
 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

268

Efficient Algorithm for Mining Temporal Association Rule

JUNHENG-HUANG 1 WANG-WEI 2

1Department of Computer Science & Technology, Harbin Institute of Technology at Weihai,, China,
264209

Summary
It presents an SPFA(Standing for Segmented Progressive Filter
Algorithm).The basic idea behind SPFA is to first segment the
database into sub-databases in such a way that item in each
sub-database will have either the common starting time or the
common ending time. Then, for each sub-databse, SPFA
progressively filters candidate 2-itemsets with cumulative
filtering thresholds either forward or backward in time. This
feature allows SPFA of adopting the scan reduction technique by
generating all candidate k-itemsets from candidate 2-itemsets
directly. The experimental results show that SPFA significantly
outperforms other schemes which are extended from prior
methods in terms of the execution time and scalability. The
advantage of SPFA becomes even more prominent as the size of
the database increases.

Keywords: Association rule; Itemset; Data mining

1 INTRODUCTION

Date Mining was first recognized as a field in its own
right ten years ago, when researchers from a number of
different field started to explore the possibilities of
extracting information from the large quantities of data
held in database. A significant amount of research effort
has been elaborated upon deriving data mining techniques
to discover useful but unknown knowledge from large
databases.
 The problem of mining association rules was first
explored by [1].Many variants of mining association rules
are studied to explore more mining capabilities, such as
incremental updating[2,3],mining of generalized and
multi-level rules[4],mining associations among correlated
or infrequent items[5],and temporal association rule
discovery[6,7].
 While these are important results toward enabling the
integration of association mining and fast searching
algorithms, their mining methods, however cannot be
effectively applied to the transaction database where the
exhibition periods of the items are different from one to
another. As a matter of fact, it is a common phenomenon
that the items in a real transaction databases have different
exhibition periods.

2 Problem Description

We present an efficient standing for segmented
progressive filter algorithm (SPFA) in this paper. To
address this issue, we explore a new model of mining
general temporal association rules where the items are
allowed to have different exhibition periods, and the
determination of their supports is made in accordance
with their exhibition periods. Explicitly, we introduce
the notion of maximal common exhibition period
(abbreviated as MCP) .The MCP of the itemset X,
denoted by [p,q], is defined as the period between the
latest-exhibition-start time p and the
earliest-exhibition-end time q of all items belonging to
X.

The items in a transaction database may have
different exhibition periods. Without loss of generality,
it is assumed that a certain time granularity is imposed
by the application database. Let n be the number of
partitions divided by the time granularity imposed. In
the model considered,dbp,q(nqp1 ≤≤≤)denotes the
portion of the transaction database formed by a
continuous region from the partition Pp to the partition
Pq,and Xp,q denotes the temporal itemset whose items
are commonly exhibited from the partition Pp to
thepartitionPq.

As such, we can define the maximal temporal
itemset Xp,q and the corresponding temporal
sub-itemsets as follows:
Definition 1: The temporal itemset Xpq is called a
maximai temporal itemset (TI) if Pp is the latest starting
partition and Pq is the earliest ending partition of all
items belonging to X.[p,q] is referred to as the maximal
common exhibition period(MCP) of the itemset X,
denoted by MCP(X).
Definition 2: The maximal temporal itemset)x(MCPX is
termed to be frequent if supp()x(MCPX) ≥ min_supp
where min-supp is the minimum support required.
Property 1: All temporal sub-itemsets of a frequent
maximal temporal itemset are frequent.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

269

 Note that the calculation of the confidence of a
general temporal association rule not only depends on
the relative support of the corresponding maximal
temporal itemset, but also relys on the relative supports
of the corresponding temporal sub-itemsets. Property 1
ensures that relative supports of the corresponding
temporal sub-itemsets can be obtained without extra
database scans since all temporal sub-itemsets of the
frequent maximal temporal itemset are also frequent.

3 SPFA for Mining General Temporal
Association Rules

The problem of mining general temporal association
rules is to discover all frequent general temporal
association rules from the large database. Similarly, the
problem of mining general temporal association can be
decomposed into two steps: (1) Generate all frequent
maximal temporal itemsets (TI) and the corresponding
maximal temporal sub-itemsets (SI) with their relative
supports; (2) Derive all frequent general temporal
association rules that satisfy min-conf from these
frequent TI.
 Note that once that frequent TI and SI with their
supports are obtained, deriving the frequent general
temporal association rules is straight- forward.
Therefore, in the rest of this paper we will concentrate
our discussion on the algorithm for mining frequent TI
and SI.

