
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

17

This paper was supported by the National Basic Research (973)

Program of China (2005CB321806)

Manuscript received May 5, 2007

Manuscript revised May 20, 2007

.Accelerating the Discrete Event Network Simulation by Direct Computing

Xiaofeng Wang and Xiangzhan Yu

School of Computer Science and Technology, Harbin Institute of Technology, Harbin, RPC

Summary

To reduce the computation requirement of large-scale

network simulation, this paper presents a direct computing

method for discrete event network simulation. In this

method, many of the discrete events are replaced by direct

computing, so the computation overhead for network

simulation is decreased, yet the accuracy of simulation

result is kept unchanged. Experiments show, compared

with the traditional discrete event network simulator, the

direct computing method can decrease the number of

discrete events generated during the network simulation by

over 50%, and can decrease the simulation running time by

over 40%, without the loss of simulation accuracy; the

memory required during simulation is also decreased.

Key words:

Discrete event simulation; network simulation; number of

discrete events; direct computing

1. Introduction

Network simulation provides a technique platform for

doing research on network behavior, and for evaluating

network protocols, and it is of great value in science

research and application. The predominating network

simulators are realized based on discrete event simulation

technology, which means the state of the simulation system

changes only when a discrete event occurs. With the rapid

development of computer networks, the size of topology

for simulation grows to a very large scale, yet the amount

of computation time required to perform large-scale

discrete event network simulation is prohibitive [1]. There

are two kinds of methods to attack this problem. One is to

use PDES to realize the parallel network simulation [2].

The other is to increase the abstraction level of network

simulation by establish more abstract models [3].

The purpose of this article is to reduce the running

time for large-scale network simulation by introducing a

more abstract model for discrete event simulation. This

article brings forward a method for accelerating the

discrete event network simulation by direct computing

(DC). The DC method obtains part of the changes of

simulation system state via direct computing, yet without

loss of simulation accuracy. As the traditional discrete

event network simulator (such as NS[4]) obtains all the

changes of simulation system state via discrete events, this

method can cut down the number of discrete events and

reduce the simulation running time compared with the

traditional method.

This article is organized as follows. In the next

section, we present the related work about increasing the

simulation abstraction level. In section 3, we put forward

our DC method in detail. In section 4, we carry out

experiments to demonstrate the accuracy and efficiency of

the DC method. Section 5 concludes the paper and points

out the future works.

2. Related Work

Increasing the simulation abstraction level is a key method

to reduce the computation overhead of large-scale network

simulation. Huang puts forward in her Ph.D thesis [3]

several abstraction techniques for accelerating the network

simulation and improving the scale of network simulation.

One of the abstraction techniques is called end-to-end

packet delivery, which means the packet for simulation is

sent directly from the source node to the destination node

and the queuing delay of the packet is ignored. The end-to-

end techniques can cause an increasing loss of accuracy

when the degree of congestion grows. In [5] and [6], a

hybrid method of discrete event simulation and

epidemiological model is developed for doing research on

network worms. Although this method can cut down the

number of discrete events and simulation running time

greatly, the epidemiological model can reduce the accuracy

of simulation. In [7~10], the fluid models are presented to

reduce the simulation running time, but the fluid models

can’t assure the accuracy of each packet hop and are

usually used to simulate background traffics. In [11], the

complexity of network simulation is reduced by cutting

down the number of hosts in the simulated topology, yet

this method can cause the inaccuracy of packet loss rate.

By combining sampling, modeling and simulation, [12]

takes a sample of the network traffic for simulation, feeds

it into a suitably scaled version of network, and then

extrapolates from the performance of the scaled network to

that of the original. This method can keep the accuracy of

several statistical parameters of network simulation, yet it

can’t assure the accuracy of each packet hop.

As we can see, the methods mentioned above reduce

the computation time of simulation at cost of accuracy, and

they can’t assure the accuracy of each packet hop. Our DC

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

18

method can assure the accuracy of each packet hop, and by

replacing discrete events with direct computing, it can

reduce the computation time considerably.

