
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

8

Manuscript received May 5, 2007

Manuscript revised May 20, 2007

A Simple Reconfigurable Object Model for

a Ubiquitous Computing Environment

Kentaro Oda
†
, Shinobu Izumi

†
, Yoshihiro Yasutake

††
and Takaichi Yoshida

†
,

†
Program of Creation Informatics, Kyushu Institute of Technology, 680-4 Kawatsu, Iizuka, Japan

††
Department of Intelligent Informatics, Kyushu Sangyo University, 2-3-1 Matsukadai, Higashi-ku, Fukuoka, Japan

Summary
Communication bandwidth, topology and security policy are

different from place to place in a ubiquitous computing

environment, components in the environment should change its

behavior to fit current situation according to real world changes.

Without adapting the environment, the components may fail to

continue proper operations.

 In this paper, we propose a reconfigurable, object model that

dynamically changes the object's behavior to fit the current

environment by modifying its internal structure. The proposed

object consists of communicating concurrent meta-objects. Each

meta-object contains functionality for adaptation, remote

communication, and administration.

Generative communication, which allows meta-object

communication, gives the proposed reconfigurable objects the

following characteristics: flexibility; ability of allowing a variety

of configurations; safety that ensures consistency; and a

unification of state preservation and communication. The

proposed object model was successfully implemented in a

middleware framework called Juice 2.

Key words:
Reconfiguration, Adaptation, Distributed objects.

1. Introduction

A software system that modifies its behavior and structure

during runtime provides high reliability and availability, and

be a user-friendly system. For example, when local CPU

workload becomes high, migrating an object to a remote

host allows a more efficient use of hardware resources. In

ubiquitous computing, as the user moves, the services

offered to the user need to change seamlessly.

In the case of software evolution, updating software in

runtime gives higher availability. Hardware dynamism

means dynamic changes of computer resources such as CPU

workload, available memory etc. Network dynamism is

changes in network - such as link state, topology, bandwidth

and latency etc. Software evolution and heterogeneity

creates software dynamism because different version or

different types of software coexists. User dynamism means

the volatility of what user want to do - it sometimes depends

on a context such as the physical time and place of user

actually resides.

Future computing systems should accommodate such

dynamism in order to react to changes in the environment.

Our final goal is to emerge ̀ Adaptive Software' that changes

its behavior in runtime to fit current execution environment.

Successful adaptive software may bring us high reliable,

reboot free, resilient to unexpected changes, easy to

maintain, self-optimized, and user-friendly system.

However, creating such a system is a challenge. Generally, it

involves a loop that consists of the following three

processes:

• Detect the underlying information about the

environment;

• Decide on the appropriate action based on the

information obtained;

• Perform the determined action that is needed to

change the behavior of the system.

The detection of information and the decisions taken based

on the information are not considered in this paper. Instead,

we will focus on how a successful behavioral change is

achieved. Reconfiguration in this paper means modifying

the behavior by replacing the internal modules.

We define a predecessor module as the module that had

been removed from the system through reconfiguration.

Through reconfiguration, a successor module takes the

place of a predecessor module. In general, it is conceivable

that M predecessor modules have to be replaced by M

successor modules. This involves integration and separation

of modules. The problem arises when supporting such

reconfiguration because each module uses `reference' or

`pointer' for point-to-point communication, which makes

the separation and integration harder. Reconfiguration

becomes more difficult to achieve when the system consists

of concurrent communicating modules. In this case, it is

possible that a module sends a message to another module

that has already been removed from the system. This leads

to message loss even if they reside at the same address space.

Therefore, in a reconfigurable system, it is difficult to

support N to M reconfiguration, and there is no guarantee

that reliable communication among the modules. The main

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

9

cause of these problems is strong assumptions among

modules. Every module assumes the point-to-point direct

communication and existence of the module to which a

message sent at a given time.

By relaxing the inter-module assumptions, reconfiguration

can be achieved by merely replacing a module. In this paper,

we propose a reconfigurable object model that consists of

communicating concurrent meta-objects, in which a new

communication mechanism is provided to relax the

assumptions. To take the modeling advantage of object

orientation, we choose an object as a building block of

application software and a meta-object as a replacement unit

of reconfiguration.

