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Summary 
It presents an SPFA(Standing for  Segmented Progressive Filter 
Algorithm).The basic idea behind SPFA is to first segment the 
database into sub-databases in such a way that item in each 
sub-database will have either the common starting time or the 
common ending time. Then, for each sub-databse, SPFA 
progressively filters candidate 2-itemsets with cumulative 
filtering thresholds either forward or backward in time. This 
feature allows SPFA of adopting the scan reduction technique by 
generating all candidate k-itemsets from candidate 2-itemsets 
directly. The experimental results show that SPFA significantly 
outperforms other schemes which are extended from prior 
methods in terms of the execution time and scalability. The 
advantage of SPFA becomes even more prominent as the size of 
the database increases. 
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1 INTRODUCTION 

Date Mining was first recognized as a field in its own 
right ten years ago, when researchers from a number of 
different field started to explore the possibilities of 
extracting information from the large quantities of data 
held in database. A significant amount of research effort 
has been elaborated upon deriving data mining techniques 
to discover useful but unknown knowledge from large 
databases.  
 The problem of mining association rules was first 
explored by [1].Many variants of mining association rules 
are studied to explore more mining capabilities, such as 
incremental updating[2,3],mining of generalized and 
multi-level rules[4],mining associations among correlated 
or infrequent items[5],and temporal association rule 
discovery[6,7]. 
 While these are important results toward enabling the 
integration of association mining and fast searching 
algorithms, their mining methods, however cannot be 
effectively applied to the transaction database where the 
exhibition periods of the items are different from one to 
another. As a matter of fact, it is a common phenomenon 
that the items in a real transaction databases have different 
exhibition periods.  

2  Problem Description 

We present an efficient standing for segmented 
progressive filter algorithm (SPFA) in this paper. To 
address this issue, we explore a new model of mining 
general temporal association rules where the items are 
allowed to have different exhibition periods, and the 
determination of their supports is made in accordance 
with their exhibition periods. Explicitly, we introduce 
the notion of maximal common exhibition period 
(abbreviated as MCP) .The MCP of the itemset X, 
denoted by [p,q], is defined as the period between the 
latest-exhibition-start time p and the 
earliest-exhibition-end time q of all items belonging to 
X. 

The items in a transaction database may have 
different exhibition periods. Without loss of generality, 
it is assumed that a certain time granularity is imposed 
by the application database. Let n be the number of 
partitions divided by the time granularity imposed. In 
the model considered,dbp,q( nqp1 ≤≤≤ )denotes the 
portion of the transaction database formed by a 
continuous region from the partition Pp to the partition 
Pq,and Xp,q denotes the temporal itemset whose items 
are commonly exhibited from the partition Pp to 
thepartitionPq. 

As such, we can define the maximal temporal 
itemset Xp,q and the corresponding temporal 
sub-itemsets as follows: 
Definition 1: The temporal itemset Xpq is called a 
maximai temporal itemset (TI) if Pp is the latest starting 
partition and Pq is the earliest ending partition of all 
items belonging to X.[p,q] is referred to as the maximal 
common exhibition period(MCP) of the itemset X, 
denoted by MCP(X). 
Definition 2: The maximal temporal itemset )x(MCPX is 
termed to be frequent if supp( )x(MCPX ) ≥ min_supp 
where min-supp is the minimum support required. 
Property 1: All temporal sub-itemsets of a frequent 
maximal temporal itemset are frequent. 
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 Note that the calculation of the confidence of a 
general temporal association rule not only depends on 
the relative support of the corresponding maximal 
temporal itemset, but also relys on the relative supports 
of the corresponding temporal sub-itemsets. Property 1 
ensures that relative supports of the corresponding 
temporal sub-itemsets can be obtained without extra 
database scans since all temporal sub-itemsets of the 
frequent maximal temporal itemset are also frequent. 
 
 

3  SPFA for Mining General Temporal 
Association Rules   

The problem of mining general temporal association 
rules is to discover all frequent general temporal 
association rules from the large database. Similarly, the 
problem of mining general temporal association can be 
decomposed into two steps: (1) Generate all frequent 
maximal temporal itemsets (TI) and the corresponding 
maximal temporal sub-itemsets (SI) with their relative 
supports; (2) Derive all frequent general temporal 
association rules that satisfy min-conf from these 
frequent TI. 
 Note that once that frequent TI and SI with their 
supports are obtained, deriving the frequent general 
temporal association rules is straight- forward. 
Therefore, in the rest of this paper we will concentrate 
our discussion on the algorithm for mining frequent TI 
and SI. 

The major challenge of mining general temporal 
association rules is that the exhibition periods of the 
items in the transaction database are allowed to be 
different from one to another.  

SPFA consists of two major procedures 
Segmentation (abbreviated as ProcSG) and 
Progressively Filtering (abbreviated as ProcPF). The 
basic idea is to first divide the database into partitions 
according to the time granularity imposed. Then, in 
light of the exhibition period of each item, SPFA 
employs ProcSG to segment the database into 
sub-databases in such a way that items in each 
sub-database will have either the common starting time 
or the common ending time. For each sub-database, 
SPFA utilizes ProcPF to progressively filter candidate 
2-itemsets with cumulative filtering thresholds from 
one partition to another. After all sub-databases are 
process, SPFA unions all candidate 2-itemsets generated 
in each sub-database. As pointed out earlier, since 
infrequent 2-itemsets will be filtered out in the early 
processed partitions, the resulting candidate 2-itemsets 

will be very close to the frequent 2-itemsets. This 
feature allows us of adopting the scan reduction 
technique by generating all candidate k-itemsets (k>2) 
from candidate 2-itemsets directly. After all candidate 
itemsets are generated, they are transformed to TI, and 
the corresponding SI are generated based on these TI. 
Finally, the frequent TI and SI with their supports can 
be obtained by scanning the whole database once. 

Finally, SPFA is completed by the integration of 
ProcPS and ProcPF. At first,SPFA segments the 
database into sub-databases by ProcSG. Then, for each 
sub-database, SPFA employs ProcPF to progressively 
filter out candidate 2-itemsets. Using the scan reduction 
technique[8], SPFA generates all candidate k-itemsets 
are transformed to TI, and the corresponding SI are 
generated. Finally, the database is scanned once to 
determine all frequent TI and SI. 

3.1 Description of PROCSG for 

Segmentation 

The motivation of ProcSG is to first reduce the 
problem of mining general temporal association rules to 
the one in which the exhibition periods of the items are 
only allowed to be either different in the starting time or 
different in the ending time. After such a reduction, we 
are able to employ ProcPF, in each sub-database, to 
progressively filter candidate 2-itemsets either forward 
or backward (in time) efficiently. However, as 
mentioned above, the advantageous feature of ProcPF is 
that it can progressively filter out infrequent 2-itemset 
in the early processed partitions. Thus， the more 
segments the whole database is divided into, the less 
significant the filtering effect will be. In view of this, 
ProcSG is devised to segment the whole database into 
the minimal number of sub-database as required for 
items in each sub-database to have either the common 
starting partition or the common ending parting. The 
function ProcSG(N) is as follow: 
{S=φ ;direction= -1; head=1; 
for (i=0  to =n) 
 {flag[i][L]=false; flag[i][R]=false;} 
for (each item Ii∈ ) 
{  (p,q)=MCP(i); 
  flag[p-1][L]=true; 
  flag[q][R]=true;} 
for(i=1 to n-1) 
{ if direction==-1  

{if(flag[i][L]==true and flag[i][R]==true) 
 {S=S∪ (head,i,direction); 

head=i+1;} 
elseif(flag[i][L]==true and flag[i][R]==false) 

direction=L; 
elseif(flag[i][L]==false and flag[i][R]==true) 
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direction=R; 
}else if direction==L; 

