
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

281

Comparative Study between
Various Algorithms of Data Compression Techniques

Mohammed Al-laham1 & Ibrahiem M. M. El Emary2

1 Al Balqa Applied University, Amman, Jordan
2 Faculty of Engineering, Al Ahliyya Amman University, Amman, Jordan

Abstract
The spread of computing has led to an explosion in the
volume of data to be stored on hard disks and sent over the
Internet. This growth has led to a need for "data
compression", that is, the ability to reduce the amount of
storage or Internet bandwidth required to handle this data.
This paper provides a survey of data compression
techniques. The focus is on the most prominent data
compression schemes, particularly
popular .DOC, .TXT, .BMP, .TIF, .GIF, and .JPG files. By
using different compression algorithms, we get some
results and regarding to these results we suggest the
efficient algorithm to be used with a certain type of file to
be compressed taking into consideration both the
compression ratio and compressed file size.

Keywords
RLE, RLL, HUFFMAN, LZ, LZW and HLZ

1. Introduction
The essential figure of merit for data compression is the
"compression ratio", or ratio of the size of a compressed
file to the original uncompressed file. For example,
suppose a data file takes up 50 kilobytes (KB). Using data
compression software, that file could be reduced in size to,
say, 25 KB, making it easier to store on disk and faster to
transmit over an Internet connection. In this specific case,
the data compression software reduces the size of the data
file by a factor of two, or results in a "compression ratio"
of 2:1 [1, 2]. There are "lossless" and "lossy" forms of data
compression. Lossless data compression is used when the
data has to be uncompressed exactly as it was before
compression. Text files are stored using lossless
techniques, since losing a single character can be in the
worst case make the text dangerously misleading. Archival
storage of master sources for images, video data, and
audio data generally needs to be lossless as well. However,
there are strict limits to the amount of compression that
can be obtained with lossless compression. Lossless
compression ratios are generally in the range of 2:1 to 8:1.
[2, 3]. Lossy compression, in contrast, works on the
assumption that the data doesn't have to be stored
perfectly. Much information can be simply thrown away

from images, video data, and audio data, and the when
uncompressed; the data will still be of acceptable quality.
Compression ratios can be an order of magnitude greater
than those available from lossless methods.
The question of which are "better", lossless or lossy
techniques is pointless. Each has its own uses, with
lossless techniques better in some cases and lossy
techniques better in others. In fact, as this paper will show,
lossless and lossy techniques are often used together to
obtain the highest compression ratios. Even given a
specific type of file, the contents of the file, particularly
the orderliness and redundancy of the data, can strongly
influence the compression ratio. In some cases, using a
particular data compression technique on a data file where
there isn't a good match between the two can actually
result in a bigger file [9].

2. Some Considerable Terminologies
A few little comments on terminology before we proceed
are given as the following:
• Since most data compression techniques can work
on different types of digital data such as characters or
bytes in image files or whatever, data compression
literature speaks in general terms of compressing
"symbols".
• Most of the examples talk about compressing data
in "files", just because most readers are familiar with that
idea. However, in practice, data Compression applies just
as much to data transmitted over a modem or other data
communications link as it does to data stored in a file.
There's no strong distinction between the two as far as data
compression is concerned. This paper also uses the term
"message" in examples where short data strings are
compressed [7, 10].
• Data compression literature also often refers to data
compression as data "encoding", and of course that means
data decompression is often
called "decoding". This paper tends to use the two sets of
terms interchangeably.

3. Run Length Encoding Technique
One of the simplest forms of data compression is known
as "run length encoding" (RLE), which is sometimes

 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

282

known as "run length limiting" (RLL) [8,10]. In this
encoding technique, suppose you have a text file in which
the same characters are often repeated one after another.
This redundancy provides an opportunity for compressing
the file. Compression software can scan through the file,
find these redundant strings of characters, and then store
them using an escape character (ASCII 27) followed by
the character and a binary count of the number of times it
is repeated. For example, the 50 character sequence:
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
that's all, folks!-- can be converted to: <ESC>X<31> .
This eliminates 28 characters, compressing the text by
more than a factor of two. Of course, the compression
software must be smart enough not to compress strings of
two or three repeated characters, since for three characters
run length encoding would have no advantage, and for two
it would actually increase the size of the output file.
As described, this scheme has two potential problems.
First, an escape character may actually occur in the file.
The answer is to use two escape characters to represent it,
which can actually make the output file bigger if the
uncompressed input file includes lots of escape characters.
The second problem is that a single byte cannot specify
run lengths greater than 256. This difficulty can be dealt
by using multiple escape sequences to compress one very
long string.
Run length encoding is actually not very useful for
compressing text files since a typical text file doesn't have
a lot of long, repetitive character strings. It is very useful,
however, for compressing bytes of a monochrome image
file, which normally consists of solid black picture bits, or
"pixels", in a sea of white pixels, or the reverse. Run-
length encoding is also often used as a preprocessor for
other compression algorithms.