Paper Outline

In this paper, we briefly describe the our early work, Juice 1

reconfigurable object model in section 2 and show its

limitation in the next section. Section 3 presents three rules

necessary for correct reconfiguration and shows the

difficulty when a naive approach is applied for the

reconfiguration. Section 4 gives our main idea: loosely

coupled communication within a reconfigurable object. In

Section 5, we give an example configuration of the proposed

reconfigurable object model. Section 6 discusses about

reconfiguration in the proposed model. Finally, we

conclude this paper.

2. Our Early Work: A Reconfigurable Object

Model - Juice 1

In our earlier proposed object model, Juice 1 model [1], is

shown by Fig. 1. Each Juice 1 object consists of a context

object that holds the state and methods during adaptation; a

communicator object that handles the communication

protocol and ordering of messages; an executor object that

deals with execution control; an adaptation manager object

that detects environmental information and reconfigures an

entire object to an appropriate configuration given the

current situation; and an encapsulation object that

encapsulates the internal structure. Several items such as a

new application code, communication protocols,

concurrency control, as well as adaptation mechanism and

policy, can, if necessary, be introduced. This makes the code

for each meta-object as simple as possible. With this model,

we can construct valuable objects in a distributed system.

Concurrent objects, proxy objects, replica objects, and

transaction-aware objects can all be introduced. Fig. 2

shows the runtime environment of this model. The testbed is

written in Java since it is independent of the platform. In this

testbed implementation, we introduced a pre-processor for

transforming the source code to give the illusion that the

application programmer does not need to give special

consideration to this model.

Fig. 1 Juice 1 Object Model

Fig. 2 Juice 1 Architecture Overview

The following is the typical internal working steps triggered

by a method invocation from an ordinary Java object to a

Juice 1 object.

1. On receiving a method invocation from a Java object,

encapsulation object creates a message object that

contains method name and parameters corresponds

the invocation, and forwards it to communicator

object.

2. Communicator object put the message object to a

receive queue own by the communicator object. The

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

10

message object has a chance to be synchronized with

external objects such as for message ordering in a

multicast protocol. After this synchronization,

message becomes ready to execute. Communicator

object forwards this message to executor object.

3. Executor object receives the message and checks if

the execution of the message ensures serializability of

concurrent execution. Once serializability condition is

satisfied, the executor executes a targeted method in

the context object according to the information

described in the message. Actual implementation of

executor varies i.e. if the executor object has no

multiple threads of control, no concurrency control

requires.

As above steps indicate that a method invocation to Juice 1

object realized by means of internal communication among

meta-objects.

By means of encapsulation object, external clients are

isolated from this internal working of Juice 1 object. Juice 1

object model provides separation of concerns (SoC) through

separation of a logical object into multiple meta-objects and

communication among them. Each meta-object has its own

state and be able to have multiple threads of control.

3. The Safe Reconfiguration Problem and Its

Naive Implementation

The Safe Reconfiguration Problem

This section considers an inconsistency problem that occurs

when a Juice 1 model object was reconfigured. For example,

consider a reconfiguration requiring a change in the

communication protocol. Not surprisingly, a naive

replacement of the communicator object to the desired new

protocol causes irreversible message loss since the old

communicator object holds any received messages.

Message loss means a loss of corresponding method

execution, loss of state changes, and results in no response

to the clients. This is an example of an inconsistent state.

The problem of a safe reconfiguration is to transparently

change an object's behavior while preventing an

inconsistent state. To prevent an inconsistent state, an object

must follow the following rules when replacing a

meta-object:

• State consistency: The object's state must be held; it

must be the same before and after reconfiguration.

Every successful method invocation transfers a

consistent state to another consistent state. The failure

or the forced termination of method invocation can

possibly cause an inconsistent state.

• Operational consistency: No operation can be

removed after reconfiguration, even if its

implementation is changed. However, new operations

can be included during reconfiguration. The method

name, parameter type, and return value type must be

not changed during reconfiguration. In other words, a

reconfigured object must have upwards compatibility.

• Referential consistency: Assume that object O

becomes object O' after its reconfiguration.

