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Summary 
The production engineer’s decision regarding buffer size 
in a flexible production system is one of the most 
important factors in maximizing production efficiency. In 
this paper, we propose a model Flexible Production 
System with Sub-lines (FPSS). By using the model, we 
can find the buffer size of FPSS by using GA. Also, we 
propose a new GA expression, referred to as a Matrix 
Encoding Method (MEM). This paper deals with an FPSS 
which consists of 5 main component lines, i.e. a main 
production line, parallel lines, rework path, feed-forward 
line and feeder line. Numerical examples show that after a 
number of operations based on the GA with MEM 
expression, the nearest optimal buffer size of FPSS could 
be found. The results of this study can be used to improve 
the production plant, and production engineers can use 
these results in their decisions on buffer size when they 
develop FPSS. 
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1. Introduction 

Deciding buffer size for production systems has gained 
more and more importance because of growing production 
lines’ complexity and because the buffer size has a great 
impact on production efficiency. The buffer size is still 
one of the major optimization problems faced by 
production engineers. Many articles and researches related 
to buffer size have been published [1-4]. To solve the 
buffer size problem, two requirements need to be 
considered. The first requirement is a search method used 
to solve the buffer size problem, and the second 
requirement is a model or approach used to evaluate and 
measure production system performance. The buffer size 
is optimized by various techniques, such as functional 
approximation and evaluation [5], knowledge based 
methods [6], simulated annealing [7], dynamic 
programming method [8], and other search methods. One 
of the search methods that can be used for studying the 

buffer size in production systems is a genetic algorithm 
(GA) [9,10]. GA is an evolutionary technique that uses 
crossover and mutation operators to solve optimization 
problems using a survival of the fittest idea. GA has been 
used successfully for various optimization problems, such 
as the buffer size problem. The performance evaluation of 
the production system is needed to calculate the 
performance measure of the production system which has 
to be optimized. Performance evaluation of a production 
system has garnered close attention in recent years, and 
most work done in this field can be found in a number of 
books [11-16], and in  reviewed papers [17, 18], among 
others. 

However, despite the many existing buffer size 
methodologies, many research studies have focused on the 
buffer size problem for a serial production line and there is 
a lack in the literature of studies that look at the buffer size 
of complicated production systems such as a Flexible 
Production System with Sub-lines (FPSS). This paper 
deals with FPSS which consists of 5 component lines, a 
main production line, parallel lines, rework path, feed-
forward line and feeder line.  In this paper, we define 
FPSS model. By using the model, we can find the buffer 
size of FPSS by using GA. In solving the buffer size, we 
propose a new GA expression, referred to as the Matrix 
Encoding Method (MEM) to carry out the GA. 

2. Definition of FPSS Model 

2.1 Structural Definition 
The flexibility of the production process has become very 
important in new manufacturing industries [19]. The 
importance of flexibility increases the production systems 
complexity. Thus, recently, complicated production 
systems such as FPSS are being widely used in industries 
that require a high variety of production.  
 
One of this paper goals is to model FPSS. After modeling, 
we use the FPSS model to study its buffer size decision-
making. In general, many kinds of FPSS structures can be 
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considered. This research defines the following FPSS as 
our FPSS model.  The FPSS has 5 main components lines, 
the main production line and 4 sub-lines, parallel lines, 
rework path, feed-forward line and feeder line. The 
research adopts the structure of the 5 main components 
lines as shown in Figure 1.    
 
 
  
 
 
 
 
 
 
 
 
 
The details of the 5 main components lines are described 
below. 
 
● Main production line: The main production line is 
typically the principle production line which is used to 
manufacture products and is shared by most of the 
products produced by FPSS. The main production line 
terminates at the end of FPSS.  
● Parallel lines: The parallel lines are a splitting of a main 
production line into two or more parallel lines and 
merging into a main line again. Parallel lines are used to 
increase production capacity or product varieties.  
● Feed-forward line: The feed-forward line is used to 
bypass some special operations and is terminated by re-
inserting the manufactured product into the main 
production line.  
● Rework path: The rework path is included for 
reprocessing the job to repair some defaults in the part to 
attain quality standards. The damaged parts are rejected 
from FPSS by this line. 
● Feeder line: The feeder line is used to bring two or more 
parts together to form a single part.  

