
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

95

Manuscript received May 5, 2007

Manuscript revised May 20, 2007

Using Dead Block Information to Minimize I-cache Leakage
Energy

Mohan G Kabadi† and Ranjani Parthasarathi††,

 S.J.C. Institute of Technology Annauniversity
 Chickballapur, INDIA Chennai, INDIA

Summary
Power-conscious design using hardware and/or software
means has become crucial for both mobile and high
performance processors. This paper explores integrated
software and circuit level technique to reduce the leakage
energy in iL1-cache of high performance microprocessors
by eliminating the basic blocks from the cache, soon after
they become ‘dead’. The impact of eliminating dead
blocks on processor performance and energy efficiency
are analyzed in detail. The compiler normally identifies
the basic blocks from the control flow graph of the
program. At this stage candidate basic blocks that can be
turned-off after use are identified. This information is
conveyed to the processor, by annotating the first
instruction of the selected basic blocks. During execution,
the basic blocks are kept track of, and after use, the cache
blocks occupied by these blocks are switched-off.
Experiments have been conducted by considering two
different initial states of the cache - on and off, and the
leakage energy saved varies from 0.09% to a maximum of
96.664%.
Key words:
 Power-efficient architecture, Low-leakage cache,
Compiler-assisted energy optimization

1. Introduction

Power-aware design has become a prime design
consideration, together with performance, in the computer
systems of today. The fabrication technology of VLSI
circuits is steadily improving and the chip structures are
being scaled down. The on-chip transistor density is
increasing at a higher ratio, resulting in an increased level
of power consumption. Further, as devices shrink, gates
move closer and more current leaks between them. Hence,
an important technical challenge for designers is in
reducing the current leakage. Thus controlling/reducing
current leakage has become an active area of research.
Memory subsystems, especially on-chip caches, are a
dominant source of power consumption. Caches often

consume 80% of the total transistor budget and 50% of the
area. Hence, on-chip caches are good candidates for
controlling the on-chip leakage energy.
Several techniques have been proposed to reduce leakage
energy dissipated by cache subsystems, both for multilevel
I-caches [1,2,3,4,5,6] and d-caches [4,5,6,7,8]. Such
techniques can be grouped under two categories, namely,
(i) architecture alternatives adopting static [5] or dynamic
methods [3,4] and (ii) software techniques using compiler
support [1,6]. Many of the architectural level mechanisms
work at the circuit level, at the cache bank or line
granularity. They work by putting the idle cache blocks to
low-leakage mode after a predefined interval of inactivity.
In Dynamic ResIzable I-cache [3], size of the cache
dynamically adapts to application demand during
execution. In Cache-line decay [7], cache blocks are
turned-off by monitoring the periods of inactivity using
line-saturating counters with each block. In adaptive-
mode-control cache[4], the individual cache lines of the
data store is controlled by monitoring the performance. In
Drowsy-cache [8], leakage energy of the cache blocks is
controlled by periodically placing all the cache blocks in a
‘drowsy-state’ by reducing the supply voltage to the
blocks.

The software methods for controlling the leakage energy
are relatively simple and assist the microarchitecture in
reducing the switching activity in on-chip caches by
giving explicit information on program behavior [1,9] or
by compiler optimization techniques [6]. For example, in
the L-cache [1], holding loop-nested basic blocks
designated by the compiler in a small cache reduces
switching activity. The profile from the previous runs is
used to select the best instructions to be cached. The
compiler-assisted approach used in [9] works at a loop
level granularity. The cache lines are put into low leakage
mode when the next access to the instruction occurs only
after a long gap or would never occur.
Here we present and analyze a generic, novel, compiler-
assisted technique, called ‘Dead Block Elimination in
Cache’ (DBEC)[10], wherein, selected lines of the cache
are turned-off under program control, resulting in leakage

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

96

energy savings. This approach takes care of both loop-
intensive and non loop-intensive programs without
sacrificing performance.