{if(flag[i][R]==true) 
{ S=S∪ (head,i,direction); 
head=i+1; 
direction=-1;} 

}elseif (direction==R) 
{if( flag[i][L]==true) 
{S=S∪ (head,i,direction); 
head=i+1; 
direction=-1;} 

} 
} 
S=S∪ (head,n,direction); 

return S;} 

3.2 Description of PROCPF for 

progressively Filtering 

After the entire database is segmented by ProcSG, 
ProcPF is designed to progressively filter candidates 
2-itemsets from one partition to another in each 
sub-database. Specifically, PROCPF generates all 
2-itemsets and counts their occurrences in the first 
partition. For those 2itesmsets whose numbers of 
occurrences are not smaller than the filtering threshold, 
they are viewed as candidate 2-itemsets and will be 
brought to the next partition for further processing. 
Then, ProcPF will generate new 2-itemsets in the 
second partition and count their occurrences as well. 
However, for those candidate 2-itemsets brought from 
the previous partition, their numbers of occurrences will 
be cumulated from the previous partition to the current 
one. Note that the filtering threshold for them will also 
be cumulated. Similarly, those 2-itemsets shoes 
numbers of occurrences are not smaller than their 
corresponding filtering thresholds will be brought to the 
next partition for further processing until there is no 
partition to be processed any more. 

Let PS denote the cumulative set of candidate 
2-itemsets. It is noted that PS is composed of the 
following two types of candidate 2-itemsets(1) the 
candidate 2-itemsets that were carried over from the 
previous partition and remain as candidate 2-itemsets 
after the current partition is included into 
consideration.(2) the candidate itemsets that were not in 
the cumulative candidate set in the previous partition 
but are newly selected after taking the current partition 
into account. Since a significant number of 2-itemsets 
will be filtered out in the early partitions, the resulting 
PS will be very close to the set of frequent 2-itemsets 
after processing all partitions. Taking advantage of this 
feature, we can employ the scan reduction technique to 
generate all candidate k-itemsets where k>2 from 
(k-1)itemsets at the same time[8]. 

The function to progressively filter out infrequent 
2-itemsets is shown in ProcPF.ProcPF takes three 
arguments p,q and direction as the input, where p and q 
are the starting and ending partition to be processed 
(p<=q), and direction indicates the scanning direction. 
If the items in the sub-database have the same ending 
partition, the direction is forward. Otherwise ,the 
direction is backward. The function ProcPF is shown as 
follow: 
Function ProcPF(p,q,direction) 
{PS=φ ; 
if(direction==left) 
 head=p;tail=q; 
else 
head=p,tail=p; 
for(h=head to tail) 
for(each 2-itemset X2 in Ph) 
 if (X2∉PS) 
{ X2.count=

hpN ( X2); 
X2.start=h; 
If (X2.count>=min_supp*|Ph|) 
PS=PS∪  X2;} 
Else 
{X2.coun= X2.coun+ )X(N 2Ph

; 

X2.coun< ⎡ ⎤∑ = h.sart.Xm m
2

P*supp_min  

PS=PS- X2;} 
Return PS; 
} 
Finally,SPFA is completed by the integration of 

ProcPS and ProcPF. At first,SPFA segments the 
database into sub-databases by ProcSG. Then, for each 
sub-database, SPFA employs ProcPF to progressively 
filter out candidate 2-itemsets. Using the scan reduction 
technique[8], SPFA generates all candidate k-itemsets 
are transformed to TI, and the corresponding SI are 
generated. Finally, the database is scanned once to 
determine all frequent TI and SI. 

4  Conclusion 

In this paper, we explored a new mode of mining 
general temporal association rules from large databases 
where the exhibition periods of the items are allowed to 
be different from one to another. We developed an 
efficient algorithm, referred to as SPFA in this paper to 
discover general temporal association rules effectively. 
The experimental results showed that SPFA 
significantly outperforms other schemes which are 
extended from prior methods in terms of the execution 
time and scalability. With the capability of mining 
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general temporal association rules for items with 
different exhibition periods,SPFA outperforms prior 
methods in its generality and superiority. 
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