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Summary

The production engineer’s decision regarding buffer size
in a flexible production system is one of the most
important factors in maximizing production efficiency. In
this paper, we propose a model Flexible Production
System with Sub-lines (FPSS). By using the model, we
can find the buffer size of FPSS by using GA. Also, we
propose a new GA expression, referred to as a Matrix
Encoding Method (MEM). This paper deals with an FPSS
which consists of 5 main component lines, i.e. a main
production line, parallel lines, rework path, feed-forward
line and feeder line. Numerical examples show that after a
number of operations based on the GA with MEM
expression, the nearest optimal buffer size of FPSS could
be found. The results of this study can be used to improve
the production plant, and production engineers can use
these results in their decisions on buffer size when they
develop FPSS.
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1. Introduction

Deciding buffer size for production systems has gained
more and more importance because of growing production
lines’ complexity and because the buffer size has a great
impact on production efficiency. The buffer size is still
one of the major optimization problems faced by
production engineers. Many articles and researches related
to buffer size have been published [1-4]. To solve the
buffer size problem, two requirements need to be
considered. The first requirement is a search method used
to solve the buffer size problem, and the second
requirement is a model or approach used to evaluate and
measure production system performance. The buffer size
is optimized by various techniques, such as functional
approximation and evaluation [5], knowledge based
methods [6], simulated annealing [7], dynamic
programming method [8], and other search methods. One
of the search methods that can be used for studying the
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buffer size in production systems is a genetic algorithm
(GA) [9,10]. GA is an evolutionary technique that uses
crossover and mutation operators to solve optimization
problems using a survival of the fittest idea. GA has been
used successfully for various optimization problems, such
as the buffer size problem. The performance evaluation of
the production system is needed to calculate the
performance measure of the production system which has
to be optimized. Performance evaluation of a production
system has garnered close attention in recent years, and
most work done in this field can be found in a number of
books [11-16], and in reviewed papers [17, 18], among
others.

However, despite the many existing buffer size
methodologies, many research studies have focused on the
buffer size problem for a serial production line and there is
a lack in the literature of studies that look at the buffer size
of complicated production systems such as a Flexible
Production System with Sub-lines (FPSS). This paper
deals with FPSS which consists of 5 component lines, a
main production line, parallel lines, rework path, feed-
forward line and feeder line. In this paper, we define
FPSS model. By using the model, we can find the buffer
size of FPSS by using GA. In solving the buffer size, we
propose a new GA expression, referred to as the Matrix
Encoding Method (MEM) to carry out the GA.

2. Definition of FPSS Model

2.1 Structural Definition

The flexibility of the production process has become very
important in new manufacturing industries [19]. The
importance of flexibility increases the production systems
complexity. Thus, recently, complicated production
systems such as FPSS are being widely used in industries
that require a high variety of production.

One of this paper goals is to model FPSS. After modeling,
we use the FPSS model to study its buffer size decision-
making. In general, many kinds of FPSS structures can be
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considered. This research defines the following FPSS as
our FPSS model. The FPSS has 5 main components lines,
the main production line and 4 sub-lines, parallel lines,
rework path, feed-forward line and feeder line. The
research adopts the structure of the 5 main components
lines as shown in Figure 1.

Parallel

Feed-forward

Feeder lines
line ‘J' " line _J'
| Main production line >

Rework path

Fig. 1 FPSS components lines

The details of the 5 main components lines are described
below.

e Main production line: The main production line is
typically the principle production line which is used to
manufacture products and is shared by most of the
products produced by FPSS. The main production line
terminates at the end of FPSS.

e Parallel lines: The parallel lines are a splitting of a main
production line into two or more parallel lines and
merging into a main line again. Parallel lines are used to
increase production capacity or product varieties.

e Feed-forward line: The feed-forward line is used to
bypass some special operations and is terminated by re-
inserting the manufactured product into the main
production line.

e Rework path: The rework path is included for
reprocessing the job to repair some defaults in the part to
attain quality standards. The damaged parts are rejected
from FPSS by this line.

e Feeder line: The feeder line is used to bring two or more
parts together to form a single part.

By taking into account the component lines described
above, the FPSS model this paper studies is defined as
shown in Figure 2. The rectangles of the model represent
the machine tools and the circles represent the buffer size.
Each pair of machine tools in the model is separated by a
buffer size. However, there is no buffer size in front of the
first machine tool in each main production line and feeder
line. Also, there is no buffer size next to the last machine
tool in the model.

The notations in Figure 2 are described as follows.
M} Machine tool j in Line i.

S[i] Number of buffer sizes in Line i.

M,, My and M, Feeder, rework path and feed-forward
merge machine tools, respectively.