2. Dead Block Elimination in Cache

The DBEC mechanism uses software-assistance to turn-off
the ‘dead’ basic blocks of i-cache. The instructions that
are not ‘live’ at a particular point of program execution,
and would not be used again before being replaced in the
cache, are termed as ‘dead’ instructions. The proposed
scheme identifies the cache blocks that contain the ‘dead’
instructions and turns-off the power to such cache blocks,
for conserving the leakage energy. The information on
whether an instruction is ‘dead’ at a particular point of
program execution is obtained from the compiler. The
‘dead’ instructions are handled at the granularity of basic
blocks. The compiler identifies the basic blocks from the
control-flow graph (CFG) and indicates the start and end
of the basic blocks in the code. During program execution,
this information (in the form of annotations) is used by the
microarchitecture to turn-off the ‘dead’ blocks.
The compiler uses three types of annotations. Each cache
line is marked when it is taken up for execution. The first
type of annotation indicates when the cache lines that have
been marked are to be switched off. This type of
annotation is normally done for the instructions that begin
a basic block and would cause the processor to emit a
‘turn-off signal’. In the case of loops, only the first
statement of the first basic block is annotated so that the
basic blocks with in the loops do not switch off other basic
blocks of the same loop. This ensures that the cache
blocks containing the loop code are not switched-off
before the next iteration of the loop. These cache blocks
are to be switched-off only after the last iteration, when
the control exits the loop.
The second type of annotation indicates that the next
instruction is a “call instruction” with in a loop. The third
type of annotation indicates that the previous instruction
was a function call, which is part of a loop. The second
and third type of annotations ensure that ‘functions’,
which are called from within a loop, do not switch off the
cache blocks that contain the code of that loop. This
mechanism is explained below with an example.
Figure 1 shows a segment of CFG. The BBi’s are basic
blocks. The first statement of each basic block is annotated
during the compilation stage. The first type of annotation
is used only for the first statement of the basic blocks BB1,
BB2 and BB5. However, BB3 and BB4 are the basic
blocks of the same outer loop and hence, the first
statements of these blocks are not annotated. This is done

to make sure that BB2 and BB3 are not turned-off when
BB4 is under execution. When the annotated statement of
BB2 is under execution, the execution of BB1 is
completed. Hence, the cache blocks completely occupied
by the instructions of BB1 are turned-off. Similarly, the
execution of the first statement of BB5 will turn-off the
blocks of BB2, BB3 and BB4. Thus, the compiler exactly
determines the instant at which a particular cache block is
going to be ‘dead’. This approach has a negligible
performance penalty as opposed to earlier approaches
[3,5,6]. Further, this primarily being a static approach
supported by the compiler, the run-time architectural
overhead of this approach is also minimal. Two simple
hardware mechanisms have to be added as explained
below.

 Figure 1. An example segment of CFG

2.1 Hardware Modification

The implementation of the DBEC scheme requires two
simple modifications, - one on the cache side and the other
in the processor module. Figure 2 shows the hardware
modification required in the cache module. With each
block of the i-cache, one bit called the ‘turn-off bit’ is
added to the tag bits. These turn-off bits are initially reset
to zero at the start of program execution. The turn-off bits
corresponding to blocks of cache that contain the
instruction of the current basic block, or loop under
execution, are set. These bits indicate the blocks that are to
be turned-off, when the execution of the current basic
block or loop is completed. In addition, one bit called the
Flag bit is also added per block along with the Tag bits.
This bit is used to take care of cache blocks which have
instructions from more than one Basic block.

When an instruction is fetched from a new cache
block, the Turn-off bit corresponding to that cache block
is set to 1. During the fetch process, on the occurrence of
the next annotated statement, a flag called the Basic Block
Crossing (BBC) flag is set and the Turn-off bit
corresponding to that cache block is reset. The BBC bit is
used to indicate that this cache block should not be turned
off as it contains the instructions from the next Basic block.
Hence, once the BBC is set, during instruction fetch, the
flag bit corresponding that cache block is set, and the
Turn-off bit is reset.
 When the annotated instruction is executed, the
‘turn-off signal’ issued causes all blocks which have their

BB1 BB2 BB3 BB4 BB5

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

97

Turn-off bit set to 1 to be turned off. On the falling edge of
‘turn-off signal’, the flag and its corresponding Flag bits
are copied to the turn off bits, and the flag bits are reset.
For this to work, it is necessary that the annotation field of
the instructions is pre decoded (as the instruction is
fetched). This will help to identify the annotated
instruction at an early stage.