The major challenge of mining general temporal
association rules is that the exhibition periods of the
items in the transaction database are allowed to be
different from one to another.

SPFA consists of two major procedures
Segmentation (abbreviated as ProcSG) and
Progressively Filtering (abbreviated as ProcPF). The
basic idea is to first divide the database into partitions
according to the time granularity imposed. Then, in
light of the exhibition period of each item, SPFA
employs ProcSG to segment the database into
sub-databases in such a way that items in each
sub-database will have either the common starting time
or the common ending time. For each sub-database,
SPFA utilizes ProcPF to progressively filter candidate
2-itemsets with cumulative filtering thresholds from
one partition to another. After all sub-databases are
process, SPFA unions all candidate 2-itemsets generated
in each sub-database. As pointed out earlier, since
infrequent 2-itemsets will be filtered out in the early
processed partitions, the resulting candidate 2-itemsets

will be very close to the frequent 2-itemsets. This
feature allows us of adopting the scan reduction
technique by generating all candidate k-itemsets (k>2)
from candidate 2-itemsets directly. After all candidate
itemsets are generated, they are transformed to TI, and
the corresponding SI are generated based on these TI.
Finally, the frequent TI and SI with their supports can
be obtained by scanning the whole database once.

Finally, SPFA is completed by the integration of
ProcPS and ProcPF. At first,SPFA segments the
database into sub-databases by ProcSG. Then, for each
sub-database, SPFA employs ProcPF to progressively
filter out candidate 2-itemsets. Using the scan reduction
technique[8], SPFA generates all candidate k-itemsets
are transformed to TI, and the corresponding SI are
generated. Finally, the database is scanned once to
determine all frequent TI and SI.

3.1 Description of PROCSG for

Segmentation

The motivation of ProcSG is to first reduce the
problem of mining general temporal association rules to
the one in which the exhibition periods of the items are
only allowed to be either different in the starting time or
different in the ending time. After such a reduction, we
are able to employ ProcPF, in each sub-database, to
progressively filter candidate 2-itemsets either forward
or backward (in time) efficiently. However, as
mentioned above, the advantageous feature of ProcPF is
that it can progressively filter out infrequent 2-itemset
in the early processed partitions. Thus， the more
segments the whole database is divided into, the less
significant the filtering effect will be. In view of this,
ProcSG is devised to segment the whole database into
the minimal number of sub-database as required for
items in each sub-database to have either the common
starting partition or the common ending parting. The
function ProcSG(N) is as follow:
{S=φ ;direction= -1; head=1;
for (i=0 to =n)
 {flag[i][L]=false; flag[i][R]=false;}
for (each item Ii∈)
{ (p,q)=MCP(i);
 flag[p-1][L]=true;
 flag[q][R]=true;}
for(i=1 to n-1)
{ if direction==-1

{if(flag[i][L]==true and flag[i][R]==true)
 {S=S∪ (head,i,direction);

head=i+1;}
elseif(flag[i][L]==true and flag[i][R]==false)

direction=L;
elseif(flag[i][L]==false and flag[i][R]==true)

 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

270

direction=R;
}else if direction==L;

{if(flag[i][R]==true)
{ S=S∪ (head,i,direction);
head=i+1;
direction=-1;}

}elseif (direction==R)
{if(flag[i][L]==true)
{S=S∪ (head,i,direction);
head=i+1;
direction=-1;}

}
}
S=S∪ (head,n,direction);

return S;}

3.2 Description of PROCPF for

progressively Filtering

After the entire database is segmented by ProcSG,
ProcPF is designed to progressively filter candidates
2-itemsets from one partition to another in each
sub-database. Specifically, PROCPF generates all
2-itemsets and counts their occurrences in the first
partition. For those 2itesmsets whose numbers of
occurrences are not smaller than the filtering threshold,
they are viewed as candidate 2-itemsets and will be
brought to the next partition for further processing.
Then, ProcPF will generate new 2-itemsets in the
second partition and count their occurrences as well.
However, for those candidate 2-itemsets brought from
the previous partition, their numbers of occurrences will
be cumulated from the previous partition to the current
one. Note that the filtering threshold for them will also
be cumulated. Similarly, those 2-itemsets shoes
numbers of occurrences are not smaller than their
corresponding filtering thresholds will be brought to the
next partition for further processing until there is no
partition to be processed any more.

