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Abstract 
The spread of computing has led to an explosion in the 
volume of data to be stored on hard disks and sent over the 
Internet. This growth has led to a need for "data 
compression", that is, the ability to reduce the amount of 
storage or Internet bandwidth required to handle this data. 
This paper provides a survey of data compression 
techniques. The focus is on the most prominent data 
compression schemes, particularly 
popular .DOC, .TXT, .BMP, .TIF, .GIF, and .JPG files. By 
using different compression algorithms, we get some 
results and regarding to these results we suggest the 
efficient algorithm to be used with a certain type of file to 
be compressed taking into consideration both the 
compression ratio and compressed file size.  
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1. Introduction  
The essential figure of merit for data compression is the 
"compression ratio", or ratio of the size of a compressed 
file to the original uncompressed file. For example, 
suppose a data file takes up 50 kilobytes (KB). Using data 
compression software, that file could be reduced in size to, 
say, 25 KB, making it easier to store on disk and faster to 
transmit over an Internet connection. In this specific case, 
the data compression software reduces the size of the data 
file by a factor of two, or results in a "compression ratio" 
of 2:1 [1, 2]. There are "lossless" and "lossy" forms of data 
compression. Lossless data compression is used when the 
data has to be uncompressed exactly as it was before 
compression. Text files are stored using lossless 
techniques, since losing a single character can be in the 
worst case make the text dangerously misleading. Archival 
storage of master sources for images, video data, and 
audio data generally needs to be lossless as well. However, 
there are strict limits to the amount of compression that 
can be obtained with lossless compression. Lossless 
compression ratios are generally in the range of 2:1 to 8:1. 
[2, 3].  Lossy compression, in contrast, works on the 
assumption that the data doesn't have to be stored 
perfectly. Much information can be simply thrown away 

from images, video data, and audio data, and the when 
uncompressed; the data will still be of acceptable quality. 
Compression ratios can be an order of magnitude greater 
than those available from lossless methods.  
The question of which are "better", lossless or lossy 
techniques is pointless. Each has its own uses, with 
lossless techniques better in some cases and lossy 
techniques better in others. In fact, as this paper will show, 
lossless and lossy techniques are often used together to 
obtain the highest compression ratios. Even given a 
specific type of file, the contents of the file, particularly 
the orderliness and redundancy of the data, can strongly 
influence the compression ratio. In some cases, using a 
particular data compression technique on a data file where 
there isn't a good match between the two can actually 
result in a bigger file [9].  
 
2. Some Considerable Terminologies 
A few little comments on terminology before we proceed 
are given as the following:  
• Since most data compression techniques can work 
on different types of digital data such as characters or 
bytes in image files or whatever, data compression 
literature speaks in general terms of compressing 
"symbols".  
• Most of the examples talk about compressing data 
in "files", just because most readers are familiar with that 
idea. However, in practice, data Compression applies just 
as much to data transmitted over a modem or other data 
communications link as it does to data stored in a file. 
There's no strong distinction between the two as far as data 
compression is concerned. This paper also uses the term 
"message" in examples where short data strings are 
compressed [7, 10]. 
• Data compression literature also often refers to data 
compression as data "encoding", and of course that means 
data decompression is often  
called "decoding". This paper tends to use the two sets of 
terms interchangeably.  
 
3. Run Length Encoding Technique 
One of the simplest forms of data compression is known 
as "run length encoding" (RLE), which is sometimes 
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known as "run length limiting" (RLL) [8,10]. In this 
encoding technique, suppose you have a text file in which 
the same characters are often repeated one after another. 
This redundancy provides an opportunity for compressing 
the file. Compression software can scan through the file, 
find these redundant strings of characters, and then store 
them using an escape character (ASCII 27) followed by 
the character and a binary count of the number of times it 
is repeated. For example, the 50 character sequence:  
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
that's all, folks!-- can be converted to:  <ESC>X<31> . 
This eliminates 28 characters, compressing the text by 
more than a factor of two. Of course, the compression 
software must be smart enough not to compress strings of 
two or three repeated characters, since for three characters 
run length encoding would have no advantage, and for two 
it would actually increase the size of the output file.  
As described, this scheme has two potential problems. 
First, an escape character may actually occur in the file. 
The answer is to use two escape characters to represent it, 
which can actually make the output file bigger if the 
uncompressed input file includes lots of escape characters. 
The second problem is that a single byte cannot specify 
run lengths greater than 256. This difficulty can be dealt 
by using multiple escape sequences to compress one very 
long string.  
Run length encoding is actually not very useful for 
compressing text files since a typical text file doesn't have 
a lot of long, repetitive character strings. It is very useful, 
however, for compressing bytes of a monochrome image 
file, which normally consists of solid black picture bits, or 
"pixels", in a sea of white pixels, or the reverse. Run-
length encoding is also often used as a preprocessor for 
other compression algorithms.   
  
