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Summary 

During the past years, many improvements have been 

made in computational methods for the prediction of RNA 

secondary structure to provide insight into many functions 

RNAs perform in biology processes. In this paper, we 

propose an efficient algorithm that can increase energy 

temporarily and then energy declines again by introducing 

stochastic dynamics into the Hopfield neural network. The 

proposed algorithm can help the Hopfield network escape 

from local minima and find the optimal or near-optimal 

solutions. The proposed algorithm has been applied to 

RNA secondary structure prediction problem. Simulation 

results verify that it has the ability to search the more 

stable RNA secondary structure for an RNA sequence 

compared to other neural network methods. 
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1. Introduction 

RNAs are molecules that are important for many processes 

in the cell. A molecule of RNA consists of a long chain of 

subunits, called nucleotides. Each nucleotide contains one 

of four possible bases: Adenine(A), Guanine(G), 

Cytosine(C), and Uracil(U). Under normal physiological 

conditions, a nucleotide chain can fold back upon itself by 

forming pairs of bases. The base pairing of RNA is 

generally called the secondary structure which determines 

how the RNA will interact and react with other 

components. Yet base pairing dose not occur arbitrarily. 

A-U and C-G form stable pairs and are known as the 

Watson-Crick base pairs [1]. Other base pairs are less 

stable and often ignored. 

Work on the determination of RNA structure has been 

carried out for decades by a number of research groups. 

There are two direct methods including using X-ray 

crystallography [2][3]and using NMR spectroscopy [4][5] 

to determinate RNA structure. Appealing computational 

methods for the prediction of RNA structure have been 

developed to provide insight into functions that RNA has. 

Searching for configurations of maximum base pairing or 

of minimum free energy is the general approach. Many 

algorithms have been proposed for predicting RNA 

secondary structure with respect to minimum free energy. 

Early algorithm was made by Zuker and Stiegler[6]. The 

Zuker’s algorithm (implemented in the programs called 

MFOLD[7]) is an efficient dynamic programming 

algorithm for identifying the globally minimal energy 

structure for an RNA sequence, as defined by such a 

thermodynamic model[8]. Zuker’s energy calculations 

have been further improved [9][10]and are probably the 

most used RNA secondary structure prediction method 

today. Another algorithm concerning minimum free energy 

makes use of artificial neural networks. Artificial neural 

networks are models of highly parallel and adaptive 

computation, based very loosely on current theories of 

brain structure and activity, and have been applied with 

some success to optimization problems such as TSP. In 

1992, Takefuji presented an algorithm based on the 

Hopfield neural network for RNA secondary structure 

prediction [11]. But the major weakness of this algorithm 

is still due to its failure in finding the global minimum 

solution. 

In this paper, we propose an efficient algorithm that 

can increase energy temporarily and then energy declines 

again by introducing stochastic dynamics into the Hopfield 

neural network. The proposed algorithm can help the 

Hopfield network escape from local minima and get an 

optimal or a near-optimal solution. This algorithm has been 

applied to RNA secondary structure prediction problem 

and simulation results verify that the proposed algorithm 

has the ability to search the more stable RNA secondary 

structure for an RNA sequence compared to other neural 

network methods. 

2. Problem Formulation 

The first stage of our algorithm is to select all the possible 

helices for a given RNA sequence. A helix refers to an 

anti-parallel complementary strand whose length must be 

greater than or equal to 3 base pairs, as shown in Fig, 1. 
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The Watson-Crick base pairs (A-U and C-G) are permitted 

in the helix and the minimum length of a hairpin loop is 3 

bases. 

 

Fig. 1 A simple graph shows helices of RNA secondary structure 

The stability of RNA secondary structure is evaluated 

by free energy. Much progress has been made on the 

problem of assigning free energy values to substructures. 

The most useful free energy data have been extrapolated 

from experiments on particular kinds of RNA carried out 

by Tinoco and Uhlenbeck [12][13]. For a helix, the free 

energy is calculated according to Table 1(units is 

Kcal/mol). 

Table 1: Free energy calculation 

5’-3’/3’-5’ A-U U-A G-C C-G 

A-U -1.2 -1.8 -2.1 -2.1 

U-A -1.8 -1.2 -2.1 -2.1 

G-C -2.1 -2.1 -4.8 -4.8 

C-G -2.1 -2.1 -3.0 -4.8 

 

For a given RNA sequence S, R= R1, R2, R3, ·····Rn is a 

set of helix, and E1, E2, E3, ·····En are free energy values of 

these helices calculated according to Table 1. The most 

stable secondary structure must have the lowest free 

energy and have no inconsistencies. Base pairs with the 

cross or overlap states are called inconsistencies. 