Referential consistency means that all reference to O

must refer to object O' after reconfiguration. A simple

solution for this problem is to keep the object's

identity after reconfiguration.

Therefore, by following these rules, we can achieve a safe

object reconfiguration.

A Naive Safe Reconfiguration in Juice 1

As explained in the previous sub-section, the naive

reconfiguration method not only leads to a loss of information,

but also causes every reference point to an obsolete object to

become faulty due to lack of notification. Any operations on

the obsolete objects become invalid, and thus, all references

to obsolete objects are faulty. To prevent the use of a faulty

reference, a two-phase commit protocol could be used. This

can be described as follows (Fig. 3):

Fig. 3 Reconfiguration through negotiation among

meta-objects

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

11

1. Prepare for a stop: The reconfiguration manager sends

to all meta-objects a message requesting that these

meta-objects prepare for the replacement of a target

meta-object. In effect, this message tells them to "stop

using the target meta-object";

2. Acknowledge: If the reconfiguration manager

receives from all meta-objects an acknowledgment

message that in effect means "I have stopped using the

target meta-object. I am now ready to update." then it

proceeds to the next step. Otherwise, the

reconfiguration manager repeats step 1.

3. Replace and update: The reconfiguration manager

creates a new meta-object and broadcasts a message

announcing the new meta-object's reference. Each

meta-object updates its reference according to the

update message and resumes normal operations.

Basically, using this protocol, a safe reconfiguration

becomes possible. However, to implement this protocol is

quite difficult due to: 1) deadlock, which occurs when all the

meta-objects stop, since each meta-object runs concurrently

and depends on another object's work to finish; 2) low-level

synchronization, which occurs in the primitive in typical

object-oriented languages like Java; and 3) complexity,

which crosscuts among the meta-objects. The introduction

of this protocol would put a reconfigurable object into a

complex, low-level, easy to deadlock, and difficult to

manage state.

The main cause of these problems is that there is too tight

coupling between the meta-objects. This tight coupling

means that direct communication among the meta-objects is

hardwired by `reference', and synchronized communication

assumes the existence of two objects for communication. In

reconfigurable systems, there is no guarantee that the

communication target is always available. In some cases, it

can happen that a communication target is split into multiple

modules, or multiple modules are integrated into a single

module. Direct references pin the referred object and

enforce synchronous communication.

4. Introducing a Loosely-Coupled

Communication For Meta-object

Communication

The crux of the problem is the tight coupling among the

meta-objects. If this tight coupling were to be loosened, no

complex negotiation would be required, and reconfiguration

could be realized by means of a simple replacement of a

meta-object.

We propose a reconfigurable object model that uses loosely

coupled communication for internal concurrent meta-object

communication. We adopted a generative communication

for loosely coupled communication because of its simplicity

and flexibility. The reconfigurable object consists of a

communication kernel and multiple concurrent meta-objects

on top of its kernel. Generative communication is only the

mechanism that allows communication among the

meta-objects.

Fig. 4 The Proposed Reconfigurable Object Model

Generative Communication

Generative communication is indirect, asynchronous,

content-addressing communication originally introduced in

the Linda distributed programming language [2].

Generative communication requires a shared data space,

called Tuple Space in Linda, where Tuple can be placed and

withdrawn. In this paper, we use the term `message' instead

of Tuple, and use `message space' instead of Tuple space as

analogous to object orientation.

Generative communication in the proposed model allows

concurrent meta-objects to exchange messages via a shared

message space, into which a sender can put a message and

from which a receiver can pull an expected message.

Senders issue the out() operation to put a message. For

example, assume that a client object calls the getWidth()

method of a server object. The protocol handler's

meta-object inside the server object translates this incoming

call into a message ["receivedMessage", "getWidth", 123],

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

12

and submits it to a server object's internal message space.

The executor object expects a message from the protocol

handler by the in() operation with a message pattern called a

formal message. There are two different types of messages:

actual, where all the elements are concrete values; and

formal, where some or all of the elements are undetermined

(wild card) and bound to variables. Fig. 4 shows how the

two meta-objects, protocol handler meta-object and

executor meta-object, interact through a message space

provided by the internal communication's kernel.

