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Summary 
After the original work of Hopfield and Tank, a lot of modified 
Hopfield neural network models have been proposed for 
combinatorial optimization problems. Recently, a positively self-
feedbacked Hopfield neural network architecture was proposed 
by Li et al. and successfully applied to crossbar switching 
problem. In this paper, we analysis the dynamics of the positively 
self-feedbacked Hopfield neural network, then show the role of 
the self-feedback and point out where the good performance 
comes from. Based on the theoretical analysis, we get better 
simulation results for crossbar switching problem by selecting 
suitably positive self-feedback value of the network. 
Key words: 
positively self-feedbacked Hopfield neural network, crossbar 
switching problem, combinatorial optimization problems. 

1. Introduction 

After Hopfield and Tank’s works in [1] [2], the Hopfield 
neural network has been extensively applied in 
combinatorial optimization problems. It has been shown 
that the Hopfield neural network can compete effectively 
with traditional heuristics to real-world combinatorial 
optimization problems [3] [4]. The advantages of neural 
network approach in optimization are that it exploits the 
massive parallelism and convenient hardware 
implementation of the neural network architecture. 
Moreover, it is a common approach for solving various 
combinatorial optimization problems [3]. 

However, it has been shown that the Hopfield neural 
network easily causes infeasible solutions and has local 
minima problem [5]. Many researchers modified the 
Hopfield neural network to guarantee the feasibility of the 
solutions and help network escape from local minima for 
better solutions [6]. In 2005, a positively self-feedbacked 
Hopfield neural network was proposed by Li et al. [7]. 
They tried to theoretically prove the convergence of the 
positively self-feedbacked Hopfield neural network and 
applied the neural network algorithm for crossbar 
switching problem. Their simulation results showed that 
the positively self-feedbacked Hopfield neural network 
was much better than the previous works.  

In this paper, we analysis the dynamics of the positively 

 
self-feedbacked Hopfield neural network. We find that the 
good performance of the positively self-feedbacked 
Hopfield neural network does not come from its collective 
computational property by introducing the positive self-
feedback, rather, it comes from a slight oscillatory 
behavior produced by the intrinsic negative self-feedback 
of problem’s energy function that can be counteracted by 
the positive self-feedback. Based on the results mentioned 
above, we set suitably the value of the positive self-
feedback and get better solutions for crossbar switch 
problem. 

2. Analysis of Positively Self-Feedbacked 
Hopfield Neural Network 

2.1 Hopfield Neural Network 

Hopfield et al. introduced an appropriate energy function 
with symmetric interconnection weight and a zero 
diagonal elements of the interconnection matrix in their 
original paper [1]: 
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where iu , iv  and ib  is the input, output state and 
threshold of neuron i , respectively, for ni ,,1K= ; ijw  is 

the interconnection weight between neurons i  and j , 
where symmetric weights and a zero diagonal elements of 
the interconnection are considered, for nji ,,1, K= , that is, 

jiij ww =  and 0=iiw . The energy change EΔ  in energy 

function E  due to change the state of neuron i  by ivΔ  is 
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According to the updating rule (2)-(3), ivΔ  is positive 
only when the bracket is positive, and similar to the 
negative case. Thus any change in E under the updating 
rule (2)-(3) is negative. 

2.2 Positively Self-Feedbacked Hopfield Neural 
Network 

In Li et al.’s algorithm [7], additional positive self-
feedbacks are added to the Hopfield neural network and 
total inputs of neurons are modified as following: 
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When the self-feedback iF  is positive or zero, changing 
state by the updating always leads to a reduction in the 
energy for the network. This result holds for the original 
Hopfield neural network with 0=iF , which is a specific 
case of  Eq.(6). 

This proof is the same as that in the original Hopfield 
paper [1]. They all assumed that jiij ww =  and 0=iiw  in 

the energy function. 

2.3 Updating Rule for the General Form of Energy 
Function 

A large number of energy functions used in optimization 
problems [3] [4] include 2

iv  terms. These 2
iv  terms 

correspond to negative neuronal self-feedbacks, that is, 
0≠iiw  holds for a large number of optimization problems. 

Therefore, the general form of the energy function for 
optimization problems is given by 
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where jiij ww = . Note that we allow arbitrary values of 

the self-feedback iiw  for each neuron, which is different 
from Eq.(1). 

The change EΔ  in E  due to chang the state of neuron 
k  by kvΔ  is 
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The states of binary Hopfield neural network with 
arbitrary values of the self-feedbacks are updated 
asynchronously as following: 

1=Δ ijv           if  ∑ >+
j

ijij Ubvw    and  0=iv ;  

1−=Δ ijv        if  ∑ −<+
j

ijij Lbvw  and  1=iv ; 

0=Δ ijv          otherwise;                                             (10) 

where 2/iiwLU −== .  

3. Application to Crossbar Switching 
Problems 

In packet-switched telecommunication networks, switches 
are located at nodes, routing randomly arriving packets so 
that they may be transmitted from the source to the 
destination. The basic switch is the crossbar switch. The 
crossbar switch problem is depicted by Fig.1, which shows 
how requests to switch packets through a NN×  crossbar 
switch can be represented by a NN×  binary request 
matrix r  [7] [8]. Rows and columns of the matrix r  are 
associated with inputs and outputs, respectively, of the 
crossbar switch. A matrix element 1=ijr  indicates that 
there is a request for switching at least one packet from 
input line i  to output line j  of the switch, 0=ijr  
otherwise. If we consider the crossbar switch for point-to-
point connections, then at most one crosspoint may be 
closed on any row or column of the switch during packed 
transmission. The state of the switch can be represented by 
a NN×  binary configuration matrix c , where 1=ijc  
indicates that input line i  is connected to output line j  by 
the “closed” crosspoint ( )ij . 0=ijc  indicates that 

crosspoint ( )ij  is “open”. For proper operation of the 
switch, there should be at most one closed crosspoint in 
each row and each column. The throughput of the switch 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007 

 

67

is the optimal when the matrix c , which is a subset of the 
matrix r  (i.e., ijij rc ≤  for every ( )ji, ), contains at most a 
“1” in each row/column, and has maximum overlap with 
r . Examples of optimal matrices are shown in Fig. 1 for a 

44×  crossbar switch [7] [8]. 
Each switch inlet has a queue manager. When an inlet 

queue manager receives a packet, it examines the packet’s 
destination address and determines its switch outlet. It then 
updates the row request vector for that inlet by setting to 
“1”, the bit corresponding to the switch outlet, and places 
the packet on the inlet queue. The crossbar switch is 
controlled by a neural network where each neuron is in 
correspondence to each switch crosspoint. Row request 
vectors from all the inlets are supplied to the neural 
network, which use them to compute an optimal 
configuration matrix for the switch. The resulting row 
configuration vectors are then returned to the 
corresponding queue manager, while the crossbar switch 
crosspoints selected by the computed configuration matrix 
are closed. Each queue manager presents to its inlet a 
single packet destined to the outlet selected by the row 
vector returned by the neural network, which thus gets 
routed through the closed crosspoint to its proper outlet. 
The queue manager also updates its row request vector by 
clearing the selected column bit, provided that no packets 
remain queued for that output. This process is iterated: 
new packets are received while queued packets are being 
transmitted. If all packets were of a constant length, then it 
would be possible to receive new packets, transmit 
selected packets, and compute the next configuration in 
parallel. The computation of an optimal configuration 
matrix should be completed in a few microseconds, which 
is less than it takes to transmit a packet in a high-speed 
fiber optic based communication system [7] [8]. 

The crossbar switch problem can be mapped onto 
Hopfield neural network with NN×  neurons. The 
objective energy function of the crossbar switch problem 
is given by [7] [8] [9] 
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where A and B are coefficients. ikv  is the output value of 
neurons ik and kjv  is the output value of neurons kj. The 
first term will be zero if each row contains no more than 
one ‘‘1’’, with all the other values being zero. Similarly, 
the second term is zero if each column contains no more 
than one ‘‘1’’. 1=ikv  indicates that there is a request for 
switching at least one packet from input line i  to output 
line k  of the switch; 0=ikv  indicates no such request. 
The constraints of crossbar switch problem are considered 
that no two packets should share the same row and the 

 
 

Fig.1. Architecture of crossbar control and an example of input request 
matrix and its optimal configuration matrices.  

 
column of the NN×  traffic matrix [ ijv ]. Therefore the 
crossbar switch problem can be solved by minimizing the 
energy function (11) to zero. 

The total input iju  of the neuron is given by 
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where the values of the self-feedback ijijw ,  for each 

neuron is BAw ijij −−=, . 

According to the updating rule (10), the state transition 
of the binary neuron becomes:  
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0=Δ ijv      otherwise;                                               (13) 

where )(
2
1

2
, BA

w
LU ijij +=−== . 

In Li et al.’s algorithm [7] for crossbar switch problem, 
the state transition of the binary neuron was: 
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that is,  
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                         and 1=ijv ; 

0=Δ ijv      otherwise;                                             (15) 

where 0=U , ijFL = . 
The proof of Li et al. [7] assumed that the self-feedback 

value of each neuron 0=iiw  in the energy function. But 
in the crossbar switch problem, the self-feedback value of 
each neuron is BAw ijij −−=,  and obviously, 0, <ijijw . 

Since the self-feedback value of each neuron is not equal 
to 0 in the energy function of crossbar switching problem, 
the proof with the assumption that the self-feedback value 
of each neuron is equal to 0 is not enough to explain the 
simulation results of crossbar switch problem. 

In the update rule (15) of Li et al., 0=U , 1== ijFL , 

and 75.02/)5.01(2/)(2/ =+=+=− BAwij , therefore 

2/ijwU −< , and 2/ijwL −> . The update rule (15) of Li 

et al. does not guarantee the energy function (11) always 
decreases. The network of Li et al. may oscillate and make 
some energy minimum states unstable, which helps the 
network to escape from local minimum [11]. 