4.  HUFFMAN Coding Technique 
A more sophisticated and efficient lossless compression 
technique is known as "Huffman coding", in which the 
characters in a data file are converted to a binary code, 
where the most common characters in the file have the 
shortest binary codes, and the least common have the 
longest [9]. To see how Huffman coding works, assume 
that a text file is to be compressed, and that the characters 
in the file have the following frequencies:  
 

A:   29 
B:   64 
C:   32 
D:   12 
E:    9 
F:   66 
G:   23 

 
In practice, we need the frequencies for all the characters 
used in the text, including all letters, digits, and 

punctuation, but to keep the example simple we'll just 
stick to the characters from A to G.  
The first step in building a Huffman code is to order the 
characters from highest to lowest frequency of occurrence 
as follows:  
66    64    32    29    23    12    9 
F     B     C     A     G     D     E 

 
First, the two least-frequent characters are selected, 
logically grouped together, and their frequencies added. In 
this example, the D and E characters have a combined 
frequency of 21:  
                                      | 
                                   +--+--+ 
                                   |  21 | 
                                   |     | 
     66    64    32    29    23    12    9 
     F     B     C     A     G     D     E  
 
This begins the construction of a "binary tree" structure. 
We now again select the two elements the lowest 
frequencies, regarding the D-E combination as a single 
element. In this case, the two elements selected are G and 
the D-E combination. We group them together and add 
their frequencies. This new combination has a frequency 
of 44:  
                                  | 
                             +----+---+ 
                             |   44   | 
                             |        | 
                             |     +--+--+ 
                             |     |  21 | 
                             |     |     | 
     66    64    32    29    23    12    9 
     F     B     C     A     G     D     E  
 
We continue in the same way to select the two elements 
with the lowest frequency, group them together, and add 
their frequencies, until we run out of elements. In the third 
iteration, the lowest frequencies are C and A and the final 
binary tree will be as follows: 
  | 

+---------+--------+ 
|0                 |1 
|                  | 

|           +------+------+ 
|           |0            |1 
|           |             | 

|           |        +----+----+ 
|           |        |0        |1 
|           |        |         | 

+--+--+     +--+--+     |      +--+--+ 
|0    |1    |0    |1    |      |0    |1 
|     |     |     |     |      |     | 
F     B     C     A     G      D     E 

Tracing down the tree gives the "Huffman codes", with the 
shortest codes assigned 
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to the characters with the greatest frequency:  
F:     00 
B:     01 
C:    100 
A:    101 
G:    110 
D:   1110 
E:   1111 

 
The Huffman codes won't get confused in decoding. The 
best way to see that this is so is to envision the decoder 
cycling through the tree structure, guided by the encoded 
bits it reads, moving from top to bottom and then back to 
the top. As long as bits constitute legitimate Huffman 
codes, and a bit doesn't get scrambled or lost, the decoder 
will never get lost, either.  
There is an alternate algorithm for generating these codes, 
known as Shannon-Fano coding. In fact, it preceded 
Huffman coding and one of the first data compression 
schemes to be devised, back in the 1950s. It was the work 
of the well-known Claude Shannon, working with R.M. 
Fano. David Huffman published a paper in 1952 that 
modified it slightly to create Huffman coding. 
 
5. ARITHMETIC Coding Technique 

Huffman coding looks pretty slick, and it is, but there's a 
way to improve on it, known as "arithmetic coding". The 
idea is subtle and best explained by example [4, 8, 10]. 
Suppose we have a message that only contains the 
characters A, B, and C, with the following frequencies, 
expressed as fractions: 
  

A:  0.5 
B:  0.2 
C:  0.3 

 
To show how arithmetic compression works, we first set 
up a table, listing characters with their probabilities along 
with the cumulative sum of those probabilities. The 
cumulative sum defines "intervals", ranging from the 
bottom value to less than, but not equal to, the top value. 
The order does not seem to be important.  
 

letter   probability   interval 
------   -----------   --------- 
C:       0.3           0.0 : 0.3 
B:       0.2           0.3 : 0.5 
A:       0.5           0.5 : 1.0 
------   -----------   --------- 

 
Now each character can be coded by the shortest binary 
fraction that falls in the character's probability interval:  

 
   letter   probability   interval    binary fraction 
   ------   -----------   ---------   -------------------- 
   C:       0.3           0.0 : 0.3   0         
   B:       0.2           0.3 : 0.5   0.011 = 3/8 = 0.375 
   A:       0.5           0.5 : 1.0   0.1   = 1/2 = 0.5 