4. HUFFMAN Coding Technique
A more sophisticated and efficient lossless compression
technique is known as "Huffman coding", in which the
characters in a data file are converted to a binary code,
where the most common characters in the file have the
shortest binary codes, and the least common have the
longest [9]. To see how Huffman coding works, assume
that a text file is to be compressed, and that the characters
in the file have the following frequencies:

A: 29
B: 64
C: 32
D: 12
E: 9
F: 66
G: 23

In practice, we need the frequencies for all the characters
used in the text, including all letters, digits, and

punctuation, but to keep the example simple we'll just
stick to the characters from A to G.
The first step in building a Huffman code is to order the
characters from highest to lowest frequency of occurrence
as follows:
66 64 32 29 23 12 9
F B C A G D E

First, the two least-frequent characters are selected,
logically grouped together, and their frequencies added. In
this example, the D and E characters have a combined
frequency of 21:
 |
 +--+--+
 | 21 |
 | |
 66 64 32 29 23 12 9
 F B C A G D E

This begins the construction of a "binary tree" structure.
We now again select the two elements the lowest
frequencies, regarding the D-E combination as a single
element. In this case, the two elements selected are G and
the D-E combination. We group them together and add
their frequencies. This new combination has a frequency
of 44:
 |
 +----+---+
 | 44 |
 | |
 | +--+--+
 | | 21 |
 | | |
 66 64 32 29 23 12 9
 F B C A G D E

We continue in the same way to select the two elements
with the lowest frequency, group them together, and add
their frequencies, until we run out of elements. In the third
iteration, the lowest frequencies are C and A and the final
binary tree will be as follows:
 |

+---------+--------+
|0 |1
| |

| +------+------+
| |0 |1
| | |

| | +----+----+
| | |0 |1
| | | |

+--+--+ +--+--+ | +--+--+
|0 |1 |0 |1 | |0 |1
| | | | | | |
F B C A G D E

Tracing down the tree gives the "Huffman codes", with the
shortest codes assigned

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

283

to the characters with the greatest frequency:
F: 00
B: 01
C: 100
A: 101
G: 110
D: 1110
E: 1111

The Huffman codes won't get confused in decoding. The
best way to see that this is so is to envision the decoder
cycling through the tree structure, guided by the encoded
bits it reads, moving from top to bottom and then back to
the top. As long as bits constitute legitimate Huffman
codes, and a bit doesn't get scrambled or lost, the decoder
will never get lost, either.
There is an alternate algorithm for generating these codes,
known as Shannon-Fano coding. In fact, it preceded
Huffman coding and one of the first data compression
schemes to be devised, back in the 1950s. It was the work
of the well-known Claude Shannon, working with R.M.
Fano. David Huffman published a paper in 1952 that
modified it slightly to create Huffman coding.

5. ARITHMETIC Coding Technique

Huffman coding looks pretty slick, and it is, but there's a
way to improve on it, known as "arithmetic coding". The
idea is subtle and best explained by example [4, 8, 10].
Suppose we have a message that only contains the
characters A, B, and C, with the following frequencies,
expressed as fractions:

A: 0.5
B: 0.2
C: 0.3

To show how arithmetic compression works, we first set
up a table, listing characters with their probabilities along
with the cumulative sum of those probabilities. The
cumulative sum defines "intervals", ranging from the
bottom value to less than, but not equal to, the top value.
The order does not seem to be important.

letter probability interval
------ ----------- ---------
C: 0.3 0.0 : 0.3
B: 0.2 0.3 : 0.5
A: 0.5 0.5 : 1.0
------ ----------- ---------

Now each character can be coded by the shortest binary
fraction that falls in the character's probability interval:

 letter probability interval binary fraction
 ------ ----------- --------- --------------------
 C: 0.3 0.0 : 0.3 0
 B: 0.2 0.3 : 0.5 0.011 = 3/8 = 0.375
 A: 0.5 0.5 : 1.0 0.1 = 1/2 = 0.5

 ------ ----------- --------- --------------------

Sending one character is trivial and uninteresting. Let's consider sending messages consisting of all possible
permutations of two of these three characters, using the same approach:

string probability interval binary fraction
------ ----------- ------------ -----------------------
CC: 0.09 0.00 : 0.09 0.0001 = 1/16 = 0.0625
CB: 0.06 0.09 : 0.15 0.001 = 1/8 = 0.125
CA: 0.15 0.15 : 0.30 0.01 = 1/4 = 0.25
BC: 0.06 0.30 : 0.36 0.0101 = 5/16 = 0.3125
BB: 0.04 0.36 : 0.40 0.011 = 3/8 = 0.375
BA: 0.10 0.40 : 0.50 0.0111 = 7/16 = 0.4375
AC: 0.15 0.50 : 0.65 0.1 = 1/2 = 0.5
AB: 0.10 0.65 : 0.75 0.1011 = 11/16 = 0.6875
AA: 0.25 0.75 : 1.00 0.11 = 3/4 = 0.75
------ ----------- ------------ -----------------------

The higher the probability of the string, in general the shorter the binary fraction needed to represent it. Let's build a
similar table for three characters now:

 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

284

string probability interval binary fraction
------ ----------- ------------- -------------------------------
CCC 0.027 0.000 : 0.027 0.000001 = 1/64 = 0.015625
CCB 0.018 0.027 : 0.045 0.00001 = 1/32 = 0.03125

CCA 0.045 0.045 : 0.090 0.0001 = 1/16 = 0.0625
CBC 0.018 0.090 : 0.108 0.00011 = 3/32 = 0.09375
CBB 0.012 0.108 : 0.120 0.000111 = 7/64 = 0.109375
CBA 0.03 0.120 : 0.150 0.001 = 1/8 = 0.125
CAC 0.045 0.150 : 0.195 0.0011 = 3/16 = 0.1875
CAB 0.03 0.195 : 0.225 0.00111 = 7/32 = 0.21875
CAA 0.075 0.225 : 0.300 0.01 = 1/4 = 0.25

BCC 0.018 0.300 : 0.318 0.0101 = 5/16 = 0.3125
BCB 0.012 0.318 : 0.330 0.010101 = 21/64 = 0.328125
BCA 0.03 0.330 : 0.360 0.01011 = 11/32 = 0.34375
BBC 0.012 0.360 : 0.372 0.0101111 = 47/128 = 0.3671875
BBB 0.008 0.372 : 0.380 0.011 = 3/8 = 0.375
BBA 0.02 0.380 : 0.400 0.011001 = 25/64 = 0.390625
BAC 0.03 0.400 : 0.430 0.01101 = 13/32 = 0.40625
BAB 0.02 0.430 : 0.450 0.0111 = 7/16 = 0.4375
BAA 0.05 0.450 : 0.500 0.01111 = 15/32 = 0.46875

ACC 0.045 0.500 : 0.545 0.1 = 1/2 = 0.5
ACB 0.03 0.545 : 0.575 0.1001 = 9/16 = 0.5625
ACA 0.075 0.575 : 0.650 0.101 = 5/8 = 0.625
ABC 0.03 0.650 : 0.680 0.10101 = 21/32 = 0.65625
ABB 0.02 0.680 : 0.700 0.1011 = 11/16 = 0.6875
ABA 0.05 0.700 : 0.750 0.10111 = 23/32 = 0.71875
AAC 0.075 0.750 : 0.825 0.11 = 3/4 = 0.75
AAB 0.05 0.825 : 0.875 0.11011 = 27/32 = 0.84375
AAA 0.125 0.875 : 1.000 0.111 = 7/8 = 0.875
------ ----------- ------------- -------------------------------

Obviously, this same procedure can be followed for more characters, resulting in a longer binary fractional value. What arithmetic
coding does is find the probability value of a particular message, and arrange it as part of a numerical order that allows its unique
identification.

6. LZ-77 Encoding Technique [4, 5, 10]
Good as they are, Huffman and arithmetic coding are not
perfect for encoding text because they don't capture the higher-
order relationships between words and phrases. There is a
simple, clever, and effective approach to compressing text
known as LZ-77, which uses the redundant nature of text to
provide compression. This technique was invented by two
Israeli computer scientists, Abraham Lempel and Jacob Ziv, in
1977 [7,8,9,10].
LZ-77 exploits the fact that words and phrases within a text
stream are likely to be repeated. When they do repeat, they can
be encoded as a pointer to an earlier occurrence, with the
pointer accompanied by the number of characters to be
matched.
Pointers and uncompressed characters are distinguished by a
leading flag bit, with a "0" indicating a pointer and a "1"
indicating an uncompressed character. This means that

uncompressed characters are extended from 8 to 9 bits,
working against compression a little.
Key to the operation of LZ-77 is a sliding history buffer, also
known as a "sliding window", which stores the text most
recently transmitted. When the buffer fills up, its oldest
contents are discarded. The size of the buffer is important. If it
is too small, finding string matches will be less likely. If it is
too large, the pointers will be larger, working against
compression.
For an example, consider the phrase:

the_rain_in_Spain_falls_mainly_in_the_pl
ain

-- where the underscores ("_") indicate spaces. This
uncompressed message is 43 bytes, or 344 bits, long.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

285

At first, LZ-77 simply outputs uncompressed characters, since
there are no previous occurrences of any strings to refer back
to. In our example, these characters will not be compressed:

 the_rain_

The next chunk of the message:

in_

-- has occurred earlier in the message, and can be
represented as a pointer back to that earlier text, along with a
length field. This gives:

the_rain_<3,3>

-- where the pointer syntax means "look back three
characters and take three characters from that point." There
are two different binary formats for the pointer:

• An 8 bit pointer plus 4 bit length, which assumes a
maximum offset of 255 and a maximum length of 15.
• A 12 bit pointer plus 6 bit length, which assumes a
maximum offset size of 4096, implying a 4 kilobyte buffer,
and a maximum length of 63.

