
 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

Manuscript received April 5, 2007

Manuscript revised April 25, 2007

272

A Process Model for Software Architecture

A. Rama Mohan Reddy
Associate Professor

Dr. P Govindarajulu
Professor

Dr. M M Naidu
Professor

Department of Computer Science and Engineering

Sri Venkateswara University College of Engineering / Arts and Science
Sri Venkateswara University

TIRUPATI – 517 502. Andhra Pradesh, INDIA

ABSTRACT

Software development life cycle (SDLC) is a process model adopted
and followed during the development of software.. Software
Engineering encompasses software engineering process models,
project planning, management, and Software Development Life Cycle
activities. In this paper, we are proposing a software process model for
architecture-based software development from the conventional
models by taking spiral process model. This process model is coined as
Software Architecture Development Life Cycle (SADLC).
Key words:

Software Architecture, Software Development Life Cycle,
Components, connectors, configurations, Spiral model.

1. Introduction

Software systems come and go, through a series of phases or
activities that starts from the Inception, Initial Development,
Productive Operation, Upkeep, and Retirement. The process
provides interaction between stakeholders and serves as the
medium for communication, with each new round of the
iteration eliciting more useful knowledge from the stakeholders.
Building computer software is an iterative learning process, and
the outcome, called Software A software process defines the
approach that is taken as software is engineered [PAU93]. This
paper examines a number of methods for software modelling
how software systems are developed. It begins with related
works and definitions of traditional software life cycle process
models. These models that are in use that form as the basis for
organizing a process model for software architecture

2. Related work

Many models explicitly used for the earliest projects for
developing large software systems in the 1950’s and 1960’s
[Hosier 1961, Royce 1970]. Since the 1960’s many descriptions
of the classic software development life cycle have appeared
[Hosier 1961], [Royce 1970], [Boehm 1976], [Distaso 1980],
[Scacchi 1984], and [Somerville 1999]. Royce [1970] began the
formulation of the software life cycle using the familiar
waterfall model, shown in figure 1.

2.1 The software life cycle model

A descriptive model describes the history of how a
particular software system was developed [Curtis,
Krasner, Iscoe, 1988]. Prescriptive models are used as
guidelines or frameworks to organize and structure how
software development activities should be performed,
and in what order.

Figure 1. Conventional Software development life cycle (SDLC)

Prescriptive models are also used to package the
development tasks and techniques for using a given set
of software engineering tools or environment during a
development project.

Descriptive life cycle models, characterize how
particular software systems are actually developed in

 Problem
definition

Analysis

Design

Construction

Testing

Maintenance

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

273

specific settings. These two characterizations suggest that there
are varieties of purposes for articulating software life cycle
models. These characterizations serve as guidelines to organize
artifacts to be delivered the customer, tool and methods, and
resource allocation and consumption [Boehm 1981].

 To solve actual problems in an industry setting, a
software engineer or a team of engineers must incorporate a
development strategy that encompasses the process, Methods,
and tools layers and the generic phases [Roger R.S Pressman,
2003]. This strategy is often referred to as a process model or
software engineering paradigm.

Figure 2 Software Development Life Cycles for Object-Oriented Software

Development

All software development methods can be characterized as a
problem-solving loop in which four distinct stages are
encountered. The current state of affairs, problem definition
identifies the specific problem to be solved, technical
development solves the problem through the application of
some technology, and solution integration delivers the results,
documents, programs, data, new business function, new product,
to those who requested the solution in the first place. Software
process models often represent a networked sequence of
activities, objects, transformations, and events that embody
strategies for accomplishing software evolution. Software
process networks can be viewed as representing multiple
interconnected task chains [Kling 1982, Garg 1989]. Task
chains can be employed to characterize either prescriptive or
descriptive action sequences. Prescriptive task chains are
idealized plans of what actions should be accomplished, and in
what order. For example, as shown in figure 2, a task chain for
the activity of object-oriented software designs.