   ------   -----------   ---------   -------------------- 

Sending one character is trivial and uninteresting. Let's consider sending messages consisting of all possible 
permutations of two of these three characters, using the same approach:  

string   probability   interval       binary fraction 
------   -----------   ------------   ----------------------- 
CC:      0.09          0.00 : 0.09    0.0001 = 1/16  = 0.0625 
CB:      0.06          0.09 : 0.15    0.001  = 1/8   = 0.125 
CA:      0.15          0.15 : 0.30    0.01   = 1/4   = 0.25 
BC:      0.06          0.30 : 0.36    0.0101 = 5/16  = 0.3125 
BB:      0.04          0.36 : 0.40    0.011  = 3/8   = 0.375 
BA:      0.10          0.40 : 0.50    0.0111 = 7/16  = 0.4375 
AC:      0.15          0.50 : 0.65    0.1    = 1/2   = 0.5 
AB:      0.10          0.65 : 0.75    0.1011 = 11/16 = 0.6875 
AA:      0.25          0.75 : 1.00    0.11   = 3/4   = 0.75 
------   -----------   ------------   ----------------------- 

 
The higher the probability of the string, in general the shorter the binary fraction needed to represent it. Let's build a 
similar table for three characters now:  
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string   probability   interval        binary fraction 
------   -----------   -------------   ------------------------------- 
CCC      0.027         0.000 : 0.027   0.000001   =  1/64   = 0.015625 
CCB      0.018         0.027 : 0.045   0.00001    =  1/32   = 0.03125 
 
CCA      0.045         0.045 : 0.090   0.0001     =  1/16   = 0.0625 
CBC      0.018         0.090 : 0.108   0.00011    =  3/32   = 0.09375 
CBB      0.012         0.108 : 0.120   0.000111   =  7/64   = 0.109375 
CBA      0.03          0.120 : 0.150   0.001      =  1/8    = 0.125 
CAC      0.045         0.150 : 0.195   0.0011     =  3/16   = 0.1875 
CAB      0.03          0.195 : 0.225   0.00111    =  7/32   = 0.21875 
CAA      0.075         0.225 : 0.300   0.01       =  1/4    = 0.25 
 
BCC      0.018         0.300 : 0.318   0.0101     =  5/16   = 0.3125 
BCB      0.012         0.318 : 0.330   0.010101   =  21/64  = 0.328125 
BCA      0.03          0.330 : 0.360   0.01011    =  11/32  = 0.34375 
BBC      0.012         0.360 : 0.372   0.0101111  =  47/128 = 0.3671875 
BBB      0.008         0.372 : 0.380   0.011      =  3/8    = 0.375 
BBA      0.02          0.380 : 0.400   0.011001   =  25/64  = 0.390625 
BAC      0.03          0.400 : 0.430   0.01101    =  13/32  = 0.40625 
BAB      0.02          0.430 : 0.450   0.0111     =  7/16   = 0.4375 
BAA      0.05          0.450 : 0.500   0.01111    =  15/32  = 0.46875 
 
ACC      0.045         0.500 : 0.545   0.1        =  1/2    = 0.5 
ACB      0.03          0.545 : 0.575   0.1001     =  9/16   = 0.5625 
ACA      0.075         0.575 : 0.650   0.101      =  5/8    = 0.625 
ABC      0.03          0.650 : 0.680   0.10101    =  21/32  = 0.65625 
ABB      0.02          0.680 : 0.700   0.1011     =  11/16  = 0.6875 
ABA      0.05          0.700 : 0.750   0.10111    =  23/32  = 0.71875 
AAC      0.075         0.750 : 0.825   0.11       =  3/4    = 0.75 
AAB      0.05          0.825 : 0.875   0.11011    =  27/32  = 0.84375 
AAA      0.125         0.875 : 1.000   0.111      =  7/8    = 0.875 
------   -----------   -------------   ------------------------------- 

 
Obviously, this same procedure can be followed for more characters, resulting in a longer binary fractional value. What arithmetic 
coding does is find the probability value of a particular message, and arrange it as part of a numerical order that allows its unique 
identification.  
 

 
6. LZ-77 Encoding Technique [4, 5, 10] 
Good as they are, Huffman and arithmetic coding are not 
perfect for encoding text because they don't capture the higher-
order relationships between words and phrases. There is a 
simple, clever, and effective approach to compressing text 
known as LZ-77, which uses the redundant nature of text to 
provide compression. This technique was invented by two 
Israeli computer scientists, Abraham Lempel and Jacob Ziv, in 
1977 [7,8,9,10]. 
LZ-77 exploits the fact that words and phrases within a text 
stream are likely to be repeated. When they do repeat, they can 
be encoded as a pointer to an earlier occurrence, with the 
pointer accompanied by the number of characters to be 
matched.  
Pointers and uncompressed characters are distinguished by a 
leading flag bit, with a "0" indicating a pointer and a "1" 
indicating an uncompressed character. This means that 