The blocks are turned-off and put to a state-destroying
mode using a mechanism similar to the drowsy-cache
mechanism used in [8]. This mechanism works well for
both direct as well as set-associative caches.
This mechanism can be explained using the same example
given in the previous section. Against the execution of the
first annotated statement of BB1, the processor sets the
turn-off bits of those cache blocks from which the
instructions of BB1 are fetched. An instance of BB1
occupying an arbitrary number of bytes is shown in figure
2. Also, the turn-off bits for those blocks at the end of
execution of BB1 are shown in the same figure. The turn-
off bit of cache block X3 is not set, indicating that the
cache block is to be retained even after the execution of
the BB1. This is because cache block X3 is only partially
filled with instructions from BB1, and contains some code
from the BB2 also. When the control reaches the
beginning of BB2, the annotated first statement of BB2
will trigger the invalidation and a ‘turn-off-signal’ is
emitted. This will turn-off all those blocks whose turn-off
bits were previously marked for this purpose. Hence, the
cache block X1 and X2 would be turned-off. The turn-off
bit of X3 is set only when the basic block BB2 is taken up
for execution. When the execution of basic block BB2 is
completed, the cache block X3 is turned-off.
In the processor module, a counter is needed to track the
depth of execution when the function(s) are called from
the main or other functions. This counter is used with the
second and the third type of annotations described in the
previous section. The annotation before the call instruction
increments the counter, whereas the instruction following
it decrements it. Switching off of cache blocks is
performed only when this counter value is zero indicating
that the code under execution is not part of any loop.
Instructions to manipulate the dedicated counter, which
keeps track of entry and exit of calls, are needed. An
alternative is to have a dedicated register and use the
increment and decrement instructions of the existing ISA
before and after the function calls.

Figure 2. Hardware details of DBEC mechanism.

3. Experimental Methodology and Results

3.1 Experimental Setup

The Simplescalar-3.0 [11] simulator has been modified to
simulate switching-off of the cache blocks when annotated
instructions are encountered in the instruction stream. A
set of benchmark programs from the SPEC 2000 [12] suite
and Media-benchmark [13] suite have been used to
evaluate the performance of the proposed scheme.
The simulator is used to collect the results of energy
consumption. The compiler is modified to annotate the
instructions that should switch-off the cache blocks. The
various phases in the compilation are depicted in figure 3.
The programs selected from SPEC 2000 have been run for
4billion instructions, and the Media-benchmarks have
been run to completion to collect the statistics of
simulations. Simulations are performed for two different
initial states of the cache blocks namely, - on and off. The
initially-on case is more or less a conventional cache with
leakage control mechanism, incorporated. However, when
the cache blocks are initially-off, blocks are brought to
active state only on the first access to them. They remain
in active state till their last use. The turn-on latency should
not affect the performance of the processor. Typically the
turn-on latency of L1-cache will be 1 cycle for 0.07micron
process [8], and the L2-cache latency will be in the range
of 6 to 8 cycles. Thus, the latency of turning-on the cache
block will be completely hidden by the microarchitecture.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

98

 Figure 3. Various phases simulation in DBEC scheme

3.2 Simulation Results

The main parameter considered in the evaluation of the
DBEC scheme is the leakage energy savings in the i-cache.
To study the impact on performance, the parameters,
instructions per cycle (IPC) and miss rate are considered.
The leakage energy of the cache is proportional to the total
number of cache blocks that are switched-on in the cache.
Hence, the total number of blocks switched-off is taken to

Figure 4. Leakage Energy saved for various benchmarks with two different initial states of cache.

be an estimate of the power savings achieved. The
leakage energy saved is normalized with respect to the
energy of the base model and expressed in percentage.

% Energy saved =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∗

∗
−
∑
=

DNB

ai

n

i
Li

TT

TN
11 (1)

 Where NLi = Number of active lines during the
 execution of ith Basic block.
 Tai = Duration of activity or duration for
 executing the ith Basic block.
 TNB = Total number of blocks.
 TD = Total duration
Leakage energy saved/cycle (in Joules)
 = Number of lines turned off * A ---(2)
Where A = energy dissipation per line per cycle
= 0.33 pJ /32Bytes for 0.07 micron technology [9]

Table 1. Parameters Used in the DBEC Simulation.

Parameter Value
Fetch Width
Decode Width
Commit Width
iL1 Cache

iL1 Cache Block Size
iL1 Cache Latency
dL1 Cache
iL2 Unified Cache
iL2 Cache Latency
iL1 cache leakage energy

4 Instructions Per Cycle
4 Instructions Per Cycle
4 Instructions Per Cycle
8k, 16k, 32k and 64k Direct-
Mapped
32 Bytes
1 Cycle
16 K 4-way, 32 bytes Block
256 K 4-way, 64 bytes Block
6 Cycles
0.33 pJ per block per cycle

The parameters chosen for the simulation is shown in
table1 and results of the study are presented below.
Figure 4 shows the percentage leakage energy saved for
various benchmark programs as the cache size is varied
from 8KB to 64KB. Figure 5 shows the absolute leakage

