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Summary 

To reduce the computation requirement of large-scale 

network simulation, this paper presents a direct computing 

method for discrete event network simulation. In this 

method, many of the discrete events are replaced by direct 

computing, so the computation overhead for network 

simulation is decreased, yet the accuracy of simulation 

result is kept unchanged. Experiments show, compared 

with the traditional discrete event network simulator, the 

direct computing method can decrease the number of 

discrete events generated during the network simulation by 

over 50%, and can decrease the simulation running time by 

over 40%, without the loss of simulation accuracy; the 

memory required during simulation is also decreased. 
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1. Introduction 

Network simulation provides a technique platform for 

doing research on network behavior, and for evaluating 

network protocols, and it is of great value in science 

research and application. The predominating network 

simulators are realized based on discrete event simulation 

technology, which means the state of the simulation system 

changes only when a discrete event occurs. With the rapid 

development of computer networks, the size of topology 

for simulation grows to a very large scale, yet the amount 

of computation time required to perform large-scale 

discrete event network simulation is prohibitive [1]. There 

are two kinds of methods to attack this problem. One is to 

use PDES to realize the parallel network simulation [2]. 

The other is to increase the abstraction level of network 

simulation by establish more abstract models [3]. 

The purpose of this article is to reduce the running 

time for large-scale network simulation by introducing a 

more abstract model for discrete event simulation. This 

article brings forward a method for accelerating the 

discrete event network simulation by direct computing 

(DC). The DC method obtains part of the changes of 

simulation system state via direct computing, yet without 

loss of simulation accuracy. As the traditional discrete 

event network simulator (such as NS[4]) obtains all the 

changes of simulation system state via discrete events, this 

method can cut down the number of discrete events and 

reduce the simulation running time compared with the 

traditional method. 

This article is organized as follows. In the next 

section, we present the related work about increasing the 

simulation abstraction level. In section 3, we put forward 

our DC method in detail. In section 4, we carry out 

experiments to demonstrate the accuracy and efficiency of 

the DC method. Section 5 concludes the paper and points 

out the future works. 

2. Related Work 

Increasing the simulation abstraction level is a key method 

to reduce the computation overhead of large-scale network 

simulation. Huang puts forward in her Ph.D thesis [3] 

several abstraction techniques for accelerating the network 

simulation and improving the scale of network simulation. 

One of the abstraction techniques is called end-to-end 

packet delivery, which means the packet for simulation is 

sent directly from the source node to the destination node 

and the queuing delay of the packet is ignored. The end-to-

end techniques can cause an increasing loss of accuracy 

when the degree of congestion grows. In [5] and [6], a 

hybrid method of discrete event simulation and 

epidemiological model is developed for doing research on 

network worms. Although this method can cut down the 

number of discrete events and simulation running time 

greatly, the epidemiological model can reduce the accuracy 

of simulation. In [7~10], the fluid models are presented to 

reduce the simulation running time, but the fluid models 

can’t assure the accuracy of each packet hop and are 

usually used to simulate background traffics. In [11], the 

complexity of network simulation is reduced by cutting 

down the number of hosts in the simulated topology, yet 

this method can cause the inaccuracy of packet loss rate. 

By combining sampling, modeling and simulation, [12] 

takes a sample of the network traffic for simulation, feeds 

it into a suitably scaled version of network, and then 

extrapolates from the performance of the scaled network to 

that of the original. This method can keep the accuracy of 

several statistical parameters of network simulation, yet it 

can’t assure the accuracy of each packet hop.  

As we can see, the methods mentioned above reduce 

the computation time of simulation at cost of accuracy, and 

they can’t assure the accuracy of each packet hop. Our DC 
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method can assure the accuracy of each packet hop, and by 

replacing discrete events with direct computing, it can 

reduce the computation time considerably. 

3. The DC Method 

 3.1 Traditional Packet Transmission Simulation 

NS is a good example of discrete event network simulation 

and has been widely used for network research [3], so we 

choose NS as our research platform. In NS, simulation of 

packet transmission can be depicted by Fig. 1. In Fig. 1, 

the simulation procedures of the packet transmission from 

node N(0) to node N(1) via “simplex link model” are listed 

as follows: 

1） When a packet is delivered from N(0) to the 

“simplex link model”, the model will first decide whether 

the packet should be dropped or not. If the packet is 

dropped, it should be delivered to the “Agent/Null” 

module; while, if not, the packet should be enqueued to the 

“Queue” module, and then wait for being processed.  