By taking into account the component lines described 
above, the FPSS model this paper studies is defined as 
shown in Figure 2. The rectangles of the model represent 
the machine tools and the circles represent the buffer size. 
Each pair of machine tools in the model is separated by a 
buffer size. However, there is no buffer size in front of the 
first machine tool in each main production line and feeder 
line. Also, there is no buffer size next to the last machine 
tool in the model. 

The notations in Figure 2 are described as follows.  
i
jM    Machine tool j in Line i.  

S[i]   Number of buffer sizes in Line i. 

Ma, Mb and Me  Feeder, rework path and feed-forward  
merge machine tools, respectively. 

Mc and Md  Feed-forward and rework path split 
machine tools, respectively. 

Bs and Bm  Parallel split and merge buffer sizes, 
respectively.  

k  Number of parallel lines 
 

2.2 Digital Code Definition 
The other goal of this paper is to find the buffer size of the 
FPSS model of Figure 2. To find it, we need to define 
FPSS buffer size as a digital expression. In order to do this, 
we adopt three procedures. The first one is that FPSS is 
divided into 11+k lines as shown in Figure 3. The second 
is the FPSS buffer size is expressed as a matrix. The 
matrix element values represent the buffer size. Each 
buffer size is located in the matrix according to its location 
in FPSS. The third is that we make the buffer size matrix 
by using an algorithm to make the buffer size matrix. 
Before describing the algorithm, the divided 11+k lines 
are defined as below. 
Line 1: starts from the beginning of the main production 
line until the merge point of the main production line and 
the feeder line. 
Line 2: is the feeder line. 
Line 3: starts from the merge point of the main production 
line and the feeder line until the merge point of the main 
production line and the rework path.  
Line 4: starts from the merge point of the main production 
line and rework path until the start point of the parallel 
lines. 
Line 5: starts from the end point of the parallel lines until 
the start point of the feed forward line. 
Line 6: represents the part of the main production line 
from the split of the feed forward line until the split of the 
rework path.  
Line 7: represents the part of the main production line 
from the split of the rework path until the merge of the 
feed forward line.  
Line 8: represents the part of the main production line 
from the merge of the feed forward line until the end of 
FPSS.  
Line 9: is the feed forward line. 
Line 10: is the part of the rework path until the point just 
before the scrap point. 
Line 11: is the part of the rework path before the scrap 
point. 
Lines 12 to 11+k: are the parallel lines. 
 
 
 
 
 

Fig. 1 FPSS components lines 
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Fig. 2 FPSS model 
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 [Algorithm to make buffer size matrix] 
 
Step 1: Find the number of buffer sizes in Line i for each  
i = 1,2,…, 11+k. 
Step 2: Find N. N is the maximum buffer size number.  
Step 3: Reserve M × N matrix. M is equal to the divided 
FPSS lines number. 
Step 4: Set i = 1. 
Step 5: Put 1

iB  into the first element of row i. 1
iB is the 

first buffer size in Line i. Put 2
iB  into the second element 

of row i and so on. 
Step 6: Set i =i+1. 
Step 7: If i <11+k, go to Step 5, [Else] go to Step 8. 
Step 8: Put zero into all other matrix elements and end the 
algorithm. 
 
By using the above algorithm, we can make the buffer size 
matrix. The buffer size matrix, BM, is given as blow. 
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where S[i] is the number of buffer sizes in Line i. 
The values of the element i

jB   in the matrix in Eq. (1) 
indicates the buffer size  j in Line i in FPSS. 
 