To submit the message, the protocol handler issues out()

operation as follows:

space.out(["receivedMessage",

 "getWidth", params]);

The executor object expects a message from the

communicator by in() operation with a message pattern.

space. in(["receivedMessage",

 *:String, *:Parameters],

 messageName,methodName, params);

The last in() operation finds a message that exact matches

with a string value "receivedMessage" as the first field, an

arbitrary value with “String” type as the second field, and an

arbitrary value with “Parameters” type as the third and last

field. Once the message pattern matches with a message in

the space, in() operation returns with the actual values of a

submitted message. Therefore, in this case, once received,

messageType holds "receivedMessage", methodName

holds "getWidth", parameters holds an object contains

parameters of correspond method call. Operation out()

might be used with an actual message, in which all field has

a certain value, whereas operation in() might be use with a

formal message, in which contains at least one field has no

concrete value, i.e. "*:int", with which an arbitrary value of

type “int” could match.

The condition of message match is that two messages 1)

have the same length of fields, 2) have each type of field in a

message equivalent and 3) are actual message and formal

message or actual message and actual message. Accordingly,

an actual message can be used with in() operation.

If there is no match message in the space, in() operation

blocks until the submission of an expected message.

Operation out() immediately returns after put the message,

therefore, out() is an asynchronous operation while in() is

not. On the other hand, in() and out() are atomic operation,

which means, message submission and withdraw has all or

nothing property, therefore, no message lost or duplication

occurs.

In generative communication, any participant can withdraw

the messages submitted in the space. This frees the

participants from direct knowledge of when and who

actually receives or sends a message. Therefore, generative

communication decouples the actual time and user of the

message.

5. A Reconfigurable Object Model with

Generative Communication

A Sample Configuration

Fig. 5 A Typical Configuration of the Proposed Object

Model

Fig. 5 shows a typical reconfigurable object configuration

based on generative communication. The proposed

reconfigurable object consists of concurrent communicating

meta-objects. In the following configuration, there are five

meta-objects. Each meta-object is provisioned for a specific

responsibility such as end-to-end communication,

re-ordering, and execution. It should be noted that this

configuration is merely an example; the generality of the

proposed model allows customization of this configuration.

1. End-to-end communication: A protocol handler

receives all the messages coming from the

outside and sends reply messages, as well as sending

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

13

request messages to the outside. In other words,

this provides end-to-end communication

between an external object and the reconfigurable

object. The typical internal work of a protocol handler

is to create a corresponding message and put it into the

shared message space with the out() operation for

every time it receives a message. To reply, the

protocol handler waits for a reply message using the

in() operation and sends it to the remote object.

2. Re-ordering: A message queue manager determines

the sequence of messages ready to execute. Multicast

or a two-phase commit protocol often requires

synchronization between external objects. The

manager allows re-ordering of received messages. To

do this, the manager withdraws received messages

from the space and puts the re-ordered messages back

into the space. To identify re-ordered messages, a

label is given by the manager before its resubmission.

3. Execution: The utilization of multiple threads might

enhance performance, but it requires concurrency

control. An executor takes the re-ordered messages

and executes the corresponding methods concurrently

or serially. After execution, the resulting message is

 placed into the space. An executor usually owns

the methods and attributes of a reconfigurable

object. Other specific executors such as transaction,

persistency, debugging, and profiling, could also be

provided.

4. Administration: A logger object that logs the internal

activities of the reconfigurable object helps in

administration and debugging. The activities

include message-related events, for example,

reception and execution, and reconfiguration-related

events, such as detaching and attaching of

meta-objects.

5. Adaptation: An adaptation manager manages

reconfiguration by monitoring events of interest such

as network link down, high CPU workload, or the

presence of new software updates. Reconfiguration is

started by sending a message requesting a targeted

meta-object to be replaced. The manager installs a

new meta-object. It is the responsibility of the

adaptation manager to determine how and when a

reconfiguration should be done in order to adapt the

system to its underlying environment.

The Power of the Model: Flexibility

In the previous section, we illustrate a typical configuration.