2） When it is time to process the packet, which is 

triggered by an event previously inserted into the event list, 

the packet will be dequeued from the “Queue” module, and 

then delivered to the “Delay” module. 

3） The “Delay” module firstly computes the 

packet’s fixed delay, including propagation delay and 

transmission delay. Based on the fixed delay, an event 

(“Event 1” in Fig. 1) that will trigger to continue to process 

the packet is generated accordingly and inserted into the 

event list, and based on the transmission delay, another 

event (“Event 2” in Fig. 1) that will trigger to process the 

next packet in the “Queue” module is also generated and 

inserted into the event list.  

4） When it is time to process “Event 1”, the 

packet should be delivered to the “TTL” module. In the 

“TTL” module, the TTL of the packet is decreased by 1. If 

the TTL is then equal to 0, the packet should be dropped; 

while, if not, the packet can be delivered to N(1). 

5） When it is time to process “Event 2”, this event 

will trigger the next packet to be dequeued from the 

“Queue” module, and then to be processed according to 

procedure 2) to 5).  

 

Fig. 1 Simplex link model in NS 

3.2 Basic Idea of Direct Computing 

From the analysis in the above section, we can see that the 

traditional simulation of one packet hop needs two discrete 

events. For large-scale network simulation, there are 

millions of packet hops for simulating, so the number of 

discrete events is enormous. Meanwhile, there is enqueue 

and dequeue operation for each packet hop, which also 

increases the computation overhead. For the sake of 

decreasing the number of discrete events and simplifying 

the simulation procedure of packet hop, we bring forward 

the DC method. Its basic idea is: simulation of packet hop 

doesn’t need enqueue and dequeue operation; the queueing 

delay of packet is computed directly, and is not obtained 

by discrete events. As shown in Fig. 2, the DC method’s 

simulation procedures of the packet transmission from 

N(0) to N(1) are described as follows: 

1） When a packet is delivered from N(0) to the 

“simplex link model with direct computing”, the model 

will first decide whether the packet can be directly sent to 

the “Abstract-Queue” module or not. If the packet can be 

directly sent, turn to procedure 4). 

2） An event (“Event 3” in Fig. 2) that will trigger 

to continue to process the packet is generated and inserted 

into the event list. 

3） When it is time to process “Event 3”, the 

packet should be delivered to the “Abstract-Queue” 

module. 

4） The “Abstract-Queue” module receives the 

packet, and it decides whether the packet should be 

dropped or not. If the packet is dropped, it should be 

delivered to “Agent/Null” module; while, if not, the 

queueing delay of the packet is computed directly, and the 

packet is then sent to the “Abstract-Delay” module. 

5） The “Abstract-Delay” module computes the 

packet’s fixed delay, including propagation delay and 

transmission delay. The total delay of the packet from N(0) 

to N(1), which includes propagation delay, transmission 

delay and queuing delay, is recorded, and the packet is sent 

to the “TTL” module. 

6） In the “TTL” module, the TTL of the packet is 

decreased by 1. If the TTL is then equal to 0, the packet 

should be dropped; while, if not, the packet can be 

delivered to N(1) with the total delay information. 
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Fig. 2 Simplex link model with direct computing 

Compared with the simplex link model, the direct 

computing link model does not have the “Queue” module 

for storing packets and the simulation of packet hop 

doesn’t need the enqueue and dequeue operation; 

meanwhile, there are fewer discrete events, which are time-

consuming as they should be inserted into and extracted 

from the events list. So, compared with the traditional 

discrete event network simulation, the DC method can 

reduce the computation overhead considerably.  

When a packet p arrives at a direct computing link 

model L, L should first decide whether p can be directly 

sent or not: if every packet whose arrival time to L is 

smaller than p has been processed by L, p can be sent 

directly to the “Abstract-Queue” module; otherwise, p 

can’t be sent directly. This condition is used to ensure that, 

all the packets which pass through the same link model can 

be processed in time order, and accordingly to assure the 

accuracy of simulation result. Without this condition, that 

is, in Fig. 2, all the packets coming from N(0) is directly 

sent to the “Abstract-Queue” module, the DC method can’t 

assure the accuracy of simulation result (Fig. 3 shows us an 

example). 

