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Summary 
Communication bandwidth, topology and security policy are 

different from place to place in a ubiquitous computing 

environment, components in the environment should change its 

behavior to fit current situation according to real world changes. 

Without adapting the environment, the components may fail to 

continue proper operations. 

 In this paper, we propose a reconfigurable, object model that 

dynamically changes the object's behavior to fit the current 

environment by modifying its internal structure. The proposed 

object consists of communicating concurrent meta-objects. Each 

meta-object contains functionality for adaptation, remote 

communication, and administration.  

Generative communication, which allows meta-object 

communication, gives the proposed reconfigurable objects the 

following characteristics: flexibility; ability of allowing a variety 

of configurations; safety that ensures consistency; and a 

unification of state preservation and communication. The 

proposed object model was successfully implemented in a 

middleware framework called Juice 2. 
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1. Introduction 

A software system that modifies its behavior and structure 

during runtime provides high reliability and availability, and 

be a user-friendly system. For example, when local CPU 

workload becomes high, migrating an object to a remote 

host allows a more efficient use of hardware resources. In 

ubiquitous computing, as the user moves, the services 

offered to the user need to change seamlessly. 

In the case of software evolution, updating software in 

runtime gives higher availability. Hardware dynamism 

means dynamic changes of computer resources such as CPU 

workload, available memory etc. Network dynamism is 

changes in network - such as link state, topology, bandwidth 

and latency etc. Software evolution and heterogeneity 

creates software dynamism because different version or 

different types of software coexists. User dynamism means 

the volatility of what user want to do - it sometimes depends 

on a context such as the physical time and place of user 

actually resides. 

Future computing systems should accommodate such 

dynamism in order to react to changes in the environment. 

 

Our final goal is to emerge ̀ Adaptive Software' that changes 

its behavior in runtime to fit current execution environment. 

Successful adaptive software may bring us high reliable, 

reboot free, resilient to unexpected changes, easy to 

maintain, self-optimized, and user-friendly system. 

However, creating such a system is a challenge. Generally, it 

involves a loop that consists of the following three 

processes: 

• Detect the underlying information about the 

environment; 

• Decide on the appropriate action based on the 

information obtained; 

• Perform the determined action that is needed to 

change the behavior of the system. 

 

The detection of information and the decisions taken based 

on the information are not considered in this paper. Instead, 

we will focus on how a successful behavioral change is 

achieved. Reconfiguration in this paper means modifying 

the behavior by replacing the internal modules. 

 

We define a predecessor module as the module that had 

been removed from the system through reconfiguration. 

Through reconfiguration, a successor module takes the 

place of a predecessor module. In general, it is conceivable 

that M predecessor modules have to be replaced by M 

successor modules. This involves integration and separation 

of modules. The problem arises when supporting such 

reconfiguration because each module uses `reference' or 

`pointer' for point-to-point communication, which makes 

the separation and integration harder. Reconfiguration 

becomes more difficult to achieve when the system consists 

of concurrent communicating modules. In this case, it is 

possible that a module sends a message to another module 

that has already been removed from the system. This leads 

to message loss even if they reside at the same address space.  

Therefore, in a reconfigurable system, it is difficult to 

support N to M reconfiguration, and there is no guarantee 

that reliable communication among the modules. The main 
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cause of these problems is strong assumptions among 

modules. Every module assumes the point-to-point direct 

communication and existence of the module to which a 

message sent at a given time. 

 

By relaxing the inter-module assumptions, reconfiguration 

can be achieved by merely replacing a module. In this paper, 

we propose a reconfigurable object model that consists of 

communicating concurrent meta-objects, in which a new 

communication mechanism is provided to relax the 

assumptions. To take the modeling advantage of object 

orientation, we choose an object as a building block of 

application software and a meta-object as a replacement unit 

of reconfiguration. 

Paper Outline 

In this paper, we briefly describe the our early work, Juice 1 

reconfigurable object model in section 2 and show its 

limitation in the next section. Section 3 presents three rules 

necessary for correct reconfiguration and shows the 

difficulty when a naive approach is applied for the 

reconfiguration. Section 4 gives our main idea: loosely 

coupled communication within a reconfigurable object. In 

Section 5, we give an example configuration of the proposed 

reconfigurable object model. Section 6 discusses about 

reconfiguration in the proposed model.  Finally, we 

conclude this paper. 