However, this model can accommodate new configurations

that are specialized for each purpose. For example, we can

deploy multiple executor objects to enhance performance,

and hence, take advantage of parallel execution. With

receiver and sender abstraction, the number of executor

objects can be changed according to physical CPU

resources. This model also allows multiple protocol

handlers to participate in a shared message space by forming

a rich protocol stack.

6. Reconfiguration

Self-Contained Reconfiguration

The naive reconfiguration is complex and difficult to

implement in a system where each meta-object refers

directly to each other and requires each other's existence for

communication. Using this model, reconfiguration is

performed in a self-contained manner (Fig. 6). The steps

required to replace meta-object O by its successor

meta-object O' without the other meta-objects recognizing it

are as follows:

State preservation by posting a message: Meta-object O

creates a message that contains its internal state. The

preserved state in the message has enough information for

the restoration of the meta-object. Once the message is

created, meta-object O submits it to the space.

1. Quit: meta-object A finished its work and hence

leaves from the space.

2. Restore based on the message: The new meta-object

O' withdraws the stored message and initializes its

internal state based on it. Once the initialization

succeeds, successor O' starts to work.

No negotiation is required between the meta-objects before

reconfiguration. Thus, reconfiguration is done in a

self-contained manner. This not only simplifies the

reconfiguration, but also prevents deadlock and low-level

synchronization programming.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

14

Fig. 6 Self-contained Reconfiguration with Generative

Communication

The Unification of State Preservation and

Meta-object Communication

Traditionally, state preservation makes use of external

storage, such as a file system or a data structure in

memory[3][4]. MoleNE[3] introduced the Memento design

pattern[5] for this. Therefore, state preservation and

restoration were special procedures in reconfiguration. On

the other hand, self-contained reconfiguration is

accomplished using communication from the dead

meta-object O to the future meta-object O', where the

message holds the meta-object's state.

Moreover, since generative communication imposes no

direct knowledge for a successor object, this model makes it

easy to implement other reconfiguration patterns, such as

integration of several meta-objects into a single meta-object

or the separation of a single meta-object into multiple

meta-objects.

This leads to the interesting fact that this model unifies

meta-object communication and state preservation.

Safe Reconfiguration

Self-contained reconfiguration greatly simplifies the

process of reconfiguration, in contrast to the naive approach

of the two-phase commit protocol. Therefore, the new

object model helps to satisfy the consistency rules,

especially those dealing with state consistency, which help

keep the object's state correct after reconfiguration.

Operation consistency requires upwards compatibility of a

reconfigurable object. Given the flexibility of the model,

new meta-objects can be attached. This makes it easier to

ensure upwards compatibility. Protocol handlers support

referential consistency by encapsulating internal structure.

Following all the consistency rules, the proposed object

model greatly facilitates safe reconfiguration.

Related Work

Adaptive Middleware Frameworks

Pierre[6] proposed a similar adaptable middleware

framework in which objects could reconfigure themselves

according to their surrounding environment. However, a

single object in Pierre's paper consists of multiple

meta-objects. A simple container manages these

meta-objects, and thus, as the author noted, this might lead

to an incorrect reconfiguration.

MoleNE[3] is another adaptive middleware framework

focusing on the wireless environment. MoleNE successfully

puts the reconfiguration control of objects to automatons

that describe the reconfiguration process.

However, MoleNE's reconfiguration ability is limited for

functional components but not for non-functional ones.

Conclusion

We showed that our previous model had 2 drawbacks: 1)

fixed configurations and 2) incorrect reconfigurations.

Rules that define state, operational, and referential

consistency for correct reconfiguration were presented. A

naive solution that follows the rules was also presented and

found to be too difficult to implement. We showed that the

main cause of these problems was the tight dependencies

among the meta-objects. Therefore, we introduced loosely

coupled communication for concurrent communicating

meta-objects in a reconfigurable object. Due to the

generality found among loosely coupled communication

semantics, we chose generative communication. Generative

communication untangles the dependencies among the

meta-objects by its indirect, asynchronous, and

content-addressing communication semantics using

generated messages. With the introduction of generative

communication, the proposed object model provides the

following features:

• Flexibility and Power: Our model allows a variety of

configurations. The reconfiguration of integration and

decomposition of meta-objects can also be supported.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

15

• Self-contained Reconfiguration: The object model

could reconfigure itself in a self-contained manner,

which means that no complex negotiations among the

meta-objects are required beforehand.