According to the above conditions, this optimization 

problem can be formulated by an objective function whose 

minimum value corresponds to the most stable RNA 

secondary structure. In a reasonable formulation, there are 

two components to the objective function: one is used to 

select stack domain candidates where the sum of free 

energy is the lowest; the other is used to guarantee there is 

no inconsistency in RNA secondary structure. Thus, this 

optimization problem can be mathematical formulated as 

follows: 
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where cij is a factor that indicates there is inconsistency or 

not. If both Ri and Rj are selected and there is 

inconsistency between them, then cij = 1; If both Ri and Rj 

are selected and there is no inconsistency between them, 

then cij = 0. 

3. Description of the Proposed Algorithm 

Hopfield neural networks (HNN) have provided a parallel 

and powerful method of solving difficult optimization 

problems [14][15][16]. But, due to its inherent local 

minimum problem, the global minimum or good solution 

is usually difficult to be found [17]. By incorporating 

stochastic dynamics into the Hopfield neural network, we 

propose an efficient algorithm that allows energy to be 

increased temporarily, which helps the network escape 

from local minima. 

Fig.2 is a conceptual graph of the energy landscape 

with a local minimum and a global minimum which shows 

the dynamics of the proposed improved network simply. 

The X-coordinate denotes the state of the network and the 

Y- coordinate denotes the value of energy function. For 

example, if the network is initialized onto point A 

(Fig.2(a)). Because of the mechanism of the HNN, the 

state of network moves towards negative gradient direction 

and reaches the local minimum. If we change the dynamics 

of the HNN by introducing stochastic term at point B to 

increase the energy temporarily, point B will become a new 

point B’(Fig.2(b)). From point B’, the network returns to 

move towards negative gradient direction and reaches the 

global minimum point C (Fig.2(b)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 The relation between energy and state transition in the learning 

process of the HNN with two stable states. 
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The energy function of the HNN at time t is given by: 
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The inputs of the neurons are computed by the 

updating rule: 
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The input-output function is: 
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where Ui is the input, Vi is the output, wij is the symmetric 

interconnection strength form neuron j to neuron i (wii=0), 

and θi is the offset bias. 

In the proposed algorithm, the input and output of 

neuron i is modified as follows: 
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Fig.3 shows how the value of h changes with t for 

β=60. Obviously, h(t) increases form -1 to 1 while the 

updating proceeds. 

 

 

 Fig. 3 Graph of 
β/21)( texh −−=  with β=60. 

The following analysis can explain the dynamics of 

our proposed algorithm which includes stochastic 

dynamics. Suppose that at time t, the state of neuron k is 

changed. The change in the state of neuron k is: 

 

)()1()( tVtVtV kkk −+=∆            (10) 

 

The energy caused by the change in the state of 

neuron k is: 
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The change of energy caused by the change in the 

state of neuron k is: 
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Then replace i with j. Because of wkj=wjk, Eq. (12) 

can be reduced to: 
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Using Eq. (4), Eq. (13) can be rewritten as follows: 
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Initially, when h(t)<0, it is possible that λ(t)<0 

according to Eq.(8). Consider two cases. Case a: If Uk(t)≥0, 

then ui(t)≤0. According to Eq. (7) the value of Vk(t+1) 

keeps 0 or changes from 1 to 0, thus ∆Vk(t)≤0. Case b: If 

Uk(t)<0, then ui(t)>0. According to Eq. (7) the value of 

Vk(t+1) keeps 1 or changes from 0 to 1, thus ∆Vk(t)>0. 

Consider Case a and Case b, from Eq. (14) we can see that 

when λ(t)<0, ∆E>0 is possible. This increase of energy can 

help the network escape from local minima when the 

network suffers from local minima. The possibility of an 

increase of energy becomes smaller as h(t) increases until 
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h(t)>0. When h(t)>0, λ(t)>0. The dynamics of the network 

tends toward the original updating mode and finally the 

network has the steepest descent which guarantees that the 

network always converges to a stable state. Thus the 

proposed algorithm provides a mechanism for escaping 

from local minima and converging to a better stable state 

by introducing stochastic dynamics. 

The proposed algorithm always permits descent of the 

energy function, but ascent of the energy is allowed 

initially and becomes less likely as time goes. However, it 

is not guaranteed that the proposed algorithm will always 

find the global minimum. Instead, usually it has higher 

search capability than the original Hopfield neural 

network. 

4. Test Results 

The algorithm proposed in this paper has been applied to 

find the optimal or near-optimal structure of an RNA 

sequence based on free energy rules. The original Hopfield 

neural network and Tekefiji’s algorithm were also executed 

for comparison. Each algorithm has been carried out on 

five different RNA sequences: 61, 77, 120, 401 and 511 

bases. We performed 100 runs of each algorithm on all 

RNA sequences with different initial values. The 

parameters, β=30, were used in the simulations of the 

proposed algorithm. The performance of these algorithms 

was summarized in Table 2. The results that we recorded 

for each RNA sequence were the lowest energy among 100 

runs. The columns “Length” represent the shortest length 

of possible helix is 2, 3, and 4 base pairs respectively. 