uncompressed characters are extended from 8 to 9 bits, 
working against compression a little.  
Key to the operation of LZ-77 is a sliding history buffer, also 
known as a "sliding window", which stores the text most 
recently transmitted. When the buffer fills up, its oldest 
contents are discarded. The size of the buffer is important. If it 
is too small, finding string matches will be less likely. If it is 
too large, the pointers will be larger, working against 
compression.  
For an example, consider the phrase:  

 
the_rain_in_Spain_falls_mainly_in_the_pl
ain  
 

-- where the underscores ("_") indicate spaces. This 
uncompressed message is 43 bytes, or 344 bits, long.  
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At first, LZ-77 simply outputs uncompressed characters, since 
there are no previous occurrences of any strings to refer back 
to. In our example, these characters will not be compressed:  

     the_rain_ 

The next chunk of the message:  
 
in_ 
 

-- has occurred earlier in the message, and can be 
represented as a pointer back to that earlier text, along with a 
length field. This gives:  

 
the_rain_<3,3> 
 

-- where the pointer syntax means "look back three 
characters and take three characters from that point." There 
are two different binary formats for the pointer:  

• An 8 bit pointer plus 4 bit length, which assumes a 
maximum offset of 255 and a maximum length of 15.  
• A 12 bit pointer plus 6 bit length, which assumes a 
maximum offset size of 4096, implying a 4 kilobyte buffer, 
and a maximum length of 63.  

As noted, a flag bit with a value of 0 indicates a pointer. This 
is followed by a second flag bit giving the size of the pointer, 
with a 0 indicating an 8 bit pointer, and a 1 indicating a 12 
bit pointer. So, in binary, the pointer <3,3> would look like 
this:  

00 00000011 0011 
The first two bits are the flag bits, indicating a pointer that is 
8 bits long. The next 8 bits are the pointer value, while the 
last four bits are the length value.  

After this comes:  

Sp 
-- which has to be output uncompressed:  

  
the_rain_<3,3>Sp 

However, the characters "ain_" have been sent, so they are 
encoded with a pointer:  

 
the_rain_<3,3>Sp<9,4> 

Notice here, at the risk of belaboring the obvious, that the 
pointers refer to offsets in the uncompressed message. As the 
decoder receives the compressed data, it uncompresses it, so 
it has access to the parts of the uncompressed message that 
the pointers reference.  

The characters "falls_m" are output uncompressed, but "ain" 
has been used before in "rain" and "Spain", so once again it 
is encoded with a pointer:  

 
the_rain_<3,3>Sp<9,4>falls_m<
11,3> 

Notice that this refers back to the "ain" in "Spain", and not the 
earlier "rain". This ensures  
a smaller pointer.  

The characters "ly" are output uncompressed, but "in_" and 
"the_" were output earlier, and so they are sent as pointers:  

the_rain_<3,3>Sp<9,4>falls_m<
11,3>ly_<16,3><34,4> 

Finally, the characters "pl" are output uncompressed, 
followed by another pointer to "ain". Our original 
message:  

 
the_rain_in_Spain_falls_mainl
y_in_the_plain  
-- has now been compressed into this form:  
 
the_rain_<3,3>Sp<9,4>falls_m<
11,3>ly_<16,3><34,4>pl<15,3> 

This gives 23 uncompressed characters at 9 bits apiece, 
plus six 14 bit pointers, for a total of 291 bits as compared 
to the uncompressed text of 344 bits. This is not bad 
compression for such a short message, and of course 
compression gets better as the buffer fills up, allowing 
more matches.  
LZ-77 will typically compress text to a third or less of its 
original size. The hardest part to implement is the search 
for matches in the buffer. Implementations use binary 
trees or hash tables to ensure a fast match. There are a 
several variations on the LZ-77, the best known being 
LZSS, which was published by Storer and Symanski in 
1982. The differences between the two are unclear from 
the sources I have access to.  
More drastic modifications of LZ-77 include a second 
level of compression on the output of the LZ-77 coder. 
LZH, for example, performs the second level of 
compression using Huffman coding, and is used in the 
popular LHA archiver. The ZIP algorithm, which is used 
in the popular PKZIP package and the freeware ZLIB 
compression library, uses Shannon-Fano coding for the 
second level of compression.  

 
7. LZW Coding Technique 
LZ-77 is an example of what is known as "substitutional 
coding". There are other schemes in this class of coding 
algorithms. Lempel and Ziv came up with an improved 
scheme in 1978, appropriately named LZ-78, and it was 
refined by a Mr. Terry Welch in 1984, making it LZW 
[6,8,10]. LZ-77 uses pointers to previous words or parts 
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of words in a file to obtain compression. LZW takes that 
scheme one step further, actually constructing a 
"dictionary" of words or parts of words in a message, 
and then using pointers to the words in the dictionary. 
Let's go back to the example message used in the 
previous section:  

 
the_rain_in_Spain_falls_mainl
y_in_the_plain  

The LZW algorithm stores strings in a "dictionary" with 
entries for 4,096 variable length strings. The first 255 
entries are used to contain the values for individual 

bytes, so the actual first string index is 256. As the string 
is compressed, the dictionary is built up to contain every 
possible string combination that can be obtained from 
the message, starting with two characters, then three 
characters, and so on.  