The above algorithm example is introduced. Consider the 
example of FPSS shown in Figure 4. The example FPSS is 
divided into 15 lines. The buffer size matrix of the 
example can be expressed as the following. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
[1] S[1], S[2], … and S[15] of Step 1 become 3, 3, 2, 2, 2, 
2, 2, 3, 4, 2, 4, 2, 2, 2 and 2 respectively.  
[2] N of Step 2 equals 4.  
[3] 15 and 4 correspond to M and N of Step 3.  
[4] When i=1, the number of buffer sizes is 3. The buffer 
sizes are 2, 5 and 8.   Put 2 into the first element of row 1, 
put 5 into the second element of row 2 and put 8 into the 
third element of row 1. Following Step 5 to Step 7, the 
result as shown in Figure 5-B is acquired. 
[5] Figure 5-C is the acquired matrix of Step 8. 
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3. MEM and its GA  

The second goal of this paper is to find the buffer size of 
FPSS utilizing GA. To use GA, we adopt each buffer size 
between machine tools as a gene. To express the genes, we 
propose a new gene expression method called MEM. One 
of MEM’s characteristics is that it expresses the genes as a 
matrix.  

3.1 Matrix Encoding Method 
The conventional GA expresses a gene with a linear gene 
expression method. In the case we are studying here, it is 
difficult to use a linear gene expression method to find the 
FPSS buffer size. This is because the buffer sizes in FPSS 
are arranged as an M × N matrix as we described in 
section 2.2, and it is impossible to express the matrix with 
conventional gene expression methods. In order to solve 
this problem, we propose our MEM as a new gene 
expression method. The MEM codes the gene expression 
according to the buffer size matrix. The MEM gene 
expression is a M × N matrix similar to the buffer size 
matrix. The MEM codes the gene expression represented 
by i

jB in Eq. (1) as a gene, i
jG , for all values of i and j. The 

general MEM gene expression is shown in Eq. (2). 
Hereafter, individual is used instead of gene expression. 
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The number of columns of the matrix is not limited, there 
for, the MEM can deal with any FPSS with any number of 
machine tools in each sub-line. 

3.2 Crossover by MEM 
The crossover operations by MEM are different from the 
crossover operations using a conventional gene expression 
method. The main difference between our MEM crossover 
and conventional crossover is that our MEM crossover 
operation is applied using a crossover line instead of a 
crossover point used in conventional expression methods.  

The crossover by our MEM is carried out using the 
following steps. 

Step1: Randomly select two individuals from the current 
population according to their fitness. 
Step2: Select 11+k crossover points, CP i, as follows. 
 

( )1][,...,1 i −= iSRandomCP  , )k11( ..., ,2 ,1i +=∀  

 
Step3: Define the imaginary crossover stepped line that 
links each crossover point. 
Step4: Swap the genes after the imaginary crossover 
stepped line between the two individuals 
 
The following example describes the steps of the 
crossover operations. 
 
[1] Figure 6 shows two selected individual of Step 1. 
 
 
 
 
 
 
 
 
 
[2] CP1, CP2, … and CP(11+k) of Figure 7 are the crossover 
points selected from Step 2. 
 
 
 
 
 
 
 
 
 
 
 
[3] Figure 8 shows the imaginary crossover stepped line of 
Step 3. 
 
 
 
 
 
 
 
 
 
 
 
 
[4] Figure 9 is an example from Step 4. Figure 10 shows 
the individuals after crossover. 
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Fig. 6 Two selected individuals 
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Fig. 9 Swap genes between the two individuals   
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3.3 Mutation by MEM 
The mutation by our MEM is also different. The 
characteristic of the mutation is to change the value of one 
gene for each row in the individual. The mutation is 
carried out using the following steps. 

Step 1: Randomly select an individual from the current 
population. 
Step 2: Select the 11+k mutation locations, MPi, as 
follows.  
 

( )][..., ,1 iSRandomMPi =  , )k11(..., ,2 ,1i +=∀  
 
Step 3: Replace the values in the selected locations by a 
new value; the new values are randomly selected from (1 
~ S), where S is the maximum capacity of the buffer size. 
 
The following example describes the crossover by our 
MEM. 
 