As noted, a flag bit with a value of 0 indicates a pointer. This
is followed by a second flag bit giving the size of the pointer,
with a 0 indicating an 8 bit pointer, and a 1 indicating a 12
bit pointer. So, in binary, the pointer <3,3> would look like
this:

00 00000011 0011
The first two bits are the flag bits, indicating a pointer that is
8 bits long. The next 8 bits are the pointer value, while the
last four bits are the length value.

After this comes:

Sp
-- which has to be output uncompressed:

the_rain_<3,3>Sp

However, the characters "ain_" have been sent, so they are
encoded with a pointer:

the_rain_<3,3>Sp<9,4>

Notice here, at the risk of belaboring the obvious, that the
pointers refer to offsets in the uncompressed message. As the
decoder receives the compressed data, it uncompresses it, so
it has access to the parts of the uncompressed message that
the pointers reference.

The characters "falls_m" are output uncompressed, but "ain"
has been used before in "rain" and "Spain", so once again it
is encoded with a pointer:

the_rain_<3,3>Sp<9,4>falls_m<
11,3>

Notice that this refers back to the "ain" in "Spain", and not the
earlier "rain". This ensures
a smaller pointer.

The characters "ly" are output uncompressed, but "in_" and
"the_" were output earlier, and so they are sent as pointers:

the_rain_<3,3>Sp<9,4>falls_m<
11,3>ly_<16,3><34,4>

Finally, the characters "pl" are output uncompressed,
followed by another pointer to "ain". Our original
message:

the_rain_in_Spain_falls_mainl
y_in_the_plain
-- has now been compressed into this form:

the_rain_<3,3>Sp<9,4>falls_m<
11,3>ly_<16,3><34,4>pl<15,3>

This gives 23 uncompressed characters at 9 bits apiece,
plus six 14 bit pointers, for a total of 291 bits as compared
to the uncompressed text of 344 bits. This is not bad
compression for such a short message, and of course
compression gets better as the buffer fills up, allowing
more matches.
LZ-77 will typically compress text to a third or less of its
original size. The hardest part to implement is the search
for matches in the buffer. Implementations use binary
trees or hash tables to ensure a fast match. There are a
several variations on the LZ-77, the best known being
LZSS, which was published by Storer and Symanski in
1982. The differences between the two are unclear from
the sources I have access to.
More drastic modifications of LZ-77 include a second
level of compression on the output of the LZ-77 coder.
LZH, for example, performs the second level of
compression using Huffman coding, and is used in the
popular LHA archiver. The ZIP algorithm, which is used
in the popular PKZIP package and the freeware ZLIB
compression library, uses Shannon-Fano coding for the
second level of compression.

7. LZW Coding Technique
LZ-77 is an example of what is known as "substitutional
coding". There are other schemes in this class of coding
algorithms. Lempel and Ziv came up with an improved
scheme in 1978, appropriately named LZ-78, and it was
refined by a Mr. Terry Welch in 1984, making it LZW
[6,8,10]. LZ-77 uses pointers to previous words or parts

 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

286

of words in a file to obtain compression. LZW takes that
scheme one step further, actually constructing a
"dictionary" of words or parts of words in a message,
and then using pointers to the words in the dictionary.
Let's go back to the example message used in the
previous section:

the_rain_in_Spain_falls_mainl
y_in_the_plain

The LZW algorithm stores strings in a "dictionary" with
entries for 4,096 variable length strings. The first 255
entries are used to contain the values for individual

bytes, so the actual first string index is 256. As the string
is compressed, the dictionary is built up to contain every
possible string combination that can be obtained from
the message, starting with two characters, then three
characters, and so on.