For example, we scan through the message to build up 
dictionary entries as follows:  

 

   256 -> th       < th > e_rain_in_Spain_falls_mainly_in_the_plain 
   257 -> he      t < he > _rain_in_Spain_falls_mainly_in_the_plain 
   258 -> e_      th < e_ > rain_in_Spain_falls_mainly_in_the_plain  
   259 -> _r      the < _r > ain_in_Spain_falls_mainly_in_the_plain 
   260 -> ra      the_ < ra > in_in_Spain_falls_mainly_in_the_plain 
   261 -> ai      the_r < ai > n_in_Spain_falls_mainly_in_the_plain 
   262 -> in      the_ra < in > _in_Spain_falls_mainly_in_the_plain 
   263 -> n_      the_rai < n_ > in_Spain_falls_mainly_in_the_plain 
   264 -> _i      the_rain < _i > n_Spain_falls_mainly_in_the_plain 
 

The next two-character string in the message is "in", but this has already been included in the dictionary in entry 
262. This means we now set up the three-character string "in_" as the next dictionary entry, and then go back to 
adding two-character strings:  

  
  265 -> in_     the_rain_ < in_ > Spain_falls_mainly_in_the_plain 
  266 -> _S      the_rain_in < _S > pain_falls_mainly_in_the_plain 
  267 -> Sp      the_rain_in_ < Sp > ain_falls_mainly_in_the_plain 
  268 -> pa      the_rain_in_S < pa > in_falls_mainly_in_the_plain 

 
         The next two-character string is "ai", but that's already in the dictionary at entry 261, so   
          we now add an entry for the three-character string "ain":  

 
   269 -> ain     the_rain_in_Sp < ain > _falls_mainly_in_the_plain 

 
Since "n_" is already stored in dictionary entry 263, we now add an entry for "n_f":  

 
   270 -> n_f     the_rain_in_Spai < n_f > alls_mainly_in_the_plain 
   271 -> fa      the_rain_in_Spain_ < fa > lls_mainly_in_the_plain 
   272 -> al      the_rain_in_Spain_f < al > ls_mainly_in_the_plain 
   273 -> ll      the_rain_in_Spain_fa < ll > s_mainly_in_the_plain 
   274 -> ls      the_rain_in_Spain_fal < ls > _mainly_in_the_plain 
   275 -> s_      the_rain_in_Spain_fall < s_ > mainly_in_the_plain 
   276 -> _m      the_rain_in_Spain_falls < _m > ainly_in_the_plain 
   277 -> ma      the_rain_in_Spain_falls_ < ma > inly_in_the_plain 

 
   Since "ain" is already stored in entry 269, we add an entry for the four-character string "ainl":  

 
   278 -> ainl    the_rain_in_Spain_falls_m < ainl > y_in_the_plain 
   279 -> ly      the_rain_in_Spain_falls_main < ly > _in_the_plain 
   280 -> y_      the_rain_in_Spain_falls_mainl < y_ > in_the_plain 

 
Since the string "_i" is already stored in entry 264, we add an entry for the string "_in":  

 
   281 -> _in     the_rain_in_Spain_falls_mainly < _in > _the_plain 
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Since "n_" is already stored in dictionary entry 263, we add an entry for "n_t":  

 
  282 -> n_t     the_rain_in_Spain_falls_mainly_i < n_t > he_plain 

 
Since "th" is already stored in dictionary entry 256, we add an entry for "the":  

 
   283 -> the     the_rain_in_Spain_falls_mainly_in_ < the > _plain 

 
Since "e_" is already stored in dictionary entry 258, we add an entry for "e_p":  

 
   284 -> e_p         the_rain_in_Spain_falls_mainly_in_th < e_p > lain 
   285 -> pl          the_rain_in_Spain_falls_mainly_in_the_ < pl > ain 
   286 -> la          the_rain_in_Spain_falls_mainly_in_the_p < la > in 

 
The remaining characters form a string already contained in 
entry 269, so there is no need to put it in the dictionary.  