Clearly, this sequence of actions could entail multiple
iterations and non-procedural primitive action
invocations in the course of incrementally progressing
toward an object-oriented software design. The
progressive steps of software evolution are often
described as phases, such as requirements
specification, preliminary design, and implementation.

2. 2 The linear sequential model

 The linear sequential model, sometimes
called the Classic life or the waterfall model, proposed
by winsten Royce [Roy 70]. The linear sequential
model suggests a systematic, sequential approach to
software development that begins at the system level
and progresses through analysis, design, coding,
testing, and support as shown in figure 3.
.

Figure 3. Software Development Life Cycle for Conventional

software development (The Linear Sequential Model).

2.3 The Prototyping Model

 A customer defines a set of general objectives
for software but does not identify detailed input,
processing, or output requirements. In these, and many
other situations, a prototyping paradigm may offer the
best approach

2. 4 The RAD Model

 Rapid application development (RAD) is an
incremental software development process model that
emphasizes an extremely short development life cycle.

Analysis

Design

Construction

Testing

Information
engineering

Application
Domain of Objects

Object-Oriented
Analysis

Object-Oriented Design

Object-Oriented
Programming

Testing Object-Oriented
Programs

 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

274

It is a component-based construction, but high speed linear
sequential.

2. 5 Evolutionary Software Process Model

 Software evolves over a period of time [GIL 88].
Evolutionary models are iterative. Iterative way of developing
software is one of the modern software development processes.
Evolutionary models enable software engineers to develop
increasingly more complete versions of the software.

2.6 Incremental Models

 It combines elements of the linear sequential model
applied respectively with the iterative philosophy of prototyping.
First increment is often a core product. It is iterative in nature.

2.7 The Spiral Model

 The spiral model, proposed by Boehm [BOE 88], is an
evolutionary software process model that couples the iterative a
nature of prototyping with controlled and systematic aspects of
the linear sequential model as shown in figure 4. A spiral model
is divided into a number of framework activities, also called
tasks or regions. Customer communication is for effective
communication between developer and customer. Planning is to
define resources, timelines. Risk analysis is for assessing both
technical and management risks. Engineering, Construction and
release are to build one or more representations of the
applications. Customer Evaluation is for obtaining customer
feedback on evaluation of the software representations created
during the engineering stage and implemented during the
installation stage.

The spiral model of software development and evolution
represents a risk-driven approach to software process analysis
and structuring (Boehm 1987, Boehm et al, 1998). This
approach, developed by Barry Boehm, incorporates elements of
specification-driven, prototype-driven process methods,
together with the classic software life cycle. It does so by
representing iterative development cycles as an expanding spiral,
with inner cycles denoting early system analysis and
prototyping, and outer cycles denoting the classic software life
cycle. The radial dimension denotes cumulative development
costs, and the angular dimension denotes progress made in
accomplishing each development spiral as shown in Figure 4.
Risk analysis, which seeks to identify situations that might
cause a development effort to fail or go over budget/schedule,
occurs during each spiral cycle.

In each cycle, it represents roughly the same amount of angular
displacement, while the displaced sweep volume denotes
increasing levels of effort required for risk analysis. In this

model, System development therefore spirals out only
so far as needed according to the risk that must be
managed. Finally, efforts are now in progress to
integrate computer-based support for stakeholder
negotiations and capture of trade-off rationales into an
operational form of the WinWin Spiral Model [Boehm
et al, 1998]. We are considering the parts of this model
to propose Software Architecture Development Life
Cycle. (SADLC).

Figure 4 The spiral process model

2.8 The WinWin Spiral Model

 The Customer wins by getting the system or
product that satisfy the majority of the customer’s
needs and the developer wins by working to realistic
and achievable budgets and deadlines. Boehm’s
WINWIN spiral model [BOE 98] defines a set of
negotiation activities at the beginning of each pass
around the spiral.