For example, we scan through the message to build up
dictionary entries as follows:

 256 -> th < th > e_rain_in_Spain_falls_mainly_in_the_plain
 257 -> he t < he > _rain_in_Spain_falls_mainly_in_the_plain
 258 -> e_ th < e_ > rain_in_Spain_falls_mainly_in_the_plain
 259 -> _r the < _r > ain_in_Spain_falls_mainly_in_the_plain
 260 -> ra the_ < ra > in_in_Spain_falls_mainly_in_the_plain
 261 -> ai the_r < ai > n_in_Spain_falls_mainly_in_the_plain
 262 -> in the_ra < in > _in_Spain_falls_mainly_in_the_plain
 263 -> n_ the_rai < n_ > in_Spain_falls_mainly_in_the_plain
 264 -> _i the_rain < _i > n_Spain_falls_mainly_in_the_plain

The next two-character string in the message is "in", but this has already been included in the dictionary in entry
262. This means we now set up the three-character string "in_" as the next dictionary entry, and then go back to
adding two-character strings:

 265 -> in_ the_rain_ < in_ > Spain_falls_mainly_in_the_plain
 266 -> _S the_rain_in < _S > pain_falls_mainly_in_the_plain
 267 -> Sp the_rain_in_ < Sp > ain_falls_mainly_in_the_plain
 268 -> pa the_rain_in_S < pa > in_falls_mainly_in_the_plain

 The next two-character string is "ai", but that's already in the dictionary at entry 261, so
 we now add an entry for the three-character string "ain":

 269 -> ain the_rain_in_Sp < ain > _falls_mainly_in_the_plain

Since "n_" is already stored in dictionary entry 263, we now add an entry for "n_f":

 270 -> n_f the_rain_in_Spai < n_f > alls_mainly_in_the_plain
 271 -> fa the_rain_in_Spain_ < fa > lls_mainly_in_the_plain
 272 -> al the_rain_in_Spain_f < al > ls_mainly_in_the_plain
 273 -> ll the_rain_in_Spain_fa < ll > s_mainly_in_the_plain
 274 -> ls the_rain_in_Spain_fal < ls > _mainly_in_the_plain
 275 -> s_ the_rain_in_Spain_fall < s_ > mainly_in_the_plain
 276 -> _m the_rain_in_Spain_falls < _m > ainly_in_the_plain
 277 -> ma the_rain_in_Spain_falls_ < ma > inly_in_the_plain

 Since "ain" is already stored in entry 269, we add an entry for the four-character string "ainl":

 278 -> ainl the_rain_in_Spain_falls_m < ainl > y_in_the_plain
 279 -> ly the_rain_in_Spain_falls_main < ly > _in_the_plain
 280 -> y_ the_rain_in_Spain_falls_mainl < y_ > in_the_plain

Since the string "_i" is already stored in entry 264, we add an entry for the string "_in":

 281 -> _in the_rain_in_Spain_falls_mainly < _in > _the_plain

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

287

Since "n_" is already stored in dictionary entry 263, we add an entry for "n_t":

 282 -> n_t the_rain_in_Spain_falls_mainly_i < n_t > he_plain

Since "th" is already stored in dictionary entry 256, we add an entry for "the":

 283 -> the the_rain_in_Spain_falls_mainly_in_ < the > _plain

Since "e_" is already stored in dictionary entry 258, we add an entry for "e_p":

 284 -> e_p the_rain_in_Spain_falls_mainly_in_th < e_p > lain
 285 -> pl the_rain_in_Spain_falls_mainly_in_the_ < pl > ain
 286 -> la the_rain_in_Spain_falls_mainly_in_the_p < la > in

The remaining characters form a string already contained in
entry 269, so there is no need to put it in the dictionary.

We now have a dictionary containing the following strings:

 256 -> th 257 -> he 258 -> e_
 259 -> _r 260 -> ra 261 -> ai
 262 -> in 263 -> n_ 264 -> _i
 265 -> in_ 266 -> _S 267 -> Sp
 268 -> pa 269 -> ain 270 -> n_f
 271 -> fa 272 -> al 273 -> ll
 274 -> ls 275 -> s_ 276 -> _m
 277 -> ma 278 -> ainl 279 -> ly
 280 -> y_ 281 -> _in 282 -> n_t
 283 -> the 284 -> e_p 285 -> pl
 286 -> la

Please remember the dictionary is a means to an end, not
an end in itself. The LZW coder simply uses it as a tool
to generate a compressed output. It does not output the
dictionary to the compressed output file. The decoder
doesn't need it. While the coder is building up the
dictionary, it sends characters to the compressed data
output until it hits a string that's in the dictionary. It
outputs an index into the dictionary for that string, and
then continues output of characters until it hits another
string in the dictionary, causing it to output another
index, and so on. That means that the compressed output
for our example message looks like this:

he_rain_<262>_Sp<261><263>falls_m<269>ly<2
64><263><256><258>pl<269>

 The decoder constructs the dictionary as it reads and
uncompresses the compressed data, building up dictionary
entries from the uncompressed characters and dictionary
entries it has already established. One puzzling thing about
LZW is why the first 255 entries in the 4K buffer are
initialized to single-character strings. There would be no
point in setting pointers to single characters, as the pointers