2. Our Early Work: A Reconfigurable Object 

Model - Juice 1 

In our earlier proposed object model, Juice 1 model [1], is 

shown by Fig.  1. Each Juice 1 object consists of a context 

object that holds the state and methods during adaptation; a 

communicator object that handles the communication 

protocol and ordering of messages; an executor object that 

deals with execution control; an adaptation manager object 

that detects environmental information and reconfigures an 

entire object to an appropriate configuration given the 

current situation; and an encapsulation object that 

encapsulates the internal structure. Several items such as a 

new application code, communication protocols, 

concurrency control, as well as adaptation mechanism and 

policy, can, if necessary, be introduced. This makes the code 

for each meta-object as simple as possible. With this model, 

we can construct valuable objects in a distributed system. 

Concurrent objects, proxy objects, replica objects, and 

transaction-aware objects can all be introduced. Fig.  2 

shows the runtime environment of this model. The testbed is 

written in Java since it is independent of the platform. In this 

testbed implementation, we introduced a pre-processor for 

transforming the source code to give the illusion that the 

application programmer does not need to give special 

consideration to this model. 

 

Fig.  1 Juice 1 Object Model 

 

Fig.  2 Juice 1 Architecture Overview 

 

The following is the typical internal working steps triggered 

by a method invocation from an ordinary Java object to a 

Juice 1 object. 

 

1. On receiving a method invocation from a Java object, 

encapsulation object creates a message object that 

contains method name and parameters corresponds 

the invocation, and forwards it to communicator 

object. 

 

2. Communicator object put the message object to a 

receive queue own by the communicator object. The 
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message object has a chance to be synchronized with 

external objects such as for message ordering in a 

multicast protocol. After this synchronization, 

message becomes ready to execute. Communicator 

object forwards this message to executor object. 

 

3. Executor object receives the message and checks if 

the execution of the message ensures serializability of 

concurrent execution. Once serializability condition is 

satisfied, the executor executes a targeted method in 

the context object according to the information 

described in the message. Actual implementation of 

executor varies i.e. if the executor object has no 

multiple threads of control, no concurrency control 

requires. 

 

As above steps indicate that a method invocation to Juice 1 

object realized by means of internal communication among 

meta-objects.  

 

By means of encapsulation object, external clients are 

isolated from this internal working of Juice 1 object.  Juice 1 

object model provides separation of concerns (SoC) through 

separation of a logical object into multiple meta-objects and 

communication among them. Each meta-object has its own 

state and be able to have multiple threads of control. 

3. The Safe Reconfiguration Problem and Its 

Naive Implementation 

The Safe Reconfiguration Problem 

This section considers an inconsistency problem that occurs 

when a Juice 1 model object was reconfigured. For example, 

consider a reconfiguration requiring a change in the 

communication protocol. Not surprisingly, a naive 

replacement of the communicator object to the desired new 

protocol causes irreversible message loss since the old 

communicator object holds any received messages. 

Message loss means a loss of corresponding method 

execution, loss of state changes, and results in no response 

to the clients. This is an example of an inconsistent state. 

The problem of a safe reconfiguration is to transparently 

change an object's behavior while preventing an 

inconsistent state. To prevent an inconsistent state, an object 

must follow the following rules when replacing a 

meta-object:  

 

• State consistency: The object's state must be held; it 

must be the same before and after reconfiguration. 

Every successful method invocation transfers a 

consistent state to another consistent state. The failure 

or the forced termination of method invocation can 

possibly cause an inconsistent state. 

• Operational consistency: No operation can be 

removed after reconfiguration, even if its 

implementation is changed. However, new operations 

can be included during reconfiguration. The method 

name, parameter type, and return value type must be 

not changed during reconfiguration. In other words, a 

reconfigured object must have upwards compatibility. 

• Referential consistency: Assume that object O 

becomes object O' after its reconfiguration. 

Referential consistency means that all reference to O 

must refer to object O' after reconfiguration. A simple 

solution for this problem is to keep the object's 

identity after reconfiguration. 

 

Therefore, by following these rules, we can achieve a safe 

object reconfiguration. 

A Naive Safe Reconfiguration in Juice 1 

As explained in the previous sub-section, the naive 

reconfiguration method not only leads to a loss of information, 

but also causes every reference point to an obsolete object to 

become faulty due to lack of notification. Any operations on 

the obsolete objects become invalid, and thus, all references 

to obsolete objects are faulty. To prevent the use of a faulty 

reference, a two-phase commit protocol could be used. This 

can be described as follows (Fig.  3): 

 

Fig.  3 Reconfiguration through negotiation among 

meta-objects 
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1. Prepare for a stop: The reconfiguration manager sends 

to all meta-objects a message requesting that these 

meta-objects prepare for the replacement of a target 

meta-object. In effect, this message tells them to "stop 

using the target meta-object"; 

 

2. Acknowledge: If the reconfiguration manager 

receives from all meta-objects an acknowledgment 

message that in effect means "I have stopped using the 

target meta-object. I am now ready to update." then it 

proceeds to the next step. Otherwise, the 

reconfiguration manager repeats step 1. 