2.9 The Concurrent Development Model

The concurrent development model is also called
concurrent engineering, Davis and Sitaram [DAV 94].
The concurrent process model defines a series of
events that will trigger transitions from state to state
for each of the software engineering activities. A
system and component activities occur simultaneously
and can be modelled using the state-oriented approach
described previously. Each activity on the network
exists simultaneously with other activities.

2.10 Component-Based Development

Object-Oriented technologies provide the
technical framework for a component-based
process model for Software Engineering.

Risk
analysis

Customer
Evaluation

Customer
communication

Planning

Engineering and
construction

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

275

3. SOFTWARE ARCHITECTURE AND
ARCHITECTURAL ISSUES

Object-Oriented Technologies provide the technical framework
for a component-based process model for software engineering.
The Object-Oriented paradigm emphasizes the creation of
components that encapsulate both data and the algorithms used
to manipulate the data. The software architecture process model
incorporates many of the characteristic of the spiral model and
Object-Oriented process model. It is evolutionary in nature,
demanding an iterative approach to the creation of software.
The engineering activity begins with the identification of
candidate components from the business logic. Software
architecture shift focus of developers from the line of the code
to coarse-grained architectural elements and their overall
interconnection structure as shown in figure 5.

Figure 5. Architecture is shown as it is above the algorithms and Lines- of-
Code

Architecture description languages (ADLs) have been
proposed as Modeling notations to support architecture-based
development. We have considered UML for Modeling. The
components and connectors identified in the analysis and design
are used for architecture analysis and architecture design. The
first iteration of the application to compose and to build new
components to meet the unique needs of the application. The
Process flow then returns to the spiral and will ultimately re-
enter the architectural issues loop during subsequent iteration
through the engineering activity. The software architecture-
based development model leads to software reuse, and
reusability provides software engineers with a number of
measurable benefits.

The unified software development process is representative of a
number of architecture-based development models that have
been proposed in the industry. Using the Unified Modeling
Language (UML), the unified process defines the components
that will be used to build the system and the interfaces that will
connect the components. Using a combination of iterative and

incremental development, the unified process defines
the function of the system by applying a scenario-
based approach. It then couples function with an
architectural framework that identifies the form the
software will take. Figure 6 shows the overview of the
transition from the Lines-Of-Code to architectural
elements.

Figure 6 Overview of Transitions from algorithms, Ds & LOC to

Architectural Elements

4. MODERN SOFTWARE
EVELOPMENT

4.1 Transition design methods to emphasize
component-based development

Moving from a line-of-code mentality to a component-
based mentality is necessary to reduce the amount of
human-generated source code and custom
development.

Software architecture is the central design problem of
a complex software system as shown in figure 7.
Software architecture has several additional
dimensions of complexity. There are many heuristics
and fuzzy guidelines, but the fundamental measures of
goodness are highly situation-dependent.. The
requirements model addresses the behaviour of the
system as seen by its end users, analysts, and testers.
This view is modeled statically using use case and
class diagrams and dynamically using sequence,
collaboration, state chart, and activity diagrams. The
design model addresses the architecture of the system

Def. Analysis Design Code

Algorithms
And

Data structures

Lines
Of

Code SDLC

*Components
*Connectors
*Configurations

Architectural Issues

Level 2: Lines-Of- Code
Level 1: Algorithms and Data

Level 4: Components, Connectors and
Configurations

Level 3: Sub-Program, Function, Module,

Components.

 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

276

and the design of the components within the architecture,
including the functional structure, concurrency structure,
implementation structure, and execution structure of the
solution space, as seen by its developers. Static descriptions are
provided with structural diagrams (like, class, object,
component, deployment diagrams). Dynamic descriptions are
provided with any of the UML, Behavioural diagrams
(collaboration, sequence, state chart, activity diagrams).