We now have a dictionary containing the following strings:  

   256 -> th   257 -> he   258 -> e_ 
   259 -> _r   260 -> ra   261 -> ai 
   262 -> in   263 -> n_   264 -> _i 
   265 -> in_   266 -> _S    267 -> Sp 
   268 -> pa   269 -> ain   270 -> n_f 
   271 -> fa   272 -> al   273 -> ll 
   274 -> ls   275 -> s_   276 -> _m 
   277 -> ma   278 -> ainl   279 -> ly 
   280 -> y_   281 -> _in   282 -> n_t 
   283 -> the   284 -> e_p   285 -> pl 
   286 -> la 
 
Please remember the dictionary is a means to an end, not 
an end in itself. The LZW coder simply uses it as a tool 
to generate a compressed output. It does not output the 
dictionary to the compressed output file. The decoder 
doesn't need it. While the coder is building up the 
dictionary, it sends characters to the compressed data 
output until it hits a string that's in the dictionary. It 
outputs an index into the dictionary for that string, and 
then continues output of characters until it hits another 
string in the dictionary, causing it to output another 
index, and so on. That means that the compressed output 
for our example message looks like this:  

 
he_rain_<262>_Sp<261><263>falls_m<269>ly<2
64><263><256><258>pl<269> 

         The decoder constructs the dictionary as it reads and 
uncompresses the compressed data, building up dictionary 
entries from the uncompressed characters and dictionary 
entries it has already established. One puzzling thing about 
LZW is why the first 255 entries in the 4K buffer are 
initialized to single-character strings. There would be no 
point in setting pointers to single characters, as the pointers 

would be longer than the characters, and in practice that's 
not done anyway. I speculate that the single characters are 
put in the buffer just to simplify searching the buffer.  
As this example of compressed output shows, as the 
message is compressed, the dictionary grows more 
complete, and the number of "hits" against it increases. 
Longer strings are also stored in the dictionary, and on the 
average the pointers substitute for longer strings. This 
means that up to a limit, the longer the message, the better 
the compression. This limit is imposed in the original LZW 
implementation by the fact that once the 4K dictionary is 
complete, no more strings can be added. Defining a larger 
dictionary of course results in greater string capacity, but 
also longer pointers, reducing compression for messages 
that don't fill up the dictionary.  
A variant of LZW known as LZC is used in the UN*X 
"compress" data compression program. LZC uses variable 
length pointers up to a certain maximum size. It also 
monitors the compression of the output stream, and if the 
compression ratio goes down, it flushes the dictionary and 
rebuilds it, on the assumption that the new dictionary will be 
better "tuned" to the current text.  
Another refinement of LZW keep track of string "hits" for 
each dictionary entry, and overwrites "least recently used" 
entries when the dictionary fills up. Refinements of LZW 
provide the core of GIF and TIFF image compression as 
well.  
It is also used in some modem communication schemes, 
such as the V.42bis protocol. V.42bis has an interesting 
flexibility. Since not all data files compress well given any 
particularly encoding algorithm, the V.42bis protocol 
monitors the data to see how well it compresses. It sends it 
"as is" if it compresses poorly, and switches to LZW 
compress using an escape code if it compresses well.  
Both the transmitter and receiver continue to build up an 
LZW dictionary even while the transmitter is sending the 
file uncompressed, and switch over transparently if the 
escape character is sent. The escape character starts out as a 
"null" (0) byte, but is incremented by 51 every time it is 
sent, "wrapping around" when it exceeds 256:  
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51  102  153  204  255  -->  50   
101  152  203  254  -->  49  100 ... 

If a data byte that matches the the escape character is sent, it 
is sent twice. The escape character is incremented to ensure 
that the protocol doesn't get bogged down if it runs into an 
extended string of bytes that match the escape character. 

8. Results, Conclusions and Recommendations 
Firstly, with regards to compare between LZW and 
Huffman, Under the title (Group 1 Results), both LZW and 
Huffman will be used to compress and decompress different 
types of files, tries and results will be represented in a table, 
then figured in a chart to compare the efficiency of both 
programs in compressing and decompressing different types 
of files, conclusion and discussions are given at the end. 

 
Table 2.1 Comparison between LZW and Huffman 

 
 

File Name 
 

 
Input File Size 

 

 
Output File 
Size/LZW 

 
Output File 

Size/ Huffman

 
Compress 

Ratio/ LZW

 
Compress 

Ratio / 
Huffman 

Example1. doc 68096 30580 29433 55% 57% 
Example2. doc 58880 23814 23640 60% 66% 
Example3. doc 83968 48984 46876 42% 45% 
Example4. doc 20480 2530 4836 88% 76% 
Example5. doc 27648 8222 10921 70% 60% 
Example6. doc 57856 30993 27163 46% 53% 
Example7. doc 87552 54229 47101 38% 46% 
Example8. doc 48128 23631 20600 51% 55% 
Example9. doc 79360 30363  32416 62% 59% 
Example10. doc 68096 30581 29433 55% 57% 

Pict3.bmp 1440054  193888 276506 87% 81% 
Pict4.bmp 1440054 100338 282824 93% 80% 
Pict5.bmp  