• Safety: The model follows the three consistency rules

for a safe reconfiguration.

• Unification: State preservation during reconfiguration

occurs as communication between the predecessor

meta-object and successor meta-object.

• Separation of Concerns (SoC): the model can

introduce a meta-object for each new concern.

• Novelty and Efficiency: Inter-meta-object

communication and reconfiguration of an object are

novel applications of generative communication. By

specializing generative communication for internal

object communication, a highly efficient

communication kernel could be made possible.

Based on this model, we implemented a prototype

framework called Juice 2[7]. So far, the communication

kernel was successfully implemented using standard Java

with no virtual machine modification or native library use.

Acknowledgements

This research was partially supported by the Ministry of

Education, Culture, Sports, Science and Technology

(MEXT), Grant-in-Aid for Young Scientists (B), 17700070,

2006.

 References

[1] K. Oda, T. Shin'ichi, Y. Takaichi, The Flying Object for an

Open Distributed Environment, Proceedings of the 15th

IEEE International Conference on Information Networking

(ICON-15), 2001, pp.87-92.

[2] D. Gelernter, Generative Communication in Linda, ACM

Trans. Prog. Lang. Syst., 1985, Vol. 7, No. 1, pp. 80-112.

[3] M.T. Segarra, F. Andre, A Framework for Dynamic

Adaptation in Wireless Environments, Technology of

Object-Oriented Languages and Systems (TOOLS 33), 2000.

[4] I. Warren, I. Sommerville, A Model for Dynamic

Configuration which Preserves Application Integrity,

Proceedings of the 3rd International Conference on

Configurable Distributed Systems (ICCDS '96), 1996, pp.

81-88.

[5] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design

Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley Professional Computing Series,

Addison-Wesley, Reading Mass. 1995.

[6] P.C. David, T. Ledoux, An Infrastructure for Adaptable

Middleware, R. Meersam and Z. Tari, Editors,

 Springer-Verlag, Lecture Notes in Computer Science,

vol. 2519, Proceedings of the Distributed Objects and

Applications 2002 (DOA 2002), 2002, pp. 773-790.

[7] K. Oda, H. Najima, Y. Yasutake, T. Yoshida, A Simple, Safe

Reconfigurable Object Model with Loosely-Coupled

Communication, Proceedings of the IEEE 20th International

Conference on Advanced Information Networking and

Applications (AINA 2006), 2006, pp.406-411.

Kentaro Oda received the

B.S. and M.S. from the Department

of Artificial Intelligence, Kyushu

Institute of Technology, Japan, in

1999, 2001 respectively. He has

been an assistant professor of the

Program of Creation Informatics at

Kyushu Institute of Technology

since 2004. His current research

interests include adaptive

middleware architecture, multi-agent systems (robotics soccer

RoboCup), and distributed systems. He is a member of the ACM,

IEEE (IEEE Computer Society).

Shinobu Izumi received the B.S.
and M.S. from the Department of

Artificial Intelligence, Kyushu

Institute of Technology, Japan, in

2004, 2006 respectively. Since

April 2006, he has been a PhD

student at Kyushu Institute of

Technology. His current research

interests include disabled access

GIS, peer to peer networking and

distributed system.

Yoshihiro Yasutake received the

B.S. and M.S. from the

Department of Artificial

Intelligence, Kyushu Institute of

Technology, Japan, in 2000, 2002

respectively. He has been an

assistant professor of the

Department of Intelligent

Informatics at Kyushu Sangyo

University since 2005. His current

research interests include reliable

distributed systems, adaptive

middleware architecture. He is a member of the IPSJ (Information

Processing Society of Japan).

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

16

Takaichi Yoshida received the

B.S. degree in electrical

engineering form Keio University,

Japan, in 1982, and the M.S. and

Ph.D degree in computer science

form Keio University in 1984 and

1987, respectively.

Since 1987, he has been at Kyushu

Institute of Technology, and

currently is a professor in the

Graduate School of Computer

Science and Systems Engineering, Kyushu Institute of

Technology. His research interests include distributed computing

and object-oriented computing.