M. and My Feed-forward and rework path split
machine tools, respectively.

Bs and B, Parallel split and merge buffer sizes,
respectively.

k Number of parallel lines

2.2 Digital Code Definition

The other goal of this paper is to find the buffer size of the
FPSS model of Figure 2. To find it, we need to define
FPSS buffer size as a digital expression. In order to do this,
we adopt three procedures. The first one is that FPSS is
divided into 11+k lines as shown in Figure 3. The second
is the FPSS buffer size is expressed as a matrix. The
matrix element values represent the buffer size. Each
buffer size is located in the matrix according to its location
in FPSS. The third is that we make the buffer size matrix
by using an algorithm to make the buffer size matrix.
Before describing the algorithm, the divided 11+k lines
are defined as below.

Line 1: starts from the beginning of the main production
line until the merge point of the main production line and
the feeder line.

Line 2: is the feeder line.

Line 3: starts from the merge point of the main production
line and the feeder line until the merge point of the main
production line and the rework path.

Line 4: starts from the merge point of the main production
line and rework path until the start point of the parallel
lines.

Line 5: starts from the end point of the parallel lines until
the start point of the feed forward line.

Line 6: represents the part of the main production line
from the split of the feed forward line until the split of the
rework path.

Line 7: represents the part of the main production line
from the split of the rework path until the merge of the
feed forward line.

Line 8: represents the part of the main production line
from the merge of the feed forward line until the end of
FPSS.

Line 9: is the feed forward line.

Line 10: is the part of the rework path until the point just
before the scrap point.

Line 11: is the part of the rework path before the scrap
point.

Lines 12 to 11+k: are the parallel lines.
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[Algorithm to make buffer size matrix]

Step 1: Find the number of buffer sizes in Line i for each
i=12,..,11+k.

Step 2: Find N. N is the maximum buffer size number.
Step 3: Reserve M x N matrix. M is equal to the divided
FPSS lines number.

Step 4: Seti=1.

Step 5: Put B/ into the first element of row i. B/ is the

first buffer size in Line i. Put B into the second element

of row i and so on.

Step 6: Set i =i+1.

Step 7: If i <11+k, go to Step 5, [Else] go to Step 8.

Step 8: Put zero into all other matrix elements and end the
algorithm.

By using the above algorithm, we can make the buffer size
matrix. The buffer size matrix, BM, is given as blow.

1 1 1 1
Bl B2 o BS[I]*I BS[I]
2 2 2 2
BM - B B, o By By (1)
K+11 K+11 K+11 K+11
B B, BS[K+] -1 BS[K+11]

where S[i] is the number of buffer sizes in Line i.
The values of the element B} in the matrix in Eq. (1)
indicates the buffer size jin Line i in FPSS.

The above algorithm example is introduced. Consider the
example of FPSS shown in Figure 4. The example FPSS is
divided into 15 lines. The buffer size matrix of the
example can be expressed as the following.

[1] S[1], S[2], ... and S[15] of Step 1 become 3, 3, 2, 2, 2,
2,2,3,4,2,4,2,2,2 and 2 respectively.

[2] N of Step 2 equals 4.

[3] 15 and 4 correspond to M and N of Step 3.

[4] When i=1, the number of buffer sizes is 3. The buffer
sizes are 2, 5 and 8. Put 2 into the first element of row 1,
put 5 into the second element of row 2 and put 8 into the
third element of row 1. Following Step 5 to Step 7, the
result as shown in Figure 5-B is acquired.

[5] Figure 5-C is the acquired matrix of Step 8.

M % % %] 2 5 8§ ] 2 58 0
* ok x % 5 3 9 * 53 90
* ok ok % 1 3 * = 1 3 00
* % % % 5 2 * % 52 00
* % x % 9 5 * * 9 5 0 0
* % % % 4 6 * * 4 6 0 0
* % % % 8 1 * * 8 1 0 O
* ok k% 9 4 5§ =* 9 4 5 0
* ok x % 5 2 7 5 52 75
* % x % 1 3 * = 1 3 00
* ok k% 3 5 3 5 3535
* % x % 5 3 * * 53 00
* ok ok % 4 3 * x 4 3 0 0
* % % % 5 2 * 52 00
* % % % 7 4 * x _7 4 0 O_

A B C

Fig. 5 Buffer size matrix examples

Fig. 4 FPSS example
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3. MEM and its GA

The second goal of this paper is to find the buffer size of
FPSS utilizing GA. To use GA, we adopt each buffer size
between machine tools as a gene. To express the genes, we
propose a new gene expression method called MEM. One
of MEM’s characteristics is that it expresses the genes as a
matrix.