3. The DC Method

 3.1 Traditional Packet Transmission Simulation

NS is a good example of discrete event network simulation

and has been widely used for network research [3], so we

choose NS as our research platform. In NS, simulation of

packet transmission can be depicted by Fig. 1. In Fig. 1,

the simulation procedures of the packet transmission from

node N(0) to node N(1) via “simplex link model” are listed

as follows:

1） When a packet is delivered from N(0) to the

“simplex link model”, the model will first decide whether

the packet should be dropped or not. If the packet is

dropped, it should be delivered to the “Agent/Null”

module; while, if not, the packet should be enqueued to the

“Queue” module, and then wait for being processed.

2） When it is time to process the packet, which is

triggered by an event previously inserted into the event list,

the packet will be dequeued from the “Queue” module, and

then delivered to the “Delay” module.

3） The “Delay” module firstly computes the

packet’s fixed delay, including propagation delay and

transmission delay. Based on the fixed delay, an event

(“Event 1” in Fig. 1) that will trigger to continue to process

the packet is generated accordingly and inserted into the

event list, and based on the transmission delay, another

event (“Event 2” in Fig. 1) that will trigger to process the

next packet in the “Queue” module is also generated and

inserted into the event list.

4） When it is time to process “Event 1”, the

packet should be delivered to the “TTL” module. In the

“TTL” module, the TTL of the packet is decreased by 1. If

the TTL is then equal to 0, the packet should be dropped;

while, if not, the packet can be delivered to N(1).

5） When it is time to process “Event 2”, this event

will trigger the next packet to be dequeued from the

“Queue” module, and then to be processed according to

procedure 2) to 5).

Fig. 1 Simplex link model in NS

3.2 Basic Idea of Direct Computing

From the analysis in the above section, we can see that the

traditional simulation of one packet hop needs two discrete

events. For large-scale network simulation, there are

millions of packet hops for simulating, so the number of

discrete events is enormous. Meanwhile, there is enqueue

and dequeue operation for each packet hop, which also

increases the computation overhead. For the sake of

decreasing the number of discrete events and simplifying

the simulation procedure of packet hop, we bring forward

the DC method. Its basic idea is: simulation of packet hop

doesn’t need enqueue and dequeue operation; the queueing

delay of packet is computed directly, and is not obtained

by discrete events. As shown in Fig. 2, the DC method’s

simulation procedures of the packet transmission from

N(0) to N(1) are described as follows:

1） When a packet is delivered from N(0) to the

“simplex link model with direct computing”, the model

will first decide whether the packet can be directly sent to

the “Abstract-Queue” module or not. If the packet can be

directly sent, turn to procedure 4).

2） An event (“Event 3” in Fig. 2) that will trigger

to continue to process the packet is generated and inserted

into the event list.

3） When it is time to process “Event 3”, the

packet should be delivered to the “Abstract-Queue”

module.

4） The “Abstract-Queue” module receives the

packet, and it decides whether the packet should be

dropped or not. If the packet is dropped, it should be

delivered to “Agent/Null” module; while, if not, the

queueing delay of the packet is computed directly, and the

packet is then sent to the “Abstract-Delay” module.

5） The “Abstract-Delay” module computes the

packet’s fixed delay, including propagation delay and

transmission delay. The total delay of the packet from N(0)

to N(1), which includes propagation delay, transmission

delay and queuing delay, is recorded, and the packet is sent

to the “TTL” module.

6） In the “TTL” module, the TTL of the packet is

decreased by 1. If the TTL is then equal to 0, the packet

should be dropped; while, if not, the packet can be

delivered to N(1) with the total delay information.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

19

Fig. 2 Simplex link model with direct computing

Compared with the simplex link model, the direct

computing link model does not have the “Queue” module

for storing packets and the simulation of packet hop

doesn’t need the enqueue and dequeue operation;

meanwhile, there are fewer discrete events, which are time-

consuming as they should be inserted into and extracted

from the events list. So, compared with the traditional

discrete event network simulation, the DC method can

reduce the computation overhead considerably.