would be longer than the characters, and in practice that's
not done anyway. I speculate that the single characters are
put in the buffer just to simplify searching the buffer.
As this example of compressed output shows, as the
message is compressed, the dictionary grows more
complete, and the number of "hits" against it increases.
Longer strings are also stored in the dictionary, and on the
average the pointers substitute for longer strings. This
means that up to a limit, the longer the message, the better
the compression. This limit is imposed in the original LZW
implementation by the fact that once the 4K dictionary is
complete, no more strings can be added. Defining a larger
dictionary of course results in greater string capacity, but
also longer pointers, reducing compression for messages
that don't fill up the dictionary.
A variant of LZW known as LZC is used in the UN*X
"compress" data compression program. LZC uses variable
length pointers up to a certain maximum size. It also
monitors the compression of the output stream, and if the
compression ratio goes down, it flushes the dictionary and
rebuilds it, on the assumption that the new dictionary will be
better "tuned" to the current text.
Another refinement of LZW keep track of string "hits" for
each dictionary entry, and overwrites "least recently used"
entries when the dictionary fills up. Refinements of LZW
provide the core of GIF and TIFF image compression as
well.
It is also used in some modem communication schemes,
such as the V.42bis protocol. V.42bis has an interesting
flexibility. Since not all data files compress well given any
particularly encoding algorithm, the V.42bis protocol
monitors the data to see how well it compresses. It sends it
"as is" if it compresses poorly, and switches to LZW
compress using an escape code if it compresses well.
Both the transmitter and receiver continue to build up an
LZW dictionary even while the transmitter is sending the
file uncompressed, and switch over transparently if the
escape character is sent. The escape character starts out as a
"null" (0) byte, but is incremented by 51 every time it is
sent, "wrapping around" when it exceeds 256:

 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

288

51 102 153 204 255 --> 50
101 152 203 254 --> 49 100 ...

If a data byte that matches the the escape character is sent, it
is sent twice. The escape character is incremented to ensure
that the protocol doesn't get bogged down if it runs into an
extended string of bytes that match the escape character.

8. Results, Conclusions and Recommendations
Firstly, with regards to compare between LZW and
Huffman, Under the title (Group 1 Results), both LZW and
Huffman will be used to compress and decompress different
types of files, tries and results will be represented in a table,
then figured in a chart to compare the efficiency of both
programs in compressing and decompressing different types
of files, conclusion and discussions are given at the end.

Table 2.1 Comparison between LZW and Huffman

File Name

Input File Size

Output File
Size/LZW

Output File

Size/ Huffman

Compress

Ratio/ LZW

Compress

Ratio /
Huffman

Example1. doc 68096 30580 29433 55% 57%
Example2. doc 58880 23814 23640 60% 66%
Example3. doc 83968 48984 46876 42% 45%
Example4. doc 20480 2530 4836 88% 76%
Example5. doc 27648 8222 10921 70% 60%
Example6. doc 57856 30993 27163 46% 53%
Example7. doc 87552 54229 47101 38% 46%
Example8. doc 48128 23631 20600 51% 55%
Example9. doc 79360 30363 32416 62% 59%
Example10. doc 68096 30581 29433 55% 57%

Pict3.bmp 1440054 193888 276506 87% 81%
Pict4.bmp 1440054 100338 282824 93% 80%
Pict5.bmp

1440054 461637 318178 68% 78%

Pict6.bmp 1365318 371601 366830 73% 73%
Inprise. gif 4654 6634 5073 -43% -9%
Baby. jpg 26183 35367 26487 -35% -1%
Cake. Jpg 23036 32457 23479 -41% -2%

Candles. jpg 17639 23230 17885 -32% -1%
Class. jpg 5851 6764 6035 -16% -3%
Earth. jpg 9370 12955 9811 -38% -5%

Fig. 2.1 Chart: Comparison between LZW and Huffman compression ratio

-200000
0
200000
400000
600000
800000
1000000
1200000
1400000
1600000

14710131619

Input File Size

Output File
Size/LZW
Output File Size/
Huffman
Compress Ratio/
LZW
Compress Ratio /
Huffman