Figure 8, shows the procedure for architecture analysis and
design. The input is from the business architecture or from
software development life cycle. We propose here SADLC; it
has the every thing about Software Architecture Analysis,
Architecture design, Evaluation of design. It mainly
concentrates on Architectural Issues

A detailed view of transforming or generating Architecture
elements from conventional SDLC is shown in figure 9. The
transitions are shown gradually from SDLC to Software

Architecture

5. A TECHNICAL PERSPECTIVE OF
THE ARCHITECTURE:

Although software architecture has been discussed at
length over the past decade, convergence on
definitions, terminology, and principles has been
lacking. Software architecture encompasses the
structure the software systems, their behaviour and the
patterns that guide these elements, their collaborations
and their composition. An Architecture framework is
defined in terms of views that are abstractions of the
UML models in the design set. Most real-world
systems require four views: design, process,
component, and deployment. .

Figure 7 Software Development Life Cycle for Architecture-Based Software Development and its related issues

Application
Domain

Analysis Design Construction Testing

Components, Connectors, Configuration

Lines of Code

Architecture
Description
Languages
(ADLs)

Architecture
Design
Evaluation
Methods

Architecture
Evaluation for
Design
alternatives

Applications

Software
Architecture
Characteristics

Architecture
Designs Architecture

Views
Architecture

Styles

Architecture Analysis
Methods

Architecture and Architectural Issues

Algorithms and Data
Structures

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

277

Figure 8 Software Architecture Development Life Cycles (SADLC)

The purposes of these views are as follows and shown in
figure 10. Design view, Process, Component view and
Deployment view. The design view is probably necessary in
every system: the other three views can be added to deal with
complexity of the system at hand. For example, any
distributed system would need a process view ad a
deployment view Most large systems, as well as systems that

comprise a mixture of custom and commercial
components would also require a separate
component view. The figure 10 summarizes the
artifacts of the design set, including the architecture
views and architecture descriptions are defined as
collections of UML diagrams.

Figure 9 Software Development Life Cycles for Architecture-Based Software Development

Analysis of Architectural Requirements

 Business Architectures

 Design of Architectures

Evaluation of Design Alternatives

Implementation of the architecture

 SDLC UML diagrams of Analysis
and Design

Business
Logic

Analysis Design Construction Testing

Algorithms and Data structures

Architectural Elements or Building blocks
Components, Connectors, Configuration

Lines-Of-Code SDLC

Architectural Requirements, Identification of
Components, Connectors, and Configuration

Types of Components, Connectors and Configurations

Modeling Architectural Elements, Component, Connector,
Models using UML

 Analysis of Components and connectors using UML

Designing Architectural Elements using UML

User Interface Development *SADLC an additional phase (UID) comes in to existence

Configuration for Integrating Components, Structures, and Connectors for A Selected Style

Support

 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

278

Figure 10 Generation of software architectures from the design of SDLC.

6. The proposed work

The process model adapted for object-oriented systems is a
component assembly model [RSP 2003]. This model in turn
uses the spiral model. In spiral model one of the regions is
engineering and construction, from which the component
assembly model takes a separate path and enters Object-
Oriented software development area, where it searches for
objects. If objects are found, they may be considered.
Otherwise, using the concepts and principles of Object
Oriented Analysis and Object Oriented Design, it constructs
the required Objects and comes back and joins the
engineering and construction region of spiral model. Next it
goes for another spiral. This is way, it iterates till to achieve
the required system.

In the proposed work, the figure 11 shows the complete over
view of the Software Architecture Development Life Cycle
(SADLC). In SADLC we named some parts as spiral model
area and architectural issues area. We have considered the
conventional spiral model with out any deviation. The
architectural issues, is the area, which encloses the principles
and concepts of software architectures and every thing that

are necessary for architecture analysis, architecture
design, architecture evaluation for particular quality
attribute, architectural analysis and design methods,
architectural styles, views, and for description of
architectures (ADLs) that are shown in figures (7), (8),
(9), and (10). . In this regard, similar to the object-
oriented assembly process model, in the SADLC, the
control moves from spiral model to the architectural
issues area with design (SDLC) information and
resolve all architectural issues.