 

 

Fig. 3 Example of inaccuracy  

In Fig. 3, there are packet flows from node N(1) to 

node N(4), and from node N(2) to node N(4). Suppose that 

the packet p1 is generated by N(1) and should be sent to 

N(4), and that the packet p2 is generated by N(2) and 

should be sent to N(4). Let t1 denote p1’s generation time, 

t2 denote p2’s generation time, t3 denote p1’s arrival time to 

N(3), and t4 denote p2’s arrival time to N(3). Suppose that 

t1 < t2, and the DC method will first process p1: p1 will be 

delivered to N(3), and then be delivered from N(3) to N(4). 

Having processed p1, the DC method will then process p2: 

p2 will be delivered to N(3), and then be delivered from 

N(3) to N(4). Suppose that the propagation delay of link 

L(1) is much larger than that of link L(2), so t3 > t4, that is, 

p2 arrives at N(3) before p1. Yet the direct computing link 

model between N(3) and N(4) processes p1 before p2. So, 

p1 and p2 can’t be processed in time order, which may lead 

to inaccuracy in simulation. 

If the packet can be directly sent, it will be sent to the 

“Abstract-Queue” module directly; while, if not, an event 

that triggers to continue to process the packet will be 

generated and inserted into the event list. 

Clearly, in Fig. 2, a practical condition that the packet 

can be directly sent is that the degree of node N(0) is no 

greater than 2. If it is, the packet can be directly sent to the 

“Abstract-Queue” module without worrying about the 

inaccuracy of simulation result. 

3.3 The Direct Computing Model 

The key of the DC method is the direct computing link 

model, which contains two parts: parameters of the direct 

computing link model and the direct computing algorithm. 

We explain these two parts in detail as below. 

The main parameters of the direct computing link 

model are listed as follows:  

1． Bandwidth of the link (B); 

2． Propagation delay of the link (D); 
3． Queue length in bytes (L); 
4． Queue length in packets (C); 
5． Array of the lengths of packets in the queue 

(P[]); 

6． The latest updating time of the queue (T). 

Among these parameters, B and D are kept 

unchanged throughout the simulation, but L, C, T and P are 

updated constantly. If a packet is delivered to the link 

model and this packet should not be dropped, the four 

parameters should be updated accordingly. According to 

the value of C, we can decide whether the packet should be 

dropped or not, and according to the value of L, we can get 

the queuing delay of the packet. To update C, the 

information stored in the array P is needed. The array P 

contains the lengths of the packets currently in the queue.  

Suppose that the packet p arrives at node N(0), and is 

expected be delivered to the next node N(1) through link L, 

the direct computing algorithm for this packet hop can be 

described as follows. 

 
The direct computing algorithm: 

Parameters: lp, ta, degree, B, D, L, C, P, T, max, dp /* length of p, 

arrival time of p, degree of N(0),  bandwidth of  L, propagation 

delay of L, queue length in bytes, queue length in packets, array 

of the lengths of packets in the queue, the latest updating time of 

the queue, the maximum length of queue (DropTail mechanism), 

total delay of  p*/ 

 

// Check whether p can be directly sent or not: 

1. if (degree  ≤ 2) { 

         // p can be directly sent: 

// Update the values of L and C of the link model: 

2.        L = L – (ta – T) × B; 

3.        if (L < 0) L = 0; 

4.        T = ta; 

5.        According to the information stored in the array P and the 
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current value of L, get the value of C, which satisfies the 

following equation: 

∑∑
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, where li is the length of the last i
th packet of all the packets that 

arrive at N(0) before time ta, and should be delivered to N(1) 

through link L; the value of li is stored in array P; 

6.       Update the information stored in array P; 

//Decide whether the packet p should be dropped or not: 

7.       if  (C > max - 1)  { 

// p is dropped. 

8.           free(p); 

9.           return; 

10.       } else { 

// p is not dropped. 

// Get the queueing delay of p: 

11.               dq = L/ B; 

// Update the values of L, C and P: 

12.               C ++; 

13.               L = L + lp; 

14.               Save lp to array P; 

        // Get the transmission delay of p: 

15.                dt = lp/B; 

                // Get the total delay of p: 

16.                dp = dq + dt + D; 

17.           Get the current TTL of the packet p � ttlp; 

18.           if (ttlp – 1 ≤ 0) { 

            // p is dropped. 