4. Simulation Results 

In order to verify the theoretical analysis, the simulation 
for a large number of real crossbar switch problems up to 
2000×2000 switches was implemented in C on a PC. The 
parameters A and B were set to 1=A , 1=B . According to 
the updating rule for general energy function, 

12/)(2/, =+=−== BAwLU ijij . In simulations, 100 

simulations run with different randomly generated initial 
states were performed on each of 16 instances whose sizes 

ranged from 4 × 4 to 2000 × 2000. Using Eq.(13), all 
neurons were computed exactly once in one iteration step. 
The maximum iteration step was set to 1000. When the 
iteration steps exceeded the maximum iteration step, the 
network was terminated. At the same time, we also set the 
network with parameters 12/, =−= ijijwU , 5.0=L  for 

comparison. Note that, 12/, =−< ijijwL . 
We compared our results with those found by original 

Hopfield neural network [1], Troudet’s neural network [8], 
maximum neural network [10] and Li et al. [7]. Table 1 
shows the results produced by original Hopfield neural 
network [1], Troudet’s neural network [8] and maximum 
neural network [10]. Table 2 shows the results produced 
by Li et al. [7] and the proposed algorithm. The 
convergence rates to optimal solution (“Opt”) and the 
average number of convergence iteration steps (“Step”) are 
also summarized in Table 1 and Table 2.  

From Table 1 and Table 2, we can see that the proposed 
algorithm is very effective, and is better than original 
Hopfield neural network [1], Troudet’s neural network [8], 
maximum neural network [10] and Li et al. [7] in terms of 
the computation time and the solution quality for crossbar 
switching. Further, the number of iteration steps of the 
proposed algorithm is almost independent on the problem 
size, while original Hopfield neural network, Troudet’s 
neural network, maximum neural network are somehow 
problem size-dependent, and even can hardly reach 
optimum solution to the large size crossbar switching. 

In the proposed algorithm, the updating rule for general 
energy function can guarantee the network reach global 
minimum within 2 steps. The network with 
parameters 2/1 ,ijijwU −== , 2/5.0 ,ijijwL −<=  yield 

more desirable oscillation, which make the network escape 
from local energy minima and reach the global minimum. 
Furthermore, we fixed parameter 12/, =−= ijijwU , and 
examined different values of the 
parameter L )8.0,,2.0,1.0,0.0( ⋅⋅⋅=L , we can get the same 
results as those produced by the network with 
parameters 1=U , 9.0=L . Therefore, we can see that we 
can get better results by selecting suitably positive self-
feedback value of the network based on our theoretical 
analysis. 

5. Conclusions 

We give the updating rule for the general form of energy 
function, then analyse the dynamics of the positively self-
feedbacked Hopfield neural network. We show how self-
feedback has effects on the network dynamics and the 
solution quality. Based on the theoretical analysis, we get 
better simulation results for crossbar switching problem by  
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Table 1. Simulated Results. 

Original  
Hopfield neural 

network [1] 
Troudet [8] Maximum neural 

network [10] 
Crossbar 
Switches 

Opt Step Opt Step Opt Step 
4×4 51 7 100 14 100 3 
6×6 43 10 98 23 100 3 
8×8 31 13 95 56 100 4 

10×10 28 19 96 81 100 5 
20×20 28 38 40 217 100 7 
30×30 31 39 19 279 100 8 
50×50 37 66 0 - 100 7 
80×80 37 84 - - 100 8 

100×100 34 99 - - 100 9 
200×200 30 100 - - 100 10 
300×300 - - - - 97 11 
500×500 - - - - 97 13 
800×800 - - - - 94 13 

1000×1000 - - - - 92 13 
1500×1500 - - - - 91 12 
2000×2000 - - - - 90 14 

 
Table 2. Simulated Results. 

Proposed algorithm 
Li et al. [7] 

1== LU  5.0,1 == LU  9.0,1 == LU  Crossbar Switches 

Opt Step Opt Step Opt Step Opt Step 
4×4 100 2 55 1 100 2 100 2 
6×6 100 3 43 1 100 2 100 2 
8×8 100 4 33 2 100 2 100 2 

10×10 100 6 30 2 100 2 100 2 
20×20 100 5 29 2 100 2 100 2 
30×30 100 5 31 2 100 2 100 2 
50× 50 100 5 37 2 100 2 100 2 
80× 80 100 5 37 2 100 2 100 2 

100×100 100 5 34 2 100 2 100 2 
200×200 100 5 31 2 100 2 100 2 
300× 300 100 5 30 2 100 2 100 2 
500× 500 100 5 31 2 100 2 100 2 
800× 800 100 5 25 2 100 2 100 2 

1000×1000 100 5 23 2 100 2 100 2 
1500×1500 100 5 30 2 100 2 100 2 
2000× 2000 100 5 28 2 100 2 100 2 

 

selecting suitably positive self-feedback value of the 
network. 
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