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ABSTRACT  
In this paper, a fuzzy estimator to assist fault 
recovery in a nonlinear process plant is presented. 
The fuzzy estimator is designed by acquiring minimal 
information from a real time plant. The operational 
range of the plant with the fuzzy estimator is bound 
to increase. Experimental results show that the 
designed estimator is able to take care of feedback 
sensor failures over a sufficiently long period of time.  
 
Keywords: Fault tolerant system, Fuzzy logic, 
nonlinear system, Estimator. 
 
NOMENCLATURE 
fin(k)— inflow corresponding to kth sample 
f out(k) – outflow corresponding to kth sample 
y(k) – Plant output, level in cm. 
vvf – very very fast 
A – cross sectional area of tank 
h – instantaneous height of conical portion of tank 
H – total height of tank 
t  –  total  time constant 
k – process gain 
r – radius of conical tank 
R - radius of cylindrical tank 
 
1. INTRODUCTION 
 The construction of a parameter (or 
state) estimator can be considered as a function 
approximation problem. To design an estimator, at 
first it is necessary to obtain the training data set ‘G’ 
such that, this training data set contains as much 
information as possible about the system ‘g’. The 
training data should be uniformly spread over the 
input space ensuring a regular spacing between points 
(avoiding local clustering). This is essential to get a 
good coverage of the whole input space. The 
information as to how the mapping ‘g’ is shaped in 
all regions should be implicitly present as much as 
possible in the training data set. Once trained 
properly, the estimator will adaptively follow the 
slope of ‘g’ at all times. In this paper the design of a 
fuzzy estimator to assist fault recovery in a non-linear 
process control system is presented. The work is 
organized as follows: section 2 describes the plant 
chosen for experimental study and the transfer 
function of the process is obtained. The extraction of 
the linguistic information and the design of fuzzy 
estimator is discussed in section 3. The fault tolerant 

plant model is presented in section 4 and the 
experimental results are presented in section 5. The 
conclusion is given in section 6. 
 
2. PLANT DESCRIPTION  
 The prototype model constructed for 
experimental study consists of the non-linear process 
tank with the conical and cylindrical portion. The 
experimental model is to be used to study the 
performance of the proposed fuzzy estimator by 
obtaining the servo and regulatory response, in the 
presence of disturbances and feedback sensor failure. 
Suitable signals are given to a pneumatic operated 
control valve to regulate the manipulated variable 
inflow. A disturbance in the form of random 
variations in outflow (measurable) is considered to 
enter the process. The experimental set up is shown 
in Figure 11 (Appendix I). The process variable level 
is sensed by means of a level sensing probe and using 
suitable electronics circuitry, a voltage output is 
obtained. The analog voltage is converted into digital 
form using an 8- bit A/D converter. The inflow and 
outflow rates are measured using suitable flow 
sensors.  
 
2.1 TRANSFER FUNCTION OF THE 
NONLINEAR PROCESS 
 The mathematical model of the chosen 
nonlinear process tank is obtained, by considering the 
process as a combination of (i) a cylindrical geometry 
and (ii) a conical geometry as shown in Figure 1.  
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Figure 1 Geometrical cross-section of the tank  
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The plant transfer function is obtained in terms of the 
process characteristics namely the process gain and 
the process time constant. The dead time td is 
neglected. 
 
2.1.1 MODELING FOR THE CYLINDRICAL 
PORTION 
 The cylindrical portion of the hopper 
type tank (Figure 1) is considered with outflow rate 
proportional to the square root of level.  The mass 
balance equation governing the system dynamics is 
given by 
 dv 
        =     Fin-Fout  -------   (1) 
 dt       
    
                       dh           

A             =  Fin - bh0.5         ------   (2)                                            
         dt                                                                      

where A  = ?R2         
 The transfer function relating the height 
h and the inflow rate fin with parameters (k, t) can be 
obtained as: 
                H(s)             k 
G(s) =                =  --------(3)   
                Fin(s)         (1+s t ) 
 
 
where 
           2h                2hA 
 k =            ;  t  =                    ; U=  bh0.5 ;      
           U                  U                                               
The nominal transfer function  
                      kº 
Go(s) =                                          -------     (4) 
                      (1 + s t o)  
 where kº and t º are evaluated at a 
nominal height ho. 
  