19.                free(p); 

20.                return; 

21.           } else { 

      // send p to N(1): 

22.                Decrease the TTL of the packet p by 1; 

23.                Deliver p to N(1), and the time at which p arrives to 

N(1) is ta + dp; 

24.          } 

25.      } 

26. } else { 

          // p can not be directly sent: 

27.      Generate the event that will trigger to continue to process 

the packet and insert it into the event list. 

28. } 

 

The direct computing algorithm first decides whether 

p can be directly sent or not according to the degree of 

N(0). If p can be directly sent, line 2 to 14 in the algorithm 

is the processing procedure of p in the “Abstract-Queue” 

module; line 15 and 16 is the processing procedure of the 

“Abstract-Delay” module; line 17 to 23 is the processing 

procedure of the “TTL” module. If p can’t be directly sent, 

an event will be generated. This event will be processed 

when the virtual time of network simulator shifts to ta. 

Actually, the processing procedure triggered by this event 

is line 2 to 23 in the algorithm. 

4. Experiments and Results 

In this section, we do a series of simulation experiments to 

validate the efficiency of our DC method. 

The hardware platform for the experiments is a 

machine with two 1.0GHz CPUs and 4GB RAM. We 

realize our DC method on the traditional network simulator 

NS. As the SNOOPy mechanism shows better performance 

than others [13], we use the SNOOPy mechanism as the 

event list mechanism in the network simulator. 

We do the simulation of slammer worm propagation 

[14], and compare the performance of the traditional NS 

and the improved NS with our DC method (NS-DC). The 

topologies for slammer worm propagation simulation are 

generated by the Nem topology generator [15]. By the 

Nem, we generate 5 network topologies with 1000, 2000, 

3000, 4000, 5000 nodes respectively. Each node whose 

degree is 1 is set as the infectious host. The scan rate of the 

slammer worm is 10 times per second. There is 1 infected 

host at the first second, and the simulation time of slammer 

worm propagation is 100 seconds. 

The experiments results show that NS-DC has the 

same simulation results with NS, that is, the direct 

computing method does not decrease the accuracy of 

simulation. We select the simulation results of 5000 nodes’ 

topology, and show the comparison between NS and NS-

DC in Fig. 4. We can see that the simulation result, that is, 

the number of infected hosts during the worm propagation 

simulation, is the same. 

 

Fig. 4 Comparison of the number of infected hosts (5000 nodes) 

Fig. 5 compares the number of discrete events 

generated during simulation. Experiments show, compared 

with NS, NS-DC can reduce the number of discrete events 

considerably (51.1% in average). More discrete events 

mean more computation overhead, so from Fig. 5, we can 

see that the direct computing method can reduce the 

computation overhead of network simulation considerably.  

Fig. 6 compares the running time of simulation. As 

there are less discrete events for NS-DC, the running time 
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of NS-DC is decreased accordingly. Compared with NS, 

NS-DC can decrease the simulation running time by 40.1% 

in average. Comparison of running time shows that our 

direct computing method can improve the performance of 

the traditional network simulator NS efficiently. 

 

Fig. 5 Comparison of the number of events 

 

Fig. 6 Comparison of the simulation running time 

        Fig. 7 compares the memory overhead. During 

simulation, the whole routing table is maintained, whose 

memory overhead is O(N
2
) (N is the number of nodes in 

topology). Although the DC method can reduce the 

memory overhead, it is not clear in Fig. 7 as memory for 

routing table is large. Fig. 8 shows the absolute reduction. 

 

Fig. 7 Comparison of the memory overhead in simulation 

 

Fig. 8 Absolute reduction of the memory usage 

        From Fig. 4 to Fig. 8, we can see that, compared with 

the traditional discrete event network simulator, our DC 

method can reduce the number of discrete events, the 

simulation running time, and the memory required during 

simulation, while keep the accuracy of simulation result.  

5 Conclusions and Future Works 

We have presented a direct computing method for discrete 

event network simulation. In this method, the packet hop is 

depicted by direct computing, that is, the queueing delay of 

packet is computed and then the packet is sent to the next 

node directly; while in the traditional network simulator, 

the packet can’t be sent to the next node directly and 

should be enqueued to and dequeued from the “Queue” 

module. Compared with the traditional network simulator, 

our direct computing method can decrease simulation 

running time considerably.  

        In this paper, we only realize the direct computing 

algorithm with DropTail mechanism. Now we are realizing 

the direct computing algorithm with RED mechanism. 
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