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

289

The chart above shows the results of using the program in
compressing different types of files. In the chart, the dark
blue curve represents the input files sizes, the violet curve
represents the output files sizes when compressed using
LZW and the yellow curve represents the output file size
when compressed using Huffman.
From the table and the chart above, the following
conclusions and discussion can be driven:
• LZW and Huffman give nearly results when used
for compressing document or text files, as appears in the
table and in the chart. The difference in the compression
ratio is related to the different mechanisms of both in the
compression process; which depends in LZW on replacing
strings of characters with single codes, where in Huffman
depends on representing individual characters with bit
sequences.
• When LZW and Huffman are used to compress a
binary file (all of its contents either 1 or 0), LZW gives a
better compression ratio than Huffman. If you tried for
example to compress one line of binary
(00100101010111001101001010101110101......) using
LZW, you will arrive to a stage in which 5 or 6
consecutive binary digits are represented by a single new
code (9 bits), while in Huffman you will represents every
individual binary digit with a bit sequence of 2 bits, so in
Huffman the 5 or 6 binary digits which were represented
in LZW by 9 bits are represented now with 10 or 12 bits;
this decreases the compression ratio in the case of
Huffman
-LZW and Huffman are used in compressing bmp files;
bmp files contain images, in which each dot in the image
is represented by a byte, as appears in the chart for
compressing bmp files, the results are somehow different.
LZW seems to be better in compressing bmp files the
Huffman; since it replaces sets of dots (instead of strings
of characters in text files) with single codes; resulting in
new codes that are useful when the dots that consists the

image are repeated, while in Huffman, individual dots in
the image are represented by bit sequences of a length
depending on it’s probabilities. Because of the large
different dots representing the image, the binary tree to be
built is large, so the length of bit sequences which
represents the individual dots increases, resulting in a less
compression ratio compared to LZW compression.
- When LZW or Huffman is used to compress a file of
type gif or type jpg, you will notice as in the table and in
the chart that the compressed file size is larger than the
original file size; this is due to being the images of these
files are already compressed, so when compressed using
LZW the number of the new output codes will increase,
resulting in a file size larger than the original , while in
Huffman the size of the binary tree built increases because
of the less of probabilities, resulting in longer bit sequence
that represent the individual dots of the image, so the
compressed file size will be larger than the original . But
because of being the new output code in LZW represented
by 9 bits, while in Huffman the individual dot is
represented with bits less than 9, this makes the resulting
file size after compression in LZW larger than that in
Huffman.
- Decompression operation is the opposite operation for
compression; so the results will be the same as in
compression.
Secondly, with regard to compare between LZW and
HLZ, Under the title (Group 2 Results) both Huffman and
LZW will be used to compress the same file, LZW
compression then Huffman compression are applied
consecutively to the same file or Huffman compression
then LZW compression are applied to the same file, then a
comparison between the two states will be done,
conclusion and discussions are also given. The following
table shows tries and results for group 2, will the chart in
Fig. 2.2 represents these results.

-500000

0

500000

1000000

1500000

2000000

2500000

14710131619222528

Input File Size
LZW
LZW%
HUF
HUF%
LZH
LZH%
HLZ
HLF%

Fig. 2.2 Chart: Comparison between LZH and HLZ compression ratios.

 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

290

Table 2.2 Comparison between LZW, Huffman, LZH and HLZ compression ratios

From the table above and the chart, the following
conclusions can be driven:
• Using LZH compression to compress a file of type: txt or
bmp gives an improved compression ratio (more than
Huffman compression ratio, and LZW compression ratio),
this conclusion can be explained as follows:
In the LZH compression, the file is firstly compressed
using LZW, then compressed using Huffman, as it
appeared from group 1 results that LZW gives good
compression ratios for these types of files (since it replaces
strings of characters with single codes represented by 9 bits
or more depending on the LZW output table), now the
compressed file (.Lzw) file which be compressed using
Huffman, the (.Lzw) file will be compressed perfectly by
Huffman; since the phrases that are represented in LZW by

9 or more bits will now be represented by binary codes of
2, 3, 4 or more bits but still less than 8bits; this compresses
the file more, and so improved compression ratios can be
achieved using LZH compression.
• When LZH compression is used to compress file of types:
TIFF, GIF or JPEG, it increases the output file size as it
appears in the table and from the chart, this conclusion can
be discussed as follows:
TIFF, GIF or JPEG files use LZW compression in their
formats, and so when compressed using LZW, the output
files sizes will be bigger the original, while when they are
compressed using Huffman nearly good results can be
achieved, so when a TIFF, GIF or JPEG file is firstly
compressed with LZW resulting in a bigger file size using

Input File Size

LZW LZW% HUF HUF% LZH

LZH% HLZ HLF%

1.doc 1216502 570513 537542 359113 70 337749 72 487200 60
2.doc 659456 165288 75 157580 76 120529 82 137640 79
3.doc 491520 286957 42 306746 38 269146 45 361609 26
4.doc 436575 275193 37 162929 63 192012 56 168469 61
5.doc 71088 36721 48 44779 37 35468 50 53122 25
6.doc 45568 22092 52 22701 50 20452 55 25798 43
1.txt 3977 2571 35 2567 35 2865 28 3238 26
2.txt 12305 6715 45 7736 37 7028 43 9357 42
3.txt 20807 5757 72 13932 33 6177 70 10074 52
4.txt 20821 10725 48 13149 37 10990 47 14904 28
5.txt 39715 18936 52 24769 38 19183 52 27417 31
6.txt 25422 11335 55 16185 36 11703 54 17769 30