3.1 Matrix Encoding Method

The conventional GA expresses a gene with a linear gene
expression method. In the case we are studying here, it is
difficult to use a linear gene expression method to find the
FPSS buffer size. This is because the buffer sizes in FPSS
are arranged as an M X N matrix as we described in
section 2.2, and it is impossible to express the matrix with
conventional gene expression methods. In order to solve
this problem, we propose our MEM as a new gene
expression method. The MEM codes the gene expression
according to the buffer size matrix. The MEM gene
expression is a M % N matrix similar to the buffer size
matrix. The MEM codes the gene expression represented

by B} in Eq. (1) as a gene, G} , for all values of i and j. The

general MEM gene expression is shown in Eq. (2).
Hereafter, individual is used instead of gene expression.

1 | | .
G, G Ggupy Gsp)
2 2 2 5
Individual =| &' Gy Gspu Gspy (2
K+11 K+11 K+11 K+11
G G .. Gk Gsikeny

The number of columns of the matrix is not limited, there
for, the MEM can deal with any FPSS with any number of
machine tools in each sub-line.

3.2 Crossover by MEM

The crossover operations by MEM are different from the
crossover operations using a conventional gene expression
method. The main difference between our MEM crossover
and conventional crossover is that our MEM crossover
operation is applied using a crossover line instead of a
crossover point used in conventional expression methods.

The crossover by our MEM is carried out using the
following steps.

Stepl: Randomly select two individuals from the current
population according to their fitness.
Step2: Select 11+k crossover points, CP, as follows.

CP;=Random(L,..,,S[i]-1) , Vi=1,2,...,(11+k)

Step3: Define the imaginary crossover stepped line that
links each crossover point.

Stepd: Swap the genes after the imaginary crossover
stepped line between the two individuals

The following example describes the steps of the
Crossover operations.

[1] Figure 6 shows two selected individual of Step 1.

2 6 49 000 6

4 7 58 10 2 5 2 5388 35
7 3900 00 9 6 70000
Fig. 6 Two selected individuals

[2] CP4, CPy, ... and CP14y of Figure 7 are the crossover
points selected from Step 2.

CP, CP,
o
26 419/0 0O
4 7 5 8110 2 5

7 3190 0 00

6 1 414 0 0 O
2 5 3 818 3 5
9 617 0 00O
CP1+k

Fig. 7 Selecting crossover points

[3] Figure 8 shows the imaginary crossover stepped line of
Step 3.

Imiginary crossover stepped line

2 6 419 0 0 O 6 1
4 7 5 8110 2 5 2 5
73’_9|0000 9 6/7 00 0O

Fig. 8 Imaginary crossover line

[4] Figure 9 is an example from Step 4. Figure 10 shows
the individuals after crossover.

2
475810 2 5
R S AT N RN

r-- |
7 319.0_0 0 0

Fig. 9 Swap genes between the two individuals
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000 6 149 000

35 253810 25

7 37 0000 96 90 0 00
Fig. 10 Individual after crossover

3.3 Mutation by MEM

The mutation by our MEM is also different. The
characteristic of the mutation is to change the value of one
gene for each row in the individual. The mutation is
carried out using the following steps.

Step 1: Randomly select an individual from the current
population.

Step 2: Select the 11+k mutation locations, MP;, as
follows.

MP; = Random (1, ..., S[i]) , Vi=1,2,...(11+k)

Step 3: Replace the values in the selected locations by a
new value; the new values are randomly selected from (1
~S), where S is the maximum capacity of the buffer size.

The following example describes the crossover by our
MEM.

[1] Figure 11 shows the individual of Stepl.
6 149 000
253810 25
25900 00
Fig. 11 Selected individual

[2] MP;, MP,, ... and MPgi4 of Figure 12 are the
locations selected from Step 2.

MPl MP2

Y

64 940 00

253@10 25
2(5%9 0 0 00
MP (114

Fig. 12 Selecting the mutation places

[3] Assume that the new values of MPy, MP,, ... and
MP 114 selected according to Step 3 are 3, 7, ... and 2. As
a result, Figure 13 is acquired.

6 349 0 00

2 537 10 25

2290000
Fig. 13 Individual after mutation

3.4 Fitness Calculation

The fitness represents the throughput of FPSS and it can
be calculated by using Eq. (3).

Actual number of parts produced
Fitness= - (3)
Theoretical number of pars that can be produced

4. Numerical Example

As an example, we applied FPSS with 5 main component
lines as shown in Figure 3. The FPSS we adopted contains
180 machine tools. The numbers of machine tools in the 5
component lines are as shown in Figure 14.

30
20 20

I

Fig. 14 Number of machine tools of FPSS component lines example

4.1 FPSS production conditions

The FPSS we adopted in the example has the following
characteristics:

1. The number of machine tools for each line is given
below.

Lines 1, 2, 8 and 9 have 20 machine tools for each. Line 3
has 15 machine tools. Lines 4, 5, 6, 7 and 11 have 10
machine tools for each. Line 10 has 5 machine tools. Lines
12,13, 14, 15, 16 and 17 have 5 machine tools for each.

2. The parts sequences input into Line 1 and Line 2 are
decided by using one to one method [20]; the parts
varieties input into line 1 and into line 2 are 10 parts.

3. The machining time for each part (for the 20 parts) in
each machine tool is chosen between 15-20 seconds.

4. Each machine tool stops 6 times an hour and stopping
time is between 15 seconds.

5. Each machine tool stops for a quality check every 100



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007 229

parts. Stopping time =15 seconds.

6. FPSS cycle time is 20 seconds.

7. Working time is 8 hours. The production ratio for each
part is assumed to be between 50 and 100.

8. The maximum capacity of buffer size is 10.

9. A part is defective with probability « = 0.2 at machine
tool m, . At machine tool m; , a part has probability

7 =0.5 to be sent to the feed-forward line.

4.2 Results

The example adopts k+11 as 17. First, we describe the
MEM gene expression matrix. The matrix of FPSS buffer
size example has 20 columns and 17 rows. One of the

individuals of the initial population was given in Figure 15.

We simulated many trails to find the buffer size. After a
number of GA generations based on the proposed MEM,
the fitness reaches its maximum value. Figure 16 shows
one of the best fitness curves. The fitness increases with
the generations from approximately 75% to more than
88%, indicating that FPSS buffer size has improved. In
other words, MEM utilizing GA expressions is useful for
achieving the near optimal FPSS buffer size.

0.9

0.85 /I—_'
0.8 //

0 100 200 300 400 500

Fitness

0.75

0.7

Generations

Fig. 16 Best Fitness Curve

104 5 11 8 7 2101 51035948813
7 9105104 7 4 710101026 1 710929
1 7 6 25 4 4293 7 348300000
7927596 3350000000000
102 5 4 9 3 45327 000000000
9 1 79 13106 1100000000000
8 553896 2920000000000
1 7 6 8103 2 3 23 5 8766398493
16 10 4 2 9 7 4103 6 6 525101 3 355
53558000000 000000000
8 545 9106 8 4 49 000000000
57 1100000000 00000GO0O000O0
6 106 4 00 00000 0O000O0GO0TO0O00
327200000000 00000000
2 4101 0000000 O000O00O0O00O00
73220000000 000000O0000
|26 110000000 000000000
Fig.15 One of the initial population individual

One of the acquired FPSS buffer size was given in Table 1.
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Table 1: Acquired buffer size

P*

Bj

j 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20
I
1 1 3 7 9 10 2 6 9 4 1 8 10 1 10 3 8
2 2 7 8 6 3 8 1 9 1 5 6 1 9 6 10 5 9
3 10 3 10 2 2 4 3 8 2 10 3 4 8 6
4 2 5 7 8 6 1 10 7 8 7
5 2 2 10 10 8 7 17 8 7 10 9
6 9 1 2 7 6 9 10 3 6 7
7 9 10 7 6 4 1 2 8 9 9
8 6 1 3 4 2 2 3 1 9 4 2 2 8 10 9 2 4 6 4 2 10
9 1 8 3 8 5 6 5 2 2 1 1 3 8 5 10 5 5
10 4 2 9 2 8
11 6 5 3 1 9 1 9 3 4 5 3
12 5 1 6 7
13 9 3 2 10
14 2 6 8 7
15 2 5 2 10
16 5 7 9 2
17 9 9 1 1

* the buffer size j located in line i
5. Conclusions References

This study described a proposal for a model FPSS. We

used this FPSS model to study buffer size decision-making.

In addition to the main production line, our FPSS model
contained 4 sub-lines, i.e., parallel lines, a rework path, a
feed-forward line and a feeder line. We also proposed

MEM as a new GA expression method to carry out the GA.

By applying crossover and mutation techniques, we could
determine the genes corresponding to FPSS buffer size.

We used our developed FPSS model to determine some
FPSS buffer sizes. The FPSS had 180 machine tools. The
parts varieties included 20 parts which were input into
FPSS, and the FPSS was operated under specified
conditions. As a result, FPSS throughput reached its
maximum value after 1300 generations. In other words,
the GA based on the proposed expression MEM is useful
for achieving near optimal FPSS buffer size. The results of
the study can be used to improve production efficiency,
and production engineers can use these results when
making decisions regarding buffer size.
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