 We are trying to understand and show the
architectural elements are directly taken from business
architectures and design of conventional Software
Development Life Cycle (SDLC). The proofs and
validity are being proposed in our extensions work.

Requirements Design Implementation Deployment

The design set includes all UML design
models describing the solution space

Design View

Process View

Implementation View

Deployment View

Use Case View

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

Manuscript received April 5, 2007

Manuscript revised April 25, 2007

279

Figure 11 The proposed process models for software architecture development process model.

Conclusions

In software engineering, programming methodologies and
software process models play important role. These two
are interrelated and overlapped concepts and principles.
Depending upon type, complexity and for particular non-
functional and functional requirements various models are
proposed and being adopted. Software Architecture is a
branch of Software Engineering; it also requires a
systematic and formal approach for implementing the
concepts, principles while developing software
architectures. In this context we are proposing a process
model called Software Architecture Development
Lifecycle (SADLC).

References

[BOE 88] Boehm, B., “A Spiral Model for Software

Development and Enhancement,” Computer, Vol.
21, no. 5, May 1988, pp. 61-72.

[BOE 98] Boehm, B., “Using the WINWIN Spiral Model:
A Case Study,” computer, vol. 31, no. 7, July
1998, pp, 33-44.

[Boehm 1976] Boehm, B., Software Engineering, IEEE
Trans. Computer, C-25,12,1226-1241, 1976.

[Boehm 1981] Boehm, B. W., Software Engineering
Economics, Prentice-Hall, Englewood Cliffs, N.
J., 1981

[Boehm 1987] Boehm, B., A Spiral Model of Software
Development and Enhancement, Computer,
20(9), 61- 72, 1987.

[Boehm et al, 1998] Boehm, B., A. Egyed, J. Kwan, D.
Port, A. Shah, and R. Madachy, Using the
WinWin Spiral Model: A Case Study, Computer,
31(7), 33-44, 1998.

[Curtis, Krasner, Iscoe, 1988] Curtis, B., H. Krasner, and
N. Iscoe, A Field Study of the Software Design
Process for Large Systems, Communications
ACM, 31, 11, 1268-1287, November, 1988

[DAV 94] Davis, A. and P. Sitaram, “A Concurrent
Process Model for Software Development,”
Software Engineering Notes, ACM Press, vol. 19,
n0. 2, April 1994, pp. 38-51

[Distaso 1980] Distaso, J., Software Management--A
Survey of Practice in 1980, Proceedings IEEE,
68, 9, 1103-1119, 1980

[GIL 88] Gilb, T., Principles of Software Engineering
Management, Addison-Wesley, 1988.

[Hosier 1961] Hosier, W. A., Pitfalls and Safeguards in
Real-Time Digital Systems with Emphasis on
Programming, IRE Trans. Engineering
Management, EM-8, June, 1961

[Kling 1982, Garg 1989] Kling, R., and W. Scacchi, The
Web of Computing: Computer Technology as
Social Organization, Advances in Computers, 21,
1-90, Academic Press, New York, 1982.

Identify candidate Architectural building
Blocks from business Logic

Architecture

Analysis

Engineering and
Construction

Planning

Customer
Communication

Risk Analysis

Customer
Evaluation

Transform Analysis & Design
Architectural artifacts into Code level

Rebuild

The
Configuration

Architecture

Design

Spiral Model Architectural Issues

 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

280

[PAU93] Paulk, M et al., “Capability Maturity Model for
Software,” Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA,
1993.

[ROY70] Royce, W.W., “Managing the Development of
Large Software Systems: Concepts and
Techniques, “Proc. WESCON, August 1970.

[RSP 2003] Roger R.S Pressman, Software Engineering
6th edition, 200

A Rama Mohan Reddy working as
Professor of Computer Science and
Engineering, Sri
Venkateswara University., INDIA.
He Completed his M.Tech Computer
Science from NIT, Warangal.
Currently he is pursuing Ph.D in
software Architecture.