  
1440054 461637 318178 68% 78% 

Pict6.bmp 1365318 371601 366830 73% 73% 
Inprise. gif 4654 6634 5073 -43% -9% 
Baby. jpg 26183 35367 26487 -35% -1% 
Cake. Jpg 23036 32457 23479 -41% -2% 

Candles. jpg 17639 23230 17885 -32% -1% 
Class. jpg 5851 6764 6035 -16% -3% 
Earth. jpg 9370 12955 9811 -38% -5% 

 

Fig. 2.1 Chart: Comparison between LZW and Huffman compression ratio 
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The chart above shows the results of using the program in 
compressing different types of files. In the chart, the dark 
blue curve represents the input files sizes, the violet curve 
represents the output files sizes when compressed using 
LZW and the yellow curve represents the output file size 
when compressed using Huffman. 
From the table and the chart above, the following 
conclusions and discussion can be driven:  
•  LZW and Huffman give nearly results when used 
for compressing document or text files, as appears in the 
table and in the chart. The difference in the compression 
ratio is related to the different mechanisms of both in the 
compression process; which depends in LZW on replacing 
strings of characters with single codes, where in Huffman 
depends on representing individual characters with bit 
sequences. 
• When LZW and Huffman are used to compress a 
binary file (all of its contents either 1 or 0), LZW gives a 
better compression ratio than Huffman. If you tried for 
example to compress one line of binary 
( 00100101010111001101001010101110101......) using 
LZW, you will arrive to a stage in which 5 or 6 
consecutive binary digits are represented by a single new 
code ( 9 bits ), while in Huffman you will represents every 
individual binary digit with a bit sequence of 2 bits, so in 
Huffman the 5 or 6 binary digits which were represented 
in LZW by 9 bits are represented now with 10 or 12 bits; 
this decreases the compression ratio in the case of 
Huffman 
-LZW and Huffman are used in compressing bmp files; 
bmp files contain images, in which each dot in the image 
is represented by a byte, as appears in the chart for 
compressing bmp files, the results are somehow different. 
LZW seems to be better in compressing bmp files the 
Huffman; since it replaces sets of dots ( instead of strings 
of characters in text files ) with single codes; resulting in 
new codes that are useful when the dots that consists the 

image are repeated, while in Huffman, individual dots in 
the image are represented by bit sequences of a length 
depending on it’s probabilities. Because of the large 
different dots representing the image, the binary tree to be 
built is large, so the length of bit sequences which 
represents the individual dots increases, resulting in a less 
compression ratio compared to LZW compression. 
- When LZW or Huffman is used to compress a file of 
type gif or type jpg, you  will notice as in the table and in 
the chart that the compressed file size is larger than the 
original file size; this is due to being the images of these 
files are already compressed, so when compressed using 
LZW the number of the new output codes will increase, 
resulting in a file size larger than the original , while in 
Huffman the size of the binary tree built increases because 
of the less of probabilities, resulting in longer bit sequence 
that represent the   individual dots of the image, so the 
compressed file size will be larger than the original . But 
because of being the new output code in LZW represented 
by 9 bits, while in Huffman the individual dot is 
represented with bits less than 9, this makes the resulting 
file size after compression in LZW larger than that in 
Huffman. 
- Decompression operation is the opposite operation for 
compression; so the results will be the same as in 
compression. 
Secondly, with regard to compare between LZW and 
HLZ, Under the title (Group 2 Results) both Huffman and 
LZW will be used to compress the same file, LZW 
compression then Huffman compression are applied 
consecutively to the same file or Huffman compression 
then LZW compression are applied to the same file, then a 
comparison between the two states will be done, 
conclusion and discussions are also given. The following 
table shows tries and results for group 2, will the chart in 
Fig. 2.2 represents these results. 
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Fig. 2.2 Chart: Comparison between LZH and HLZ compression ratios. 
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Table 2.2 Comparison between LZW, Huffman, LZH and HLZ compression ratios 

 
From the table above and the chart, the following 
conclusions can be driven: 
• Using LZH compression to compress a file of type: txt or 
bmp gives an improved compression ratio ( more than 
Huffman compression ratio, and LZW compression ratio ), 
this conclusion can be explained as follows: 
In the LZH compression, the file is firstly compressed 
using LZW, then compressed using Huffman, as it 
appeared from group 1 results that LZW gives good 
compression ratios for these types of files ( since it replaces 
strings of characters with single codes represented by 9 bits 
or more depending on the LZW output table), now the 
compressed file (.Lzw ) file which be compressed using 
Huffman, the (.Lzw ) file will be compressed perfectly by 
Huffman; since the phrases that are represented in LZW by 