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

99
Le

ak
ag

e
en

er
gy

 sa
ve

d
(p

J)

Le
ak

ag
e

en
er

gy
 sa

ve
d

(p
J)

energy saved for these programs. The xxx-on/xxx-off
indicates the results obtained by keeping all the cache
blocks in initially-on/initially-off state. The energy saved
varies from a minimum of 0.09% to a maximum of
64.8% when all the cache blocks are initially-on and
1.279% to 96.664% when cache blocks are initially-off.
Compared to the results obtained for initially-on, the
leakage energy savings keeps increasing consistently as
the cache size is increased from 8KB to 64KB. Further,
the leakage energy saving is higher when the cache
blocks are initially-off. This mechanism is able to control
the leakage energy of the blocks that are ‘occupied’ and
‘unoccupied’ by the instructions of the program. This is
due to the reason that, the blocks that are occupied will
be turned-off after they become ‘dead’, where as the
blocks that are unoccupied remain in off state from the

beginning itself resulting in higher leakage energy
savings.
In both the ‘initially-on’ and ‘initially-off’ cases, the
leakage energy saved shows some interesting behavior
for different programs. For instance, from figure 4, it is
observed that in some programs namely apsi-on, applu-
on and unepic-on, the leakage energy saved gradually
increases as the cache size is increased. The IPC and
iL1-miss rates of these programs are shown in table 2.
From table 2, it is observed that as the cache size
increases, the iL1-miss rate for these programs decreases
and correspondingly IPC increases. Hence, it may be
inferred that the capacity misses have been reduced and
the basic blocks residing in the augmented blocks are
brought

Figure 5. Leakage Energy saved for various Benchmarks and different cache sizes

under the control of the leakage control mechanism,
there by increasing the leakage energy savings.
In two other programs shown in figure 4, namely
rawcaudio-on and rawdaudio-on, the percentage leakage
energy saved decreases gradually as the cache size is
increased. From table 2, it is observed that the miss rates
are zero and the IPC remains almost constant as the
cache size is increased. That is, the augmented portion of
the cache due to increase in cache size has not been

brought under the leakage control mechanism. In effect,
(in the initially-on case,) the DBEC mechanism controls
the leakage energy of only the cache blocks that are
occupied by the code and does not control leakage
energy of the portion that is never used for storage. For
such programs, the initially-off should give better energy
savings, which is obvious from the results obtained for
these programs. From figure 4, it is observed that for
rawcaudio-off and rawdaudio-off, the energy saved for

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

100

64KB cache size is 96.13% (2.29% for rawcaudio-on)
and 96.64% (2.24% for rawdaudio-on) respectively.
In another set of programs, namely epic-on, swim-on,
art-on and mcf-on, the percentage leakage energy saving
increases as the cache size increases and beyond 16KB
or 32KB cache size, it decreases gradually. In ‘art’, the
IPC and iL1 miss-rate remain the same (refer table 1)
when the cache size changes from 16KB to 32KB.
Hence, the percentage leakage energy saving decreases
when the cache size increases from 16KB to 32KB.
Similarly, in ‘swim’, the IPC and miss rates remain the
same when the cache size increases beyond 8KB.
Though a small percentage of increase in leakage energy
saved is observed when the cache size increases from
16KB to 32KB, it decreases from 63.93% down to
51.8684% when the cache size is increased to 64KB. A
similar observation is found in the mcf program too.

To understand the variation observed in leakage energy
savings across these programs, a detailed study has been
conducted. Three programs (namely equake-on, swim-on
and apsi-on) that have shown wide variation in energy
savings are selected. These programs are run for a
sufficiently large number of instructions. The CFG of
these programs are also analyzed in detail to understand
the performance behavior. The number of blocks that
remains in active state and the energy saved is recorded
at every 50million instructions of simulation and the
results are shown in figure 6. In the case of figure 6(a)
and 6(b), the results are shown till the point, beyond
which the variations in the results are negligible.
 In ‘equake’, the energy saved is not considerable till
2.7billion cycles and during this interval none of the
blocks have been turned-off. From 2.85billion cycles to
8.15billion cycles the number of blocks that remains in
active state is 337 showing about 33% reduction in iL1-

Figure 6. Active number Lines and Leakage Energy saved for three different programs.

cache power demand and a steep increase in leakage
energy saved.
In ‘swim’, the leakage energy saved keeps increasing
gradually in the beginning, till 3billion cycles, beyond
which the change in the leakