 > 0.5. Otherwise, the system is capable of 
processing each task individually and the simulation results 
are without purpose. 

 
The curves in Figure 3 illustrate the variation of the mean 
execution time with respect to delay per task size, for the 
applied algorithms. For example, LUIA(160) denotes the 
mean execution time, of the LUIA under the workload of 
160 t.u. It should be mentioned that the curves of RR 
which illustrate considerably inferior system performance 
than the respective ones of LUIA (RR(115) to RR(160)), 
are excluded in favour of the figure’s simplicity. 
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In LUIA, the performance of the system is profoundly 
affected by the pending time (PQ) of the tasks in the 
generator’s queue until the application of the information 
policy. This time is inclusively determined by the quantity 
((task generation rate)-1) (SG) and the entailed time in 
information assembly (TP). The relation between SG and 
TP controls the grid’s behaviour, which is to be examined 
presently. 
 
In our model, TP is twice the amount compared with the 
time that the informant needs to communicate with the 
most distant processor. This occurs since the termination 
of the processors’ state retrieval is triggered upon receipt 
of the last status message (see Appendix I). SG is 0.1 sec, 
and all the processors have a topology factor equal to one 
unit, so the value of the delay where the equality TP = SG 
takes place is 0.05 sec. This time, called as behaviour 
threshold time, it is characteristic of this system, and it is 
denoted by tb.  

 
In the case that SG>TP, the generator’s queue is empty. 
The information policy is applied directly to a newly 
produced task and the appropriate processor is selected in 
TP sec. In this scenario, the execution time essentially 
depends on the task generation rate, the workload and the 
features of the processor, whereas the communication 
speed has a secondary role. This behaviour is confirmed in 
Figure 3, where for delay < tb, the mean execution times 
are virtually the same.  
 
On the contrary, when SG<TP a task is dispatched to the 
processor within time greater than TP, since the 
information policy is not immediately applied to this task. 
In this situation, the efficiency of the system is controlled 
by PQ and the applied workload. Low values of PQ and 
high workload can improve it, as the delayed arrival of the 
tasks at the processors causes an increment of the 
available resource units per task. This provokes the 
diminution of the mixed processing time and subsequently 
the improvement of the execution time. The curves 
LUIA(130), LUIA(145) for 0.05<delay<0.07 and 
LUIA(160) for 0.05<delay<0.08, are considered 
characteristic examples. In the case of low workloads, the 
influence of PQ on the reduction of the mixed processing 
time is not significant, since the processors are already 
capable of processing them quickly enough. The 
performance is mainly controlled by PQ causing its 
degradation as LUIA(85) depicts. There are also some 
cases where a balance between the mixed processing time 
and PQ is achieved, so that the mean execution time will 
remain finally constant (LUIA(100), 0.05<delay<0.07). 
Nevertheless, high values of PQ, irrespective of workload, 
cause the deterioration of system efficiency since TP is the 
dominant stage of the whole procedure; an example 

comprises the whole series of the LUIA, for delay > 0.07 
sec, where all the curves eventually assimilate into a single 
one. Furthermore, the following conclusions can be 
deducted. 
 
In a static algorithm, like RR, the mean execution time is 
not affected by the communication speed, since there are 
no message exchanges among the processors.  
 
In systems where the decisions are accomplished by 
exchanging large numbers of messages, the influence of 
communication speed on their performance is decisive. 
LUIA(145) shows that an increase of the delay by 0.01 sec 
could cause a change in the percentage of the average 
execution time, up to 32% approximately.  
 
A dynamic algorithm may have considerably better 
performance than a static one apart form the cases where 
the communication overhead has a negative impact on the 
progress of the negotiation protocol. For example, LUIA 
outperforms RR, with the exception of some regions of the 
LUIA(85) where the high delay (delay>0.8) and the low 
workload give an advantage to RR. Eager et al. [12] have 
also concluded that extremely simple load sharing policies 
perform virtually as well as complex ones which utilize 
more system information. 
 