9 or more bits will now be represented by binary codes of 
2, 3, 4 or more bits but still less than 8bits; this compresses 
the file more, and so improved compression ratios can be 
achieved using LZH compression. 
• When LZH compression is used to compress file of types: 
TIFF, GIF or JPEG, it increases the output file size as it 
appears in the table and from the chart, this conclusion can 
be discussed as follows: 
TIFF, GIF or JPEG files use LZW compression in their 
formats, and so when compressed using LZW, the output 
files sizes will be bigger the original, while when they are 
compressed using Huffman nearly good results can be 
achieved, so when a TIFF, GIF or JPEG file is firstly 
compressed with LZW resulting in a bigger file size using 

Input File Size 
 

LZW LZW% HUF HUF% LZH 
 

LZH% HLZ HLF%

1.doc  1216502 570513 537542 359113 70 337749 72 487200 60 
2.doc 659456 165288 75 157580 76 120529 82 137640 79 
3.doc 491520 286957 42 306746 38 269146 45 361609 26 
4.doc 436575 275193 37 162929 63 192012 56 168469 61 
5.doc 71088 36721 48 44779 37 35468 50 53122 25 
6.doc 45568 22092 52 22701 50 20452 55 25798 43 
1.txt 3977 2571 35 2567 35 2865 28 3238 26 
2.txt 12305 6715 45 7736 37 7028 43 9357 42 
3.txt 20807 5757 72 13932 33 6177 70 10074 52 
4.txt 20821 10725 48 13149 37 10990 47 14904 28 
5.txt 39715 18936 52 24769 38 19183 52 27417 31 
6.txt 25422 11335 55 16185 36 11703 54 17769 30 

1.bmp 746082 286879 62 696526 37 273900 63 433512 42 
2.bmp 83418 13402 84 27202 67 13735 84 18766 78 
3.bmp 481080 606420 26 248644 48 361079 25 363798 24 
4.bmp 222822 279781 26 215928 3 249947 -12 363798 63 
5.bmp 2137730 416950 80 610085 71 407932 81 564156 74 
6.bmp 1440054 192930 87 1378239 4 163968

6 
-14 1970140 37 

1.tif 84530 1110672 32 785693 7 111067
2 

-32 1085466 29 

2.tif 1162804 1567927 35 1091514 6 130896
3 

-13 1536259 32 

3.tif 775036 366622 53 468322 40 318365 59 450462 42 
4.tif 1440180 2010465 40 1378329 4 163920

2 
-14 1960444 36 

5.tif 82308 12862 84 26113 68 13007 84 18000 78 
6.tif 481722 307993 36 429330 48 228563 53 248853 48 
1.gif 85084 119442 40 85457 0 102396 -20 121359 43 
2.gif 18519 25425 37 18780 -1 22107 -19 26754 44 
3.gif 63687 89482 41 64015 -1 76310 -20 90534 42 
4.gif 62722 88180 41 63150 -1 76072 -21 89577 43 
5.gif 83645 118375 42 84125 -1 101836 -22 119497 43 
6.gif 304047 418116 38 303463 0 361399 -19 429013 41 
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Huffman; so LZH compression is not efficient in the 
compression operation of these types of files. 
When HLZ compression is used to compress files of types: 
Doc, Txt or Bmp, it gives a compression ratio that is less 
than the compression ratio obtained from as follows: 
Huffman compression replaces each byte in the input file 
with a binary code that is responded by 2, 3, 4 bits or more 
but still less than 8 bits, now when the compressed file 
using Huffman (.Huf) file is compressed using LZW 
phrases of binary will be composed and represented with 
codes of 9 or more bits which were in Huffman 
compressing these types of files. 
When HLZ is used to compress files of types: TIFF, GIF or 
JPEG, this will give good results for compression. These 
really compressed images using LZH in the first stage 
(compression is performed in this stage using Huffman), in 
the second stage of the compression using LZH this will 
give a bigger output file than the original (since LZW is 
now used to compress an image that is really compressed 
using LZW); and so HLZ is not an efficient method in the 
compression operation of these types of files. 
? and so, LZH is used to obtain highly compression ratios 
for the compression operation of files of types: Doc, Txt, 
Bmp, rather than HLZ. 
Under this title some suggestions are given for increasing 
the performance of the compression these are below: 
In order to increase the performance of compression, a 
comparison between LZW and Huffman to determine 
which is best in compressing a file is performed, and the 
output compressed file will be that of the less compression 
ratio, this can be used when the files is to be attached to an 
e-mail. Using LZW and Huffman for compression files of 
type: GIF or of type JPG can be studied and a program for 
good results can be built. 
Finding a specific method for building the binary tree of 
Huffman, so as to decrease the length or determine the 
length of the bit sequences that represent the individual 
symbols can be studied and a program can be built for this 
purpose. 
Other text compression and decompression algorithms can 
be studied and compared with the results of LZW and 
Huffman. 
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