[1] Figure 11 shows the individual of Step1. 
 
 
 
 
 
 
 
 
[2] MP1, MP2, … and MP(11+k) of Figure 12 are the 
locations selected from Step 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 

[3] Assume that the new values of MP1, MP2, … and 
MP(11+k) selected according to Step 3 are 3, 7, … and 2. As 
a result, Figure 13 is acquired.  
 
 
 
 
 
 
 
3.4 Fitness Calculation 
The fitness represents the throughput of FPSS and it can 
be calculated by using Eq. (3). 
 
                                                                                           
                                                                                         (3) 
 

4. Numerical Example 
As an example, we applied FPSS with 5 main component 
lines as shown in Figure 3. The FPSS we adopted contains 
180 machine tools. The numbers of machine tools in the 5 
component lines are as shown in Figure 14.  

 

 

 

 

 

 
 

4.1 FPSS production conditions 
The FPSS we adopted in the example has the following 
characteristics: 
1. The number of machine tools for each line is given 
below. 
Lines 1, 2, 8 and 9 have 20 machine tools for each. Line 3 
has 15 machine tools. Lines 4, 5, 6, 7 and 11 have 10 
machine tools for each. Line 10 has 5 machine tools. Lines 
12, 13, 14, 15, 16 and 17 have 5 machine tools for each. 
2. The parts sequences input into Line 1 and Line 2 are 
decided by using one to one method [20]; the parts 
varieties input into line 1 and into line 2 are 10 parts. 
3. The machining time for each part (for the 20 parts) in 
each machine tool is chosen between 15-20 seconds. 
4. Each machine tool stops 6 times an hour and stopping 
time is between 15 seconds.  
5. Each machine tool stops for a quality check every 100 

     Fig. 10  Individual after crossover 
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Fig. 13  Individual after mutation 
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parts. Stopping time =15 seconds. 
6.  FPSS cycle time is 20 seconds. 
7. Working time is 8 hours. The production ratio for each 
part is assumed to be between 50 and 100. 
8. The maximum capacity of buffer size is 10.  
9. A part is defective with probability 2.0=α at machine 
tool rm . At machine tool fm , a part has probability 

5.0=γ to be sent to the feed-forward line.  
 

4.2 Results 
The example adopts k+11 as 17. First, we describe the 
MEM gene expression matrix. The matrix of FPSS buffer 
size example has 20 columns and 17 rows. One of the 
individuals of the initial population was given in Figure 15. 
We simulated many trails to find the buffer size. After a 
number of GA generations based on the proposed MEM, 
the fitness reaches its maximum value.  Figure 16 shows 
one of the best fitness curves. The fitness increases with 
the generations from approximately 75% to more than 
88%, indicating that FPSS buffer size has improved. In 
other words, MEM utilizing GA expressions is useful for 
achieving the near optimal FPSS buffer size.  
 

 
 

Fig. 16 Best Fitness Curve 
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 Fig.15 One of the initial population individual 
 
One of the acquired FPSS buffer size was given in Table 1. 
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Table 1: Acquired buffer size 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Conclusions  
 
This study described a proposal for a model FPSS. We 
used this FPSS model to study buffer size decision-making. 
In addition to the main production line, our FPSS model 
contained 4 sub-lines, i.e.,  parallel lines, a rework path, a 
feed-forward line and a feeder line. We also proposed 
MEM as a new GA expression method to carry out the GA. 
By applying crossover and mutation techniques, we could 
determine the genes corresponding to FPSS buffer size.  
 
We used our developed FPSS model to determine some 
FPSS buffer sizes. The FPSS had 180 machine tools. The 
parts varieties included 20 parts which were input into 
FPSS, and the FPSS was operated under specified 
conditions. As a result, FPSS throughput reached its 
maximum value after 1300 generations. In other words, 
the GA based on the proposed expression MEM is useful 
for achieving near optimal FPSS buffer size. The results of 
the study can be used to improve production efficiency, 
and production engineers can use these results when 
making decisions regarding buffer size.  
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