 

3. Replace and update: The reconfiguration manager 

creates a new meta-object and broadcasts a message 

announcing the new meta-object's reference. Each 

meta-object updates its reference according to the 

update message and resumes normal operations. 

 

Basically, using this protocol, a safe reconfiguration 

becomes possible. However, to implement this protocol is 

quite difficult due to: 1) deadlock, which occurs when all the 

meta-objects stop, since each meta-object runs concurrently 

and depends on another object's work to finish; 2) low-level 

synchronization, which occurs in the primitive in typical 

object-oriented languages like Java; and 3) complexity, 

which crosscuts among the meta-objects. The introduction 

of this protocol would put a reconfigurable object into a 

complex, low-level, easy to deadlock, and difficult to 

manage state. 

 

The main cause of these problems is that there is too tight 

coupling between the meta-objects. This tight coupling 

means that direct communication among the meta-objects is 

hardwired by `reference', and synchronized communication 

assumes the existence of two objects for communication. In 

reconfigurable systems, there is no guarantee that the 

communication target is always available. In some cases, it 

can happen that a communication target is split into multiple 

modules, or multiple modules are integrated into a single 

module. Direct references pin the referred object and 

enforce synchronous communication.  

4. Introducing a Loosely-Coupled 

Communication For Meta-object 

Communication 

The crux of the problem is the tight coupling among the 

meta-objects. If this tight coupling were to be loosened, no 

complex negotiation would be required, and reconfiguration 

could be realized by means of a simple replacement of a 

meta-object.  

 

We propose a reconfigurable object model that uses loosely 

coupled communication for internal concurrent meta-object 

communication. We adopted a generative communication 

for loosely coupled communication because of its simplicity 

and flexibility. The reconfigurable object consists of a 

communication kernel and multiple concurrent meta-objects 

on top of its kernel. Generative communication is only the 

mechanism that allows communication among the 

meta-objects.  

 

Fig.  4 The Proposed Reconfigurable Object Model 

Generative Communication 

Generative communication is indirect, asynchronous, 

content-addressing communication originally introduced in 

the Linda distributed programming language [2]. 

Generative communication requires a shared data space, 

called Tuple Space in Linda, where Tuple can be placed and 

withdrawn. In this paper, we use the term `message' instead 

of Tuple, and use `message space' instead of Tuple space as 

analogous to object orientation. 

 

Generative communication in the proposed model allows 

concurrent meta-objects to exchange messages via a shared 

message space, into which a sender can put a message and 

from which a receiver can pull an expected message. 

Senders issue the out() operation to put a message. For 

example, assume that a client object calls the getWidth() 

method of a server object. The protocol handler's 

meta-object inside the server object translates this incoming 

call into a message ["receivedMessage", "getWidth", 123], 
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and submits it to a server object's internal message space. 

The executor object expects a message from the protocol 

handler by the in() operation with a message pattern called a 

formal message. There are two different types of messages: 

actual, where all the elements are concrete values; and 

formal, where some or all of the elements are undetermined 

(wild card) and bound to variables. Fig.  4 shows how the 

two meta-objects, protocol handler meta-object and 

executor meta-object, interact through a message space 

provided by the internal communication's kernel. 

 

To submit the message, the protocol handler issues out() 

operation as follows: 

 
space.out(["receivedMessage", 

      "getWidth", params]); 

 

The executor object expects a message from the 

communicator by in() operation with a message pattern. 

 
space. in(["receivedMessage", 

   *:String, *:Parameters], 

    messageName,methodName, params); 

 

The last in() operation finds a message that exact matches 

with a string value "receivedMessage" as the first field, an 

arbitrary value with “String” type as the second field, and an 

arbitrary value with “Parameters” type as the third and last 

field. Once the message pattern matches with a message in 

the space, in() operation returns with the actual values of a 

submitted message. Therefore, in this case, once received, 

messageType holds "receivedMessage", methodName 

holds "getWidth", parameters holds an object contains 

parameters of correspond method call. Operation out() 

might be used with an actual message, in which all field has 

a certain value, whereas operation in() might be use with a 

formal message, in which contains at least one field has no 

concrete value, i.e. "*:int", with which an arbitrary value of 

type “int” could match. 