1.bmp 746082 286879 62 696526 37 273900 63 433512 42
2.bmp 83418 13402 84 27202 67 13735 84 18766 78
3.bmp 481080 606420 26 248644 48 361079 25 363798 24
4.bmp 222822 279781 26 215928 3 249947 -12 363798 63
5.bmp 2137730 416950 80 610085 71 407932 81 564156 74
6.bmp 1440054 192930 87 1378239 4 163968

6
-14 1970140 37

1.tif 84530 1110672 32 785693 7 111067
2

-32 1085466 29

2.tif 1162804 1567927 35 1091514 6 130896
3

-13 1536259 32

3.tif 775036 366622 53 468322 40 318365 59 450462 42
4.tif 1440180 2010465 40 1378329 4 163920

2
-14 1960444 36

5.tif 82308 12862 84 26113 68 13007 84 18000 78
6.tif 481722 307993 36 429330 48 228563 53 248853 48
1.gif 85084 119442 40 85457 0 102396 -20 121359 43
2.gif 18519 25425 37 18780 -1 22107 -19 26754 44
3.gif 63687 89482 41 64015 -1 76310 -20 90534 42
4.gif 62722 88180 41 63150 -1 76072 -21 89577 43
5.gif 83645 118375 42 84125 -1 101836 -22 119497 43
6.gif 304047 418116 38 303463 0 361399 -19 429013 41

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

291

Huffman; so LZH compression is not efficient in the
compression operation of these types of files.
When HLZ compression is used to compress files of types:
Doc, Txt or Bmp, it gives a compression ratio that is less
than the compression ratio obtained from as follows:
Huffman compression replaces each byte in the input file
with a binary code that is responded by 2, 3, 4 bits or more
but still less than 8 bits, now when the compressed file
using Huffman (.Huf) file is compressed using LZW
phrases of binary will be composed and represented with
codes of 9 or more bits which were in Huffman
compressing these types of files.
When HLZ is used to compress files of types: TIFF, GIF or
JPEG, this will give good results for compression. These
really compressed images using LZH in the first stage
(compression is performed in this stage using Huffman), in
the second stage of the compression using LZH this will
give a bigger output file than the original (since LZW is
now used to compress an image that is really compressed
using LZW); and so HLZ is not an efficient method in the
compression operation of these types of files.
? and so, LZH is used to obtain highly compression ratios
for the compression operation of files of types: Doc, Txt,
Bmp, rather than HLZ.
Under this title some suggestions are given for increasing
the performance of the compression these are below:
In order to increase the performance of compression, a
comparison between LZW and Huffman to determine
which is best in compressing a file is performed, and the
output compressed file will be that of the less compression
ratio, this can be used when the files is to be attached to an
e-mail. Using LZW and Huffman for compression files of
type: GIF or of type JPG can be studied and a program for
good results can be built.
Finding a specific method for building the binary tree of
Huffman, so as to decrease the length or determine the
length of the bit sequences that represent the individual
symbols can be studied and a program can be built for this
purpose.
Other text compression and decompression algorithms can
be studied and compared with the results of LZW and
Huffman.

 References
[1] Compressed Image File Formats: JPEG, PNG, GIF,

XBM, BMP, John Miano, August 1999
[2] Introduction to Data Compression, Khalid Sayood, Ed

Fox (Editor), March 2000
[3] Managing Gigabytes: Compressing and Indexing

Documents and Images, Ian H H. Witten, Alistair
Moffat, Timothy C. Bell , May 1999

[4] Digital Image Processing, Rafael C. Gonzalez, Richard
E. Woods, November 2001

[5] The MPEG-4 Book

[6] Fernando C. Pereira (Editor), Touradj Ebrahimi , July
2002

[7] Apostolico, A. and Fraenkel, A. S. 1985. Robust
Transmission of Unbounded Strings Using Fibonacci
Representations. Tech. Rep. CS85-14, Dept. of Appl.
Math., The Weizmann Institute of Science, Rehovot,
Sept.

[8] Bentley, J. L., Sleator, D. D., Tarjan, R. E., and Wei, V.
K. 1986. A Locally Adaptive Data Compression
Scheme. Commun. ACM 29, 4 (Apr.), 320-330.

[9] Connell, J. B. 1973. A Huffman-Shannon-Fano Code.
Proc. IEEE 61,7 (July), 1046-1047.

[10] Data Compression Conference (DCC '00), March 28-
30, 2000, Snowbird, Utah