Finally, it should be mentioned that the increased delay 
can enhance system efficiency under high workload, an 
observation which has also been verified in a previous 
study [9]. This becomes evident in Figure 3 where the 
curves LUIA(115) to LUIA(160) display that the 
minimum values of the average execution time reside in 
the region in which the delay has a dominant influence on 
the system’s performance (delay > tb).  

3.3 Topology influence 

Topology is regarded as one of the utmost important 
factors since it could strongly affect grid performance. A 
measure of its impact can be the convergence of the 
location policy resolutions (with respect to diverse 
topologies), provoked by the elimination of the out-of-date 
state information (or stale information) problem [17], [22]. 
This aspect is accordingly clarified in the subsequent 
sections.  
 
In our experiments, the grid which is considered has two 
groups of processors at its disposal. The group of high and 
low speed, which in short are called VPCs(high) and 
VPCs(low) respectively. The difference between them is 
spotted in the processing speed. The processors of 
VPCs(high) have greater speed than those of VPCs(low). 
The examined topologies are two. The first one brings 
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VPCs(high) to a comparatively shorter distance from the 
regulator than VPCs(low), and is called near layout (NL), 
whereas the other, which is called far layout (FL), works 
the opposite way. For each topology, two experimental 
series are carried out applying the LUIA algorithm. The 
difference between them lies in the absence or presence of 
the out-of-date state information problem by accordingly 
introducing the proper correction factor in the efficiency 
function.  

3.3.1 Correction factor evaluation 

In LUIA the deviation between the real state of the system 
and the state where the decisions of the location policy are 
derived from, is attributed to the time difference between 
the record and the use of the required information for that 
decision making. In the ideal scenario where the regulator 
acknowledges the state of every single processor the 
moment that a task arrives there, the decisions are based 
on accurate information. This scenario is accomplished by 
calculating the divergence, ΔStatus, between the 
processor’s state at the time when it receives the request 
for recording it, and that when the arrival of the task takes 
place there. 
 
In our model, the estimation of Δstatus is realized by the 
evaluation of the difference of the remaining task units, 
since this is the only state variable that takes part in the 
efficiency function. For each processor, let VPCx, ΔStatusx 
is formed cumulatively in the following three time periods. 
The quantities tfx and delay denote the topology factor and 
the delay per topology factor unit of VPCx respectively.  
i) Response time (tresp(x)). It represents the time period that 
VPCx requires to send a status message to the informant. 
The evaluation of this quantity is performed by the 
product of tfx, and delay, as it is expressed by Equation 4. 

delaytft xxresp ×=)(   (4) 

ii) Pending time (tpend(x)). It defines the time period that the 
VPCx’s status message suspends in the informant until the 
completion of information retrieval procedure. This 
procedure, the duration of which is expressed by the 
Equation 5, is terminated with the reception of the last 
status message by the informant, which inevitably comes 
from the most distant processor, VPCmax.   

delaytftassem ××= max2   (5) 
Equation 5 derives from Equation 6 which expresses the 
required time, tassem(x), for the informant to acquire the 
information of the VPCx. It is represented by the sum of 
the time period, treq(x), which the informant’s request for a 
status message requires to arrive at VPCx, and the time 
period tresp(x) that the VPCx’s reply needs to get into the 
informant. 

delaytft xxassem ××= 2)(   (6) 

Finally, the pending time tpend(x) equals to the subtraction of 
the time period that informant needs to gather the 
information of the VPCx from which it is required to form 
the system state on the whole. Thereby, the combination of 
Equations (5) and (6), results in Equation 7. 

)(2 max)( xxpend tftfdelayt −××=   (7) 

iii) Sending time (tsend(x)), which represents the requisite 
time period for a task to arrive from the regulator to the 
VPCx, and it is expressed by Equation 8. 

delaytft xxsend ×=)(   (8) 

Thus, the task units that are completed from VPCx during 
the time period )()()( xsendxpendxresp ttt ++ , express 

ΔStatusx (Equation 9).  This quantity represents the 
correction factor that should be taken into account for the 
evaluation of the remaining task units of the VPCx. 

xspxcputfdelay
xspxcpuxsendtxpendtxresptxStatus

××××=

××++=Δ

max2

))()()((
 (9) 

where cpux and spx, represent the resource units and the 
processing speed of the processor VPCx respectively. 
 
Assuming that t1 is the time when a VPCx receives the 
informant’s request for recording and dispatching a 
message with its state to it, and TUs(t1) is the remaining 
task units of the VPCx, the reported value TUSr is 
expressed by Equation 10. 

xr StatustTUstTUs Δ−= )()( 11   (10) 

3.3.2 Decision differentiation 

The research of the cases under which the result of the 
comparison between two processor units (VPC1 and 
VPC2) depends on the applying efficiency function, leads 
to the detection of the system’s decisions convergence due 
to the insertion of the correction factor. In our experiments, 
the quantification of a VPCi’s efficiency, fxi(t), at the time 
point t, is performed by Equation 11. 

i

i
i sp

tTUs
tfx

)(
)( =    (11) 

where TUsi(t) and spi, signify the remaining workload and 
the processing speed of the processor VPCi respectively. 
The evaluation of the above relation enacts virtually a 
metric of the time that VPCi needs to accomplish TUsi task 
units. The combination of Equations 9, 10 and 11 results 
in Equation 12 expressing the efficiency function, fxci, 
which encapsulates the correction factor.  

Si
i

iii

i

ii
i

Ctfx
sp

spcputfdelaytTUs
sp

StatustTUs
tfxc

−=
××××−

=

Δ−
=

)(
2)(

)(
)(

max
(12) 
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Considering that all processors have identical resource 
units, then cputfdelayCS ×××= max2 . 
 
To determine when the variation in location policy 
decisions occurs, let fxc1, fx1 and fxc2, fx2 be the efficiency 
functions with and without the correction factor, for the 
processors VPC1 and VPC2 respectively, and let us 
consider the following statements: 
i) According to location policy, the most proper processor 
for the task assignment is considered to be that with 
smaller fxi, whereas, in the case of equality the one with 
the higher processing speed is chosen. 
ii) Zero value of the fxi or fxci indicates a processor which 
is in idle state. 
iii) The relation Si Cfx <  ( 0=ifxc ) affirms that VPCi 
gets to the idle state at best for the remaining time 
(commencing from the time that VPCi receives the request 
for sending a status message to the informant) which is 
necessary for the completion of the information and 
location policy.  
iv) The inequality 21 fxfx < denotes that the execution 
time of the remaining workload of VPC1 is less than that 
of VPC2 (VPC1 comes to idle state faster than the VPC2, 
when the relation 021 == fxcfxc  holds additionally). 
The variation in location policy decisions occurs 
when SCfxfx << 21  ( 021 == fxcfxc ) and the compared 
processors differ in processing speed. Indeed, presuming 
that VPC1 has lower processing speed than VPC2, the use 
of fxi entitles VPC1 as the most convenient candidate 
(since 21 fxfx < ), whereas the application of fxci inducts 
VPC2 (since the processors are idle and 12 spsp > , where 
sp1 and sp2 are the processing speeds of VPC1 and VPC2 
respectively). 
 
In conclusion, when the correction factor is present, the 
system tends to allocate more tasks to the high speed 
processors, as compared to those allocated during its 
absence. 

3.3.3 Cost Evaluation 

It was proved that the differentiation of the decisions, with 
the use of fxc instead of fx, has as a direct outcome the 
assignment of additional tasks to VPCs(high). The 
following paragraphs demonstrate how this divergent 
behaviour, namely the case where the location policy 
delegates the task to an idle low speed processor (VPC1) 
instead of an idle high speed processor (VPC2), affects the 
system’s performance concerning the topology. These 
alternative behaviours are illustrated in Figure 4. 
 
 

The influence of the decision differentiation, in the way of 
cost or benefit to the grid’s performance, could be 
represented by Equation 13. 

type)execution(ype)topology(tcost(type) +=      (13)  
where type defines the corresponding topology, near and 
far, for NL and FL respectively. The quantity cost(type) is 
the total cost/benefit, and topology(type) is the cost/benefit 
due to the topology. The latter is expressed by the task 
units that could have been processed or are processed by 
the processor as a consequent effect of its location in the 
grid. The term execution(type) designates the execution 
cost that emerges from processing a task in the low speed 
processor. It is assumed that in cases where the above 
quantities express benefit, their values are negative. 
Equation 13, the so-called cost layout function, serves as 
an indicator of the system’s behaviour and is used to 
interpret the experimental results. 
 
Concerning the NL, Equation 13 converts into 14 

)(
)( 2122

nearexecution
tftfdelayspcpucost(near)

+
−×××=       (14) 

where )tf(tfdelayspcpuear)topology(n 2122 −×××=  and 
21 tftf > . The term topology(near) depicts the task units 

that could have been processed by VPC2 during its transfer 
to VPC1, and consequently represents cost. The term 
execution(near) also expresses cost since the task is 
executed in the low speed processor. 
Similarly, Equation 15 expresses the cost layout function 
for the FL.  

)(
)()( 1211

farexecution
tftfdelayspcpufarcost

+
−×××−=           (15) 

where )tf(tfdelayspcpuar)topology(f 1211 −×××−=  and 

21 tftf < . An imminent task dispatching to VPC2 would 
have as a consequence the deprivation of processing time 
equal to )tf-(tfdelay 12×  time units in VPC1. Therefore, 
topology(far) represents benefit. The term execution(far) 
reflects cost as long as the task is executed in VPC1. In FL 
the system behaviour is diverse. In the case 
that )(far executionar)topology(f > , the quantity cost(far) is 
negative. Consequently, the task is better executed in 
VPC1, since the profit that could be obtained from the task 
completion in VPC2 is scattered away by the time loss due 
to its transfer.  
 
The above study demonstrates that topology is one of the 
uppermost factors that should be taken into account by a 
location policy. For instance, in cases where the decisions 
are made among idle processors with different processing 
speeds, the efficiency of LUIA algorithm (which does not 
consider the topology) would be improved if it took also 
into account the outcome of equations which are akin to 
Equations 14 and 15 (and does not simply choose the one 
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with the higher processing speed). On the contrary, when 
the processors have identical speeds, the system 
performance would be improved if the processor with the 
smaller topology factor was chosen.  

3.3.4 Results 

In this section, the aforementioned considerations are 
confirmed by the simulation of LUIA in a grid which its 
parameters are depicted in Table 3. 
 

Table 3 - Simulation parameters 
Grid 

Number of 
Processors 

Resource 
units 
(cpu) 

Processing 
speed (sp) 

Topology 
factor (tf) 

Delay per 
topology 

factor unit 
(delay) 
 (in sec) 

3 100 1 1/0 

3 100 2 0/1 
0.01...0.115
step: 0.005

Tasks 

Task generation 
distribution 

constant rate: 10 tasks/sec 

Task units 
distribution 

task units (t.u.): 70 

Priority distribution constant priority 1 
Task generation time 300 sec 

Critical simulation parameters: 
The decision differentiation (fx1<fx2<CS.) is reinforced by the 
proper adjustment of the workload. It is regulated so that the task 
assignment in VPCs(low) may take place marginally. This 
occurs when the execution time (tex) of a task in a high speed 
processor, is approximately equal to the sum of the time which is 
required for its potential re-election for a task assignment 
(treassign), and the necessary time (tsend) for transferring a task 
from the generator to the processor. Since VPCs(low) in this 
borderline situation is not included in the possible choices of 
location policy, the computation of the re-election time is based 
on VPCs(high). According to the former considerations, it is 
deduced that: 

sec3.031.0
)(

)( 1

=×=
×

= −

processors    speedhigh of  number

rate   generation tasktreassign
  

and  
05.0005.0)10(  or  or delaytftsend =×=×=  

The execution time of 70 task units equals 

to sec35.0
2100

7070
=

×
=

×
=

spcpu
tex . Thereby, 

exsendreassign ttt ≅+  indicating that a task of 70 task units is 

appropriate for performing the experiments. 
 
The grid consists of two groups of processors, VPCs(low) 
and VPCs(high), which interchange in order to form the 
desired topologies, the NL and FL. For each topology a 

series of experiments is carried out, where the value of the 
delay ranges from 0.01 to 0.115 sec, with increase step 
0.005 sec. The results of the simulation are depicted in 
Figures 5, 6, 7 and 8 where the following naming 
conventions are adopted. The terms fx, and fxc refer to 
experiments which were performed with the application of 
fx and fxc. The terms near, and far denote the topology of 
the grid, NL and FL, while low, and high are used to 
classify the group of low and high speed processors 
respectively. 
 
Figure 5 illustrates the variation of the mean execution 
time over the delay, for both topologies and the applied 
efficiency functions. The delay is confined to the range 
[0.01, 0.05) since for values grater than 0.05, the 
execution times are essentially determined by the pending 
time of the tasks in generator’s queue. Hence, the effect of 
the correction factor on the grid’s efficiency is not 
distinctive. According to this figure, the following 
observations are made. 
 
The divergence of curves fx-near and fxc-near increases 
with the augmentation of the delay. This behaviour 
complies with the description of Equation 14 since in NL, 
the choice of an idle low speed instead of high speed 
processor, always leads to a proportional reduction in the 
system’s performance with respect to delay. 
 
In FL, the examination of curves fx-far and fxc-far 
discloses that for delay<0.035 the mean execution times 
of the tasks which result from the application of fxc are 
better than the ones which derive from the fx usage. For 
the specific range of delay, the absolute value of the 
topology(far) factor is smaller than execution(far) 
indicating  that the decision differentiation between fx and 
fxc has negative impact on the system’s performance. The 
reduction of the divergence between the aforesaid curves 
while delay is enlarging is interpreted by the decrement of 
the difference between the quantities topology(far) and 
execution(far), since topology(far) proportionally 
increases with delay, as it is expressed by Equation 15. For 
the marginal value of delay, 0.035 sec, 
where )farexecution()fartopology( ≅ , the system’s 
performance is independent of the applied efficiency 
function, and the respective mean execution times are 
virtually the same. 
 
The deviation between the curves fx-near and fxc-near is 
greater than the respective one of fx-far and fxc-far. This 
is an anticipatory behaviour, as in NL the decision 
differentiation has stronger impact on the system 
efficiency than in FL ( )()( farcostnearcost > ). 
Figures 6 and 7 depict the variation of the average number 
of completed tasks and the average percentage of idleness 
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per processor group, over the delay, for the applied 
topologies and efficiency functions. The examination of 
these figures leads to the following conclusions. 
 
The insertion of the correction factor in fx induces the 
diminution of the completed tasks; and consequently an 
increase in the percentage of the idleness of VPCs(low), 
regardless of topology, takes place. Considering that the 
total number of completed tasks remains constant, the 
above change provokes a reverse one of the respective 
quantities of VPCs(high). This is a presumed behaviour 
since fxc forces the system to assign more tasks to 
VPCs(high) than fx does. 
 
The deviations of the curves fx-near-low, fxc-near-low 
and fx-near-high, fxc-near-high, for the variations of the 
completed tasks and the percentage of the idleness, are 
greater than the respective ones of the FL. This grounds as 
the influence of the decision differentiation on system’s 
behaviour is greater in NL. 
 
The out-of-date state information also plays a significant 
role in the configuration of the grid. Concerning Figure 7, 
for delay=0.075, the average values of the percentage 
idleness indicated by the curves fx-near-low and fxc-near-
low are 62% and 96% respectively. Computing units with 
a high percentage of idleness are feasibly withdrawn from 
the system without any considerable change in its 
performance. Thereby, the application of fxc gives the 
choice of removing or using those processors in a different 
activity. 
  
Figure 8 describes the variation of the mean execution 
time per processor group versus the delay, for fx and fxc, 
in NL. It is noted that the aforementioned variation is 
limited to the delay<0.05, whereas for higher values, the 
contribution of the decision differentiation to the mean 
execution time is negligible. This figure reveals that the 
diminution of the mean execution time with the insertion 
of the correction factor is essentially provoked by the 
decrease in the mean execution time of the VPCs(low), 
since the deviation of the curves fx-near-low and fxc-near-
low is considerably greater than the respective one of fx-
near-high and fxc-near-high. Considering that fxc 
provokes a kind of task transfers from VPCs(low) to 
VPCs(high), it is deduced that VPCs(low) appears to be 
more susceptible to the changes of the workload. It is clear 
that the cost of an imminent increase of tasks in 
VPCs(high) is less than the corresponding benefit which is 
achieved by their disposal of VPCs(low). 
 

4. Summary-Conclusions 

In the current work, a flexible simulation framework for 
the examination of certain types of load balancing 
algorithms is implemented and performance metrics are 
formulated. The interpretation of the experimental results 
of two algorithms, a classic static (RR) and a dynamic 
(LUIA) reveal the following points. 
 
The communication delay and the workload can be 
regarded as two of the utmost issues that affect system 
performance, since they regulate and dictate directly or 
indirectly its behaviour. An algorithm should accordingly 
adjust its policies preserving high efficiency. For example, 
an algorithm resulting from the combination of LUIA and 
RR could operate better than either one individually. 
 
The communication overhead emerging from the 
application of complex policies with the aim of ensuring 
up-to-date information, can eventually lead to adverse 
effects. A simple static algorithm, like RR, could be 
proved more effective than a dynamic one. Therefore, 
there is a compelling need to balance the cost of the 
acquisition and the accuracy of the information on which 
the decisions of an algorithm are based. Nevertheless, it 
appears that increased delay could benefit the system’s 
efficiency under high workload. 
 
Equations 14 and 15 confirm the interdependence between 
the topology and the performance of the system. It is 
shown that an algorithm should consider not only the state 
and the features of the processors, but also their relative 
positions in the grid. 
 
The out-of-date state information problem should be 
appropriately dealt with since it provokes deficiency in the 
utilization of the system. For example, processors that 
could have been idle are instead occupied, depriving the 
capability of their use in a different activity. 
 
Under the particular conditions of NL, it has been proven 
that disposing workload from processors with low 
processing speed, and allocating it to those with 
comparatively higher processing speed improves the 
system’s performance. 

Appendix I 

In the following paragraphs, some of the most important 
classes are described in order for an overview of the 
system architecture to be formed. 
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VPC represents the processor (VirtualPC) and implements 
the CPU model. It reacts to three types of messages: one 
that represents a task (VTask), another being the message 
that holds the state of the processor (StatusMessage), and 
the third internally used for indicating the completion of a 
task. VPC uses StatusMessage to inform InfoCenter about 
its state. StatusMessage is dispatched by an explicit 
request from InfoCenter or by the percent variation of the 
processor’s state variables over or below a specific 
threshold. Both the state variables and the threshold could 
be accordingly defined in the XML configuration file. 
 
InfoCenter represents the entity which is dedicated to 
preserving a list with the states (state list) of the processors 
so that TaskGenerator can make the selection of the most 
appropriate one for the task assignment. It has two 
operational modes designating the two information 
policies (defined in the XML configuration file):  
a) the LIVE_MODE where the decisions are based on the 
state of the system at the time when the request for the 
grid’s information retrieval takes place. In this case, 
InfoCenter dispatches requests for receiving the status 
messages of all the processors. The evaluation of the best 
is performed when all the responses are received 
b) the NO_LIVE_MODE where the decisions are realized 
according to the information that has already been stored 
in the state list.   
 
TaskGenerator is responsible for the task generation and 
the task assignment.  The task generation distribution is 
customized via the XML configuration file. 
 
WMessage is the base class of the message hierarchy. It 
encapsulates the important events occuring during its life 
cycle (creation, destruction, departure and arrival at the 
various components), providing valuable information for 
the simulation progress.  
 
VTask represents the task. Its life cycle consists of the 
following stages in order:  
a) the generation stage, in which the task generation takes 
place  
b) the processing stage, where the task has partially been 
completed  
c) the completion stage, where the task has been 
completed. 
 
StatusMessage realizes the message (status message), 
which contains the vital information (such as the active 
tasks, remaining task units for processing) about the state 
of a processor. The state list resides in the InfoCenter and 
actually consists of these kinds of messages. 
StatusMessage implements the method (efficiency 
function), which dictates the selection of the most 

appropriate candidate for the task assignment, ordering the 
status messages in the state list. The efficiency function is 
currently expressed by Equation 16. 

topoFactortopoCoef
speedspCoef

nTasksntCoeftotalLoadtLCoeffx

×+
×

××
=

)/()(
 (16) 

where totalLoad, nTasks, speed and topoFactor are the 
remaining task units for processing, the number of active 
tasks, the processing speed and the topology factor 
respectively. The coefficients spCoef, topoCoef, tLCoef 
and ntCoef, and the implementation method are declared 
in the XML configuration file.  
The application of the efficiency function comprises the 
default location policy. The user can externally either 
modify it or utilize his own policies by appropriately 
defining them in the processor selectors section (see 
Appendix II). 

Appendix II 

The simulation is dictated by an XML file (an example is 
depicted in Figure 9). This file consists of four sections, 
each of which is responsible for a particular configuration. 
A short description of these sections follows: 
 
Processors section. This area describes the processors. 
The user could easily modify the features of a processor 
by assigning the desirable value in the appropriate 
attribute of the XML element. For example, the processing 
speed, the resource units, and the topology factor are 
housed in the “speed”, “cpu_power”, “topology_factor” 
attributes respectively. In addition, there are attributes 
which contain information about the processor’s 
behaviour and the applied policies. For example, a positive 
value of the attribute “above_notify_thres” defines the 
threshold of the percent variation of the state variable (the 
remaining workload or the number of active tasks), above 
which the processor sends a status message to InfoCenter, 
whereas a negative value deactivates the aforementioned 
procedure. 
 
Task inter-arrival section. The methods used for the 
estimation of the task generation distribution are described 
in this section. The user should accordingly define the 
implementation class and the method name as values of 
the attributes “class_name” and “method_name” 
respectively of the element “arrival_gen_functions”. 
Moreover, there is the capability of declaring an array of 
parameters, in the form of name/values pairs, which could 
be invoked and utilized inside the method.  
 
Processor selectors section. The methods used for the 
selection of the proper processor for the task assignment 
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are defined here. Its descriptive rules are similar to task 
inter arrival section. 
 
Tasks section. The features of the generated tasks (task 
units and priority) are described in this area either directly 
by assigning the value, or indirectly by indicating the 
implementation class and the method which returns its 
value. 
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Figure 1 - The software component based behaviour of LUIA. 
 

 
Figure 2 - performance metrics. 
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Figure 3 – Mean execution time versus delay and workload, for the 

applied algorithms. 
 

 
Figure 4 - The states of the processors during the decision differentiation. 
 
 

 
Figure 5 – Mean execution time versus delay. 

 

 
Figure 6 – Average number of completed tasks per processor group, 

versus delay. 
 
 

 
Figure 7 – Average of the percentage of idleness per processor group, 

versus delay. 
 
 

 
Figure 8 - Mean execution time per processor group, versus delay. 

 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007 

 

214 

 

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configuration SYSTEM "config.dtd">
<configuration>

<description>The configuration file for the creation of VPCs grid</description>

<vpcs description="VPCS template">
<vpc id="vpc1" replicate=“2" speed="1" cpu_power="100" topology_factor="1"/>
<vpc id="vpc2" replicate=“3" speed=“2" cpu_power="100" topology_factor=“3"/>
<rest_info cpu_thres="0." above_notify_thres="-0.1" mdelay_per_tf="0."/>

</vpcs>

<arrival_gen_functions description="function of tasks inter arrival">
<fun_ar description="const_interval" class_name="vpcs.ArrivalFuncs" method_name="constIntervalFunc" 

is_enable="true">
<param description="interval" val="0.05"/>
<task id=“taskv1”>

</fun_ar>
</arrival_gen_functions>

<comp_sel_functions description="function of VPC selection">
<fun_sel description="efficiency" class_name="vpcs.SelectionFuncs" method_name="effLiveUpdBasedSelection" 

is_enable="true">
<param description="speed_cf" val="1"/>
<param description="topology_cf" val="0"/> 
<param description="tload_cf" val="-1"/>
<param description="ntasks" val="0"/>

</fun_sel>
</comp_sel_functions>

<tasks>
<task id="taskv1" tunits="110" priority="1"/> 

</tasks>

</configuration>

 
Figure 9 – XML configuration file. 
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