Let PS denote the cumulative set of candidate
2-itemsets. It is noted that PS is composed of the
following two types of candidate 2-itemsets(1) the
candidate 2-itemsets that were carried over from the
previous partition and remain as candidate 2-itemsets
after the current partition is included into
consideration.(2) the candidate itemsets that were not in
the cumulative candidate set in the previous partition
but are newly selected after taking the current partition
into account. Since a significant number of 2-itemsets
will be filtered out in the early partitions, the resulting
PS will be very close to the set of frequent 2-itemsets
after processing all partitions. Taking advantage of this
feature, we can employ the scan reduction technique to
generate all candidate k-itemsets where k>2 from
(k-1)itemsets at the same time[8].

The function to progressively filter out infrequent
2-itemsets is shown in ProcPF.ProcPF takes three
arguments p,q and direction as the input, where p and q
are the starting and ending partition to be processed
(p<=q), and direction indicates the scanning direction.
If the items in the sub-database have the same ending
partition, the direction is forward. Otherwise ,the
direction is backward. The function ProcPF is shown as
follow:
Function ProcPF(p,q,direction)
{PS=φ ;
if(direction==left)
 head=p;tail=q;
else
head=p,tail=p;
for(h=head to tail)
for(each 2-itemset X2 in Ph)
 if (X2∉PS)
{ X2.count=

hpN (X2);
X2.start=h;
If (X2.count>=min_supp*|Ph|)
PS=PS∪ X2;}
Else
{X2.coun= X2.coun+)X(N 2Ph

;

X2.coun< ⎡ ⎤∑ = h.sart.Xm m
2

P*supp_min

PS=PS- X2;}
Return PS;
}
Finally,SPFA is completed by the integration of

ProcPS and ProcPF. At first,SPFA segments the
database into sub-databases by ProcSG. Then, for each
sub-database, SPFA employs ProcPF to progressively
filter out candidate 2-itemsets. Using the scan reduction
technique[8], SPFA generates all candidate k-itemsets
are transformed to TI, and the corresponding SI are
generated. Finally, the database is scanned once to
determine all frequent TI and SI.

4 Conclusion

In this paper, we explored a new mode of mining
general temporal association rules from large databases
where the exhibition periods of the items are allowed to
be different from one to another. We developed an
efficient algorithm, referred to as SPFA in this paper to
discover general temporal association rules effectively.
The experimental results showed that SPFA
significantly outperforms other schemes which are
extended from prior methods in terms of the execution
time and scalability. With the capability of mining

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

271

general temporal association rules for items with
different exhibition periods,SPFA outperforms prior
methods in its generality and superiority.

Acknowledgements

This paper is supported by Specialized scientific
research Foundation.

Reference
[1] R. Agrawal, T.lmielinski, and A. Swami. Mining

Association Rules between Sets of Items in Large
Databases.Proc.of ACM SIGMOD ，
pages207-216,May 1993.

[2] A.M.Ayad,N.M.E1-Makky, and Y.Taha. Incremental
Mining of Constrained Association Rules,Proc.of
the First SLAMConference on Data Mining.2001

[3] C.-H.Lee,C-R.Lin.Sliding-Window Flitering: An
Efficient Algorithm for Incremental Mining.Proc.of
the Tenth ACM International Conference on
Information and Knowledge
Management,November,2001.

[4]R.Srikant and R.Agrawal.Mining Generalized
Association Rules.Proc. of the 21th International
Conference on Very Large
databases.Pages407-419.Sep.1995.

[5] E.C.et,al. Finding Interesting Associations without
Support Pruning. IEEE Transactions on Knowledge
and Data Engineering.Page64-78,Jan,2001.

[6]J.Ale and G..Rossi. An Approach to Discovering
Temporal Association Rules.ACM Symposium on
Applied Computing.2000.

[7]X.Chen and I.Petr. Discovering Temporal
Association Rules:Algorithms,Language and system.
Proc. Of 200 Int. Conf. on Data Engineering,2000.

[8] J.S.Park,M-S.Chen.Using a Hash-Based Method
with Transaction Trimming for Mining Association
Rules.IEEE Transaction on Knowledge and Data
Engineering,((5):813-825. October 1997.