When a packet p arrives at a direct computing link

model L, L should first decide whether p can be directly

sent or not: if every packet whose arrival time to L is

smaller than p has been processed by L, p can be sent

directly to the “Abstract-Queue” module; otherwise, p

can’t be sent directly. This condition is used to ensure that,

all the packets which pass through the same link model can

be processed in time order, and accordingly to assure the

accuracy of simulation result. Without this condition, that

is, in Fig. 2, all the packets coming from N(0) is directly

sent to the “Abstract-Queue” module, the DC method can’t

assure the accuracy of simulation result (Fig. 3 shows us an

example).

Fig. 3 Example of inaccuracy

In Fig. 3, there are packet flows from node N(1) to

node N(4), and from node N(2) to node N(4). Suppose that

the packet p1 is generated by N(1) and should be sent to

N(4), and that the packet p2 is generated by N(2) and

should be sent to N(4). Let t1 denote p1’s generation time,

t2 denote p2’s generation time, t3 denote p1’s arrival time to

N(3), and t4 denote p2’s arrival time to N(3). Suppose that

t1 < t2, and the DC method will first process p1: p1 will be

delivered to N(3), and then be delivered from N(3) to N(4).

Having processed p1, the DC method will then process p2:

p2 will be delivered to N(3), and then be delivered from

N(3) to N(4). Suppose that the propagation delay of link

L(1) is much larger than that of link L(2), so t3 > t4, that is,

p2 arrives at N(3) before p1. Yet the direct computing link

model between N(3) and N(4) processes p1 before p2. So,

p1 and p2 can’t be processed in time order, which may lead

to inaccuracy in simulation.

If the packet can be directly sent, it will be sent to the

“Abstract-Queue” module directly; while, if not, an event

that triggers to continue to process the packet will be

generated and inserted into the event list.

Clearly, in Fig. 2, a practical condition that the packet

can be directly sent is that the degree of node N(0) is no

greater than 2. If it is, the packet can be directly sent to the

“Abstract-Queue” module without worrying about the

inaccuracy of simulation result.

3.3 The Direct Computing Model

The key of the DC method is the direct computing link

model, which contains two parts: parameters of the direct

computing link model and the direct computing algorithm.

We explain these two parts in detail as below.

The main parameters of the direct computing link

model are listed as follows:

1． Bandwidth of the link (B);

2． Propagation delay of the link (D);
3． Queue length in bytes (L);
4． Queue length in packets (C);
5． Array of the lengths of packets in the queue

(P[]);

6． The latest updating time of the queue (T).

Among these parameters, B and D are kept

unchanged throughout the simulation, but L, C, T and P are

updated constantly. If a packet is delivered to the link

model and this packet should not be dropped, the four

parameters should be updated accordingly. According to

the value of C, we can decide whether the packet should be

dropped or not, and according to the value of L, we can get

the queuing delay of the packet. To update C, the

information stored in the array P is needed. The array P

contains the lengths of the packets currently in the queue.

Suppose that the packet p arrives at node N(0), and is

expected be delivered to the next node N(1) through link L,

the direct computing algorithm for this packet hop can be

described as follows.

The direct computing algorithm:

Parameters: lp, ta, degree, B, D, L, C, P, T, max, dp /* length of p,

arrival time of p, degree of N(0), bandwidth of L, propagation

delay of L, queue length in bytes, queue length in packets, array

of the lengths of packets in the queue, the latest updating time of

the queue, the maximum length of queue (DropTail mechanism),

total delay of p*/

// Check whether p can be directly sent or not:

1. if (degree ≤ 2) {

 // p can be directly sent:

// Update the values of L and C of the link model:

2. L = L – (ta – T) × B;

3. if (L < 0) L = 0;

4. T = ta;

5. According to the information stored in the array P and the

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

20

current value of L, get the value of C, which satisfies the

following equation:

∑∑
==

<≤
C

i

i

C

i

i lLl
11

, where li is the length of the last i
th packet of all the packets that

arrive at N(0) before time ta, and should be delivered to N(1)

through link L; the value of li is stored in array P;

6. Update the information stored in array P;

//Decide whether the packet p should be dropped or not:

7. if (C > max - 1) {

// p is dropped.

8. free(p);

9. return;

10. } else {

// p is not dropped.