 

The condition of message match is that two messages 1) 

have the same length of fields, 2) have each type of field in a 

message equivalent and 3) are actual message and formal 

message or actual message and actual message. Accordingly, 

an actual message can be used with in() operation. 

 

If there is no match message in the space, in() operation 

blocks until the submission of an expected message. 

Operation out() immediately returns after put the message, 

therefore, out() is an asynchronous operation while in() is 

not. On the other hand, in() and out() are atomic operation, 

which means, message submission and withdraw has all or 

nothing property, therefore, no message lost or duplication 

occurs. 

 

In generative communication, any participant can withdraw 

the messages submitted in the space. This frees the 

participants from direct knowledge of when and who 

actually receives or sends a message. Therefore, generative 

communication decouples the actual time and user of the 

message. 

 

5. A Reconfigurable Object Model with 

Generative Communication 

A Sample Configuration 

 

Fig.  5 A Typical Configuration of the Proposed Object 

Model 

 

Fig.  5 shows a typical reconfigurable object configuration 

based on generative communication. The proposed 

reconfigurable object consists of concurrent communicating 

meta-objects. In the following configuration, there are five 

meta-objects. Each meta-object is provisioned for a specific 

responsibility such as end-to-end communication, 

re-ordering, and execution. It should be noted that this 

configuration is merely an example; the generality of the 

proposed model allows customization of this configuration. 

 

1. End-to-end communication: A protocol handler 

receives all the messages coming from the 

outside and sends reply messages, as well as sending    
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request messages to the outside. In other words, 

this provides end-to-end communication 

between an external object and the reconfigurable 

object. The typical internal work of a protocol handler 

is to create a corresponding message and put it into the 

shared message space with the out() operation for 

every time it receives a message. To reply, the 

protocol handler waits for a reply message using the 

in() operation and sends it to the remote object. 

 

2. Re-ordering: A message queue manager determines 

the sequence of messages ready to execute. Multicast 

or a two-phase commit protocol often requires 

synchronization between  external objects. The 

manager allows re-ordering of received messages. To 

do this, the manager withdraws received messages 

from the space and puts the re-ordered messages back 

into the space. To identify re-ordered messages, a 

label is given by the manager before its resubmission. 

 

3. Execution: The utilization of multiple threads might 

enhance performance, but it requires concurrency 

control. An executor takes the re-ordered messages 

and executes the corresponding methods concurrently 

or serially. After execution, the resulting message is

 placed into the space. An executor usually owns 

the methods and attributes of a reconfigurable 

object. Other specific executors such as transaction, 

persistency, debugging, and profiling, could also be 

provided. 

 

4. Administration: A logger object that logs the internal 

activities of the reconfigurable object helps in 

administration and debugging. The activities 

include message-related events, for example, 

reception and execution, and reconfiguration-related 

events, such as detaching and attaching of 

meta-objects. 

 

5. Adaptation: An adaptation manager manages 

reconfiguration by monitoring events of interest such 

as network link down, high CPU workload, or the 

presence of new software updates. Reconfiguration is 

started by sending a message requesting a targeted 

meta-object to be replaced. The manager installs a 

new meta-object. It is the responsibility of the 

adaptation manager to determine how and when a 

reconfiguration should be done in order to adapt the 

system to its underlying environment. 

The Power of the Model: Flexibility 

In the previous section, we illustrate a typical configuration. 

However, this model can accommodate new configurations 

that are specialized for each purpose. For example, we can 

deploy multiple executor objects to enhance performance, 

and hence, take advantage of parallel execution. With 

receiver and sender abstraction, the number of executor 

objects can be changed    according to physical CPU 

resources. This model also allows multiple protocol 

handlers to participate in a shared message space by forming 

a rich protocol stack. 

6. Reconfiguration 

Self-Contained Reconfiguration 

The naive reconfiguration is complex and difficult to 

implement in a system where each meta-object refers 

directly to each other and requires each other's existence for 

communication. Using this model, reconfiguration is 

performed in a self-contained manner (Fig. 6). The steps 

required to replace meta-object O by its successor 

meta-object O' without the other meta-objects recognizing it 

are as follows:  

 

State preservation by posting a message: Meta-object O 

creates a message that contains its internal state. The 

preserved state in the message has enough information for 

the restoration of the meta-object. Once the message is 

created, meta-object O submits it to the space. 