From Table 2, we can see that the proposed algorithm is 

comparable with the algorithm of Hopfield neural network 

and Takefuji’s algorithm for small size problems (Example 

1-2). For the larger size problems (instance 3-5), Table 2 

shows that the proposed algorithm can find better solutions 

than other algorithms. 

Table 2: Test results on RNA sequence 

Example length Takefuji HNN Proposed 

Example 1 2 -30.30 -30.90 -39.90 

 3 -39.90 -39.90 -39.90 

 4 -39.90 -39.90 -39.90 

Example 2 2 -46.20 -37.80 -50.70 

 3 -43.50 -40.80 -49.80 

 4 -43.50 -43.50 -43.50 

Example 3 2 -76.50 -69.60 -89.40 

 3 -76.20 -74.70 -80.60 

 4 -65.10 -71.70 -71.10 

Example 4 3 no result -107.40 -214.80 

 4 -173.10 -103.50 -186.90 

Example 5 3 no result -116.40 -241.80 

 4 no result -113.40 -226.80 

 

In order to show how the proposed algorithm works, 

we chose RNA sequence with 120 bases as an example. 

Fig.4(a) shows the evolution of energy function in 

Takefuji’s algorithm. One can observe that the energy 

descended on every step and had a tendency to converge to 

the local minima. The evolution of energy function in the 

proposed algorithm is demonstrated in Fig.4(b). The 

energy in Fig.4(b) fluctuated with large changes before t 

=276 due to stochastic dynamics and then gradually 

descended. The fluctuations in the proposed algorithm 

helped the Hopfield network escape from the local minima 

and found a better solution. 

 

 

 

 

 

 

 

 

 

 
(a) 

 

 
(b) 

Fig. 4 The evolution of energy function in Takefuji’s algorithm and the 

proposed algorithm with 120 bases 

In order to demonstrate the reliability of our algorithm, 

the secondary structure of tRNA
phe
 and pre-tRNA

tyr
 were 

predicted by our proposed algorithm, compared to those 

predicted by Zuker’s algorithm (http://frontend.bioinfo. 
rpi.edu/applications/mfold/cgi-bin/rna-form1.cgi). tRNA

phe
 

contains 76 bases and has a well-known cloverleaf 

structure[18](5’ and 3’ represent the start and the end of an 

RNA sequence): 

5’---GCGGAUUUAGCUCAGUUGGGAGAGCGCC

AGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCC

ACAGAAUUCGCACCA---3’ 

pre-tRNA
tyr
 secondary structure consists of five 

helices [19]. It contains 92 bases: 

5’---CUCUCGGUAGCCAAGUUGGUUUAAGGCG

CAAGACUGUAAUUUAUCACUACGAAAUCUUGAG

AUCGGGCGUUCGACUCGCCCCCGGGAGACCA---3’ 

The secondary structure of tRNA
phe
 and pre-tRNA

tyr
 

predicted by our proposed algorithm are shown in Fig.5(a) 

Energy: -65.10 

 Energy: -71.70 
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and Fig.6(a). Fig.5(b) and Fig.6(b) shows the minimum 

free energy secondary structure predicted by Zuker’s 

method with free energy. The bases pairs in the rectangles 

are the true positive base pairs in the known secondary 

structure. The complex substructural components - such as 

hairpin loops and bulge loops have not been included in 

our algorithm. If we think more about it, we can achieve 

more accurate and reasonable prediction results (the 

figures of our predicted structures were obtained by the efn 

server). 

 

 
(a) 

 

 
(b) 

Fig. 5 tRNAphe secondary structure predicted by the proposed algorithm 

and Zuker’s method. 

 
(a) 

 
(b) 

Fig. 6 Secondary structure of pre-tRNAtyr predicted by the proposed 
algorithm and Zuker’s method 

5. Conclusion 

This paper presented a new algorithm that introduces 

stochastic dynamics into the Hopfield network for RNA 

secondary structure prediction problem. The proposed 

algorithm can increase energy temporarily because of 

stochastic dynamics and then energy declines again, which 

helps the Hopfield network escape from local minima and 

find optimal or near-optimal solutions. This algorithm has 

been applied to RNA secondary structure problem and has 

been compared with other methods. The simulation results 

gave the evidence that the proposed algorithm had the 
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ability to search the more stable RNA secondary structure 

for an RNA sequence compared to other neural network 

methods. 
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