// Get the queueing delay of p:

11. dq = L/ B;

// Update the values of L, C and P:

12. C ++;

13. L = L + lp;

14. Save lp to array P;

 // Get the transmission delay of p:

15. dt = lp/B;

 // Get the total delay of p:

16. dp = dq + dt + D;

17. Get the current TTL of the packet p � ttlp;

18. if (ttlp – 1 ≤ 0) {

 // p is dropped.

19. free(p);

20. return;

21. } else {

 // send p to N(1):

22. Decrease the TTL of the packet p by 1;

23. Deliver p to N(1), and the time at which p arrives to

N(1) is ta + dp;

24. }

25. }

26. } else {

 // p can not be directly sent:

27. Generate the event that will trigger to continue to process

the packet and insert it into the event list.

28. }

The direct computing algorithm first decides whether

p can be directly sent or not according to the degree of

N(0). If p can be directly sent, line 2 to 14 in the algorithm

is the processing procedure of p in the “Abstract-Queue”

module; line 15 and 16 is the processing procedure of the

“Abstract-Delay” module; line 17 to 23 is the processing

procedure of the “TTL” module. If p can’t be directly sent,

an event will be generated. This event will be processed

when the virtual time of network simulator shifts to ta.

Actually, the processing procedure triggered by this event

is line 2 to 23 in the algorithm.

4. Experiments and Results

In this section, we do a series of simulation experiments to

validate the efficiency of our DC method.

The hardware platform for the experiments is a

machine with two 1.0GHz CPUs and 4GB RAM. We

realize our DC method on the traditional network simulator

NS. As the SNOOPy mechanism shows better performance

than others [13], we use the SNOOPy mechanism as the

event list mechanism in the network simulator.

We do the simulation of slammer worm propagation

[14], and compare the performance of the traditional NS

and the improved NS with our DC method (NS-DC). The

topologies for slammer worm propagation simulation are

generated by the Nem topology generator [15]. By the

Nem, we generate 5 network topologies with 1000, 2000,

3000, 4000, 5000 nodes respectively. Each node whose

degree is 1 is set as the infectious host. The scan rate of the

slammer worm is 10 times per second. There is 1 infected

host at the first second, and the simulation time of slammer

worm propagation is 100 seconds.

The experiments results show that NS-DC has the

same simulation results with NS, that is, the direct

computing method does not decrease the accuracy of

simulation. We select the simulation results of 5000 nodes’

topology, and show the comparison between NS and NS-

DC in Fig. 4. We can see that the simulation result, that is,

the number of infected hosts during the worm propagation

simulation, is the same.

Fig. 4 Comparison of the number of infected hosts (5000 nodes)

Fig. 5 compares the number of discrete events

generated during simulation. Experiments show, compared

with NS, NS-DC can reduce the number of discrete events

considerably (51.1% in average). More discrete events

mean more computation overhead, so from Fig. 5, we can

see that the direct computing method can reduce the

computation overhead of network simulation considerably.

Fig. 6 compares the running time of simulation. As

there are less discrete events for NS-DC, the running time

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

21

of NS-DC is decreased accordingly. Compared with NS,

NS-DC can decrease the simulation running time by 40.1%

in average. Comparison of running time shows that our

direct computing method can improve the performance of

the traditional network simulator NS efficiently.

Fig. 5 Comparison of the number of events

Fig. 6 Comparison of the simulation running time

 Fig. 7 compares the memory overhead. During

simulation, the whole routing table is maintained, whose

memory overhead is O(N
2
) (N is the number of nodes in

topology). Although the DC method can reduce the

memory overhead, it is not clear in Fig. 7 as memory for

routing table is large. Fig. 8 shows the absolute reduction.

Fig. 7 Comparison of the memory overhead in simulation

Fig. 8 Absolute reduction of the memory usage

 From Fig. 4 to Fig. 8, we can see that, compared with

the traditional discrete event network simulator, our DC

method can reduce the number of discrete events, the

simulation running time, and the memory required during

simulation, while keep the accuracy of simulation result.