 

1. Quit: meta-object A finished its work and hence 

leaves from the space. 

 

2. Restore based on the message: The new meta-object 

O' withdraws the stored message and initializes its 

internal state based on it. Once the initialization 

succeeds, successor O' starts to work. 

 

No negotiation is required between the meta-objects before 

reconfiguration. Thus, reconfiguration is done in a 

self-contained manner. This not only simplifies the 

reconfiguration, but also prevents deadlock and low-level 

synchronization programming. 
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Fig. 6 Self-contained Reconfiguration with Generative 

Communication 

The Unification of State Preservation and 

Meta-object Communication 

Traditionally, state preservation makes use of external 

storage, such as a file system or a data structure in 

memory[3][4]. MoleNE[3] introduced the Memento design 

pattern[5] for this. Therefore, state preservation and 

restoration were special procedures in reconfiguration. On 

the other hand, self-contained reconfiguration is 

accomplished using communication from the dead 

meta-object O to the future meta-object O', where the 

message holds the meta-object's state. 

Moreover, since generative communication imposes no 

direct knowledge for a successor object, this model makes it 

easy to implement other reconfiguration patterns, such as 

integration of several meta-objects into a single meta-object 

or the separation of a single meta-object into multiple 

meta-objects. 

This leads to the interesting fact that this model unifies 

meta-object communication and state preservation. 

Safe Reconfiguration 

Self-contained reconfiguration greatly simplifies the 

process of reconfiguration, in contrast to the naive approach 

of the two-phase commit protocol. Therefore, the new 

object model helps to satisfy the consistency rules, 

especially those dealing with state consistency, which help 

keep the object's state correct after reconfiguration. 

Operation consistency requires upwards compatibility of a 

reconfigurable object. Given the flexibility of the model, 

new meta-objects can be attached. This makes it easier to 

ensure upwards compatibility. Protocol handlers support 

referential consistency by encapsulating internal structure. 

Following all the consistency rules, the proposed object 

model greatly facilitates safe reconfiguration. 

Related Work 

Adaptive Middleware Frameworks 

Pierre[6] proposed a similar adaptable middleware 

framework in which objects could reconfigure themselves 

according to their surrounding environment. However, a 

single object in Pierre's paper consists of multiple 

meta-objects. A simple container manages these 

meta-objects, and thus, as the author noted, this might lead 

to an incorrect reconfiguration. 

MoleNE[3] is another adaptive middleware framework 

focusing on the wireless environment. MoleNE successfully 

puts the reconfiguration control of objects to automatons 

that describe the reconfiguration process.  

However, MoleNE's reconfiguration ability is limited for 

functional components but not for non-functional ones. 

Conclusion 

We showed that our previous model had 2 drawbacks: 1) 

fixed configurations and 2) incorrect reconfigurations. 

Rules that define state, operational, and referential 

consistency for correct reconfiguration were presented. A 

naive solution that follows the rules was also presented and 

found to be too difficult to implement. We showed that the 

main cause of these problems was the tight dependencies 

among the meta-objects. Therefore, we introduced loosely 

coupled communication for concurrent communicating 

meta-objects in a reconfigurable object. Due to the 

generality found among loosely coupled communication 

semantics, we chose generative communication. Generative 

communication untangles the dependencies among the 

meta-objects by its indirect, asynchronous, and 

content-addressing communication semantics using 

generated messages. With the introduction of generative 

communication, the proposed object model provides the 

following features: 

 

• Flexibility and Power: Our model allows a variety of       

configurations. The reconfiguration of integration and 

decomposition of meta-objects can also be supported. 
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• Self-contained Reconfiguration: The object model 

could       reconfigure itself in a self-contained manner, 

which means that no complex negotiations among the 

meta-objects are required beforehand. 

 

• Safety: The model follows the three consistency rules 

for a safe reconfiguration. 

 

• Unification: State preservation during reconfiguration 

occurs as communication between the predecessor 

meta-object and successor meta-object. 

 

• Separation of Concerns (SoC): the model can 

introduce a meta-object for each new concern. 

 

• Novelty and Efficiency: Inter-meta-object 

communication and reconfiguration of an object are 

novel applications of generative communication. By 

specializing generative communication for internal 

object communication, a highly efficient 

communication kernel could be made possible. 

 

Based on this model, we implemented a prototype 

framework called Juice 2[7]. So far, the communication 

kernel was successfully implemented using standard Java 

with no virtual machine modification or native library use. 
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