2.1.2 MODELING FOR THE CONICAL 
PORTION 
 Similarly, the transfer function for the conical 
section can be obtained as 
                                         k 
           Gcon(s)  =                                         -------      (5)                                                                                                                                                   
                                   (1 + s t con)      
where  

          2h                      2hA(h) 
k =           ;  t  con=                     ; U =  bh0.5 ;      
 U                         U  
 Thus, the major difference in the model 
obtained for the two region is that the area A(h) is a 
function of the height h in the conical section.  
 
 
 

3. FUZZY ESTIMATOR DESIGN 
 In the construction of a fuzzy state estimator 
for a single parameter in the plant ‘g’ random 
excitation inputs are chosen to form the training data 
set. Excitation with random inputs are chosen since it 
has a better tendency to place the data points over a 
whole range of locations and it is also difficult to 
choose other inputs ‘u’ that result in a better data set 
G. A set of experiments are conducted with system 
‘g’ by varying the parameters inflow and outflow 
about their steady state values. The parameters are 
varied individually over a specified range of values to 
account for the possible failure scenarios the system 
might encounter. The parameters inflow and outflow 
(fin(k) and fout(k) respectively) are varied between –
50% and +50% of its nominal value i.e. ? fin(k) and 
? fout(k)? [-0.5,+0.5], and the resultant variations of 
the plant output are recorded. The random variations 
in (inflow [-] outflow) and the resultant plant 
response obtained in shown for four sample cases in 
Figures 12 and 13 (Appendix-2). These plots are used 
to capture the time varying dynamics of the nonlinear 
process and design a suitable rule base.  

 

 

 

 

 

 

Figure 2 Membership function for (inflow-outflow)  
 
 
 

 
 
 
 
 
        
 
Figure 3 Membership function for y(k-1) 
 
 

 
 
 
 
 

 
 

Figure 4 Membership function for change  
 in level (in cms) 
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In the present work the fuzzy variables chosen are 
fin(k)-fout(k), y(k-1) and the change in level. The 
membership function plots of these three variables 
are given in figures 2 to 4. 
 
3.1 FUZZY ESTIMATOR- RULE BASE 
 Generally, the fuzzy logic rules are 
developed from operators experience or experimental 
data. In the present work, the rules are formed using 
the experimental response obtained. Each rule is a 
triplet ((fin(k)-fout(k)), y(k-1),?y(k)).  
   The rule takes a given pair (fin(k)- fout(k)) 
? [-50%,+50%] and y(k-1) ? [0,35] as inputs, and 
assigns an output ?y(k) ? [-1,+1].  The rule base for 
the fuzzy estimator is given in Table I. 

Table I - Rule base  
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4. FAULT TOLERANT PLANT MODEL  
       The fuzzy estimator with the membership 
functions of Figures 2 to 4 stored in the knowledge base 
and the rules stored in the rule base (Table 1) is 
incorporated into the existing plant model and is shown in 
Figure 5. The knowledge base and rule base are used by 
the fuzzy inference mechanism to fire the individual rules. 
The center of gravity method of defuzzification is used to 
obtain a crisp output. 
 
4.1 FAULT TOLERANT CONTROL ALGORITHM 

Repeat steps (i) to (iv) for n=1,2,3 …….. 
(i) read level y(k) from level sensor  
(ii)read inflow fin(k) and outflow fout(k) from flow 
sensors      
(iii) calculate fuzzy estimator output y(k) with (fin(k) 
– fout(k)) and y(k-1) as the fuzzy inputs. 
(iv) if [abs(y(k) - y(k))] > a predefined threshold 
value 
                   { 
assign controller input = estimator output 

               and 
 assign y(k-1)= y (k)   

                } 
           else       
               {  
 assign controller input = sensor output 
   and 
                  assign y(k-1) = y(k) 

           } 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 Plant model with the fuzzy estimator to take 
care of feedback sensor failure 
 
5 EXPERIMENTAL RESULTS 
 The performance of the designed fuzzy 
estimator is tested on the nonlinear tank by 
introducing a feedback sensor failure at random time 
instants for a considerably long duration during the 
experimental run. The decision logic of Figure 5 
selects the fuzzy estimator output as the feedback 
signal to the controller at those time instants when the 
deviation between the actual sensor value and the 
estimated value exceeds a set threshold.  
              The actual plant response obtained with a 
faultless sensor is compared with the estimator 
response (obtained during sensor failure) for different 
operating conditions such as variations in set point 
(servo tracking) and load variable (regulatory 
response) outflow.  