5 Conclusions and Future Works

We have presented a direct computing method for discrete

event network simulation. In this method, the packet hop is

depicted by direct computing, that is, the queueing delay of

packet is computed and then the packet is sent to the next

node directly; while in the traditional network simulator,

the packet can’t be sent to the next node directly and

should be enqueued to and dequeued from the “Queue”

module. Compared with the traditional network simulator,

our direct computing method can decrease simulation

running time considerably.

 In this paper, we only realize the direct computing

algorithm with DropTail mechanism. Now we are realizing

the direct computing algorithm with RED mechanism.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

22

References
[1] S. Floyd, V. Paxson. Difficulties in Simulating the Internet.

IEEE/ACM Transactions on Networking. 2001, 9(4):

392~403

[2] R. M. Fujimoto. Parallel Discrete Event Simulation.

Communications of ACM. 1990, 33(10):30~53.

[3] P. Huang. Enabling Large-scale Network Simulations: A

Selective Abstraction Approach. Ph.D thesis, University of

Southern California. 1999:51~54

[4] K Fall, K Varadhan. The NS Manual.

http://www.isi.edu/nsnam/ns/doc/

[5] M. Liljenstam, D. Nicol, V. H. Berk and R. S. Gray.

Simulating Realistic Network Worm Traffic for Worm

Warning System Design and Testing. In Proceedings of the

2003 ACM workshop on Rapid Malcode (WORM’03),

Washington, DC, USA, 2003:24~33

[6] M. Liljenstam, Y. Yuan, B. J. Premore and D. Nicol. A

Mixed Abstraction Level Simulation Model of Large-Scale

Internet Worm Infestations. In Proceedings of the 10th IEEE

International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunications Systems,

Fort Worth, Texas, USA, 2002:109~116

[7] Y. Liu, F. L. Presti, V. Misra, D. Towsley and Y. Gu. Fluid

Models and Solutions for Large-Scale IP Networks. In

Proceedings of the 2003 ACM SIGMETRICS, San Diego,

CA, USA, 2003:91~101

[8] Y. Gu, Y. Liu and D. Towsley. On Integrating Fluid Models

with Packet Simulation. In Proceedings of IEEE INFOCOM

2004, Hong Kong, China, 2004:2856~2866

[9] F. Baccelli, D. Hong. Flow Level Simulation of Large IP

Networks. In Proceedings of the Conference of the IEEE

INFOCOM 2003, San Francisco, CA, 2003: 1911~1921

[10] B. Melamed, S. Pan and Y. Wardi. HNS: A Streamlined

Hybrid Network Simulator. ACM Transactions of Modeling

and Computer Simulation. 2004, 14(3): 251~277

[11] K. Below, U. Killat. Reducing the Complexity of Realistic

Large Scale Internet Simulations. In Proceedings of IEEE

GLOBECOM, San Francisco, USA, 2003: 3818~3823

[12] R. Pan, B. Prabhakar, K. Psounis and D. Wischik. SHRiNK:

A Method for Enabling Scaleable Performance Prediction

and Efficient Network Simulation. IEEE/ACM Transactions

on Networking. 2005,13(5):975~988

[13] K. L. Tan, L.-J. Thng. SNOOPy Calendar Queue. In

Proceedings of the 2000 Winter Simulation Conference,

Orlando, Florida, 2000:487~495

[14] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford

and N. Weaver. Inside the Slammer Worm. IEEE Magazine

of Security and Privacy. 2003,1(4):33~39

[15] D. Magoni. Nem: A Software for Network Topology

Analysis and Modeling. In Proceeding of the 10th IEEE

International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunications Systems,

Fort Worth, TX, USA, 2002:364~371

Xiaofeng Wang received his M.S.

degree in communication engineering

from the Harbin Institute of Technology in P.R.China in 2003.

Since 2003, he has been a Ph.D. degree candidate in computer

science from the Harbin Institute of Technology in P.R.China.

His current research interests include network simulation,

network security.

Xiangzhan Yu received the M.S. and

Dr. Degree in Computer Science from

Harbin Institute of Technology in 1997

and 2005 respectively. He has been

working in HIT since 1997 and been an

associate Professor in Computer science

of HIT since 2005. His research

interests include Disaster Tolerance,

Network Security.