 
5.1 SERVO TRACKING RESPONSE 
 In the servo tracking study on the real time 
plant, step signal with randomly varying magnitudes 
are used as the excitation inputs. The chosen 
variations of set point are shown in figure 6 for the 
actual (sensor normal) and fuzzy estimated response 
(during sensor failure) of the nonlinear plant is shown 
in figure 8. From the response, it can be observed that 
the designed estimator is able to adapt itself and 
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follow the plant response during the time of feedback 
level sensor failure. The measured variations of fin(k) 
and fout(k ) are shown in Figure 6 and 7. 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 Measured variations of manipulated variable 
inflow  
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Figure 7 Measured variations of load variable 
outflow  
 

Figure 8 Measured and fuzzy estimated level 
variations of the real time plant in response to 
changes in set point.   

 
5.2 REGULATORY RESPONSE  
 This response is obtained to observe the 
effect of load variations on the performance of the 

dynamic fuzzy estimator. The chosen variations in 
load variable outflow about its steady state value of 
50% are shown in Figure 9. The nominal operating 
point is set at 26 cms.  The measured variations of   
fin(k) is shown in Figure 10. 
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Figure 9 Random perturbations in the load variable 
outflow about its nominal value of 50% 
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Figure 10 Measured variations of manipulated 
variable inflow  
 

  
 
 
 
 
 
 
 
 
 
 
Figure 11 Measured and fuzzy estimated level 
variations of the real time plant in response to 
perturbations in load variable outflow.   
 
5.3 MEAN SQUARE ERROR  
 
 
 
 
 
 

 A--Level variations during sensor normal  (y ellow) 
 B --Level variations estimated by fuzzy estimator (during sensor  

failure)   (green) 
 C---Set point(blue)   

A--Level variations during sensor normal (yellow) 
B --Level variations estimated by fuzzy estimator (during   
       sensor failure)    (green) 
C---Set point  (blue) 
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The response of the fuzzy estimator and the actual 
plant output (if the sensor is normal) is shown in 
Figure 11. 
 
 
 
 
 
 
 
 
 
 
 
Figure 12 MSE plot for the servo tracking 

 
 
 
 
 
 
 

 
 
 
 
Figure 13 MSE plot for the regulatory control 
  

The performance of the designed estimator 
is measured by calculating the MSE for the above 2 
cases. The MSE is obtained as 1/N S [(y(k) – y(k)]2  

The mean square error is calculated for each case. 
The MSE plot corresponding to the servo tracking 
and regulatory control is shown in figures 12 and 13 
respectively and is observed to be within acceptable 
limits.     
 
6. CONCLUSION 

In this paper, a novel fuzzy estimator based 
fault tolerant system has been designed and tested for 
satisfactory performance on a real time nonlinear 
process control plant. Future direction of study shall 
include extension of fault tolerant approach to take 
care of multiple sensor failures and also on 
embedding the estimator on-chip. 
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Process tank chosen for experimental study Figure 11.Laboratory set up of the plant model 
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A—Inflow fluctuating between 90 to 100% and out flow 

fluctuating between 40 to 50% after 50 Samples 
B—Inflow Fluctuating between 90 to 100% and out flow 

fluctuating between 50 to 60% after 50 Samples 
 C – Inflow fluctuating between 0 to 10% and out flow 

fluctuating between 70 to 80% after 50 Samples 
D-– Inflow fluctuating between 90 to 100% and out flow 

fluctuating between 90 to100% after 50 Samples 
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Figure 13 Combined plot of resultant level response corresponding to the case A, B, C, D of Figure 12 
 

Figure 12 Combined plot of (inflow-outflow) for four different experimental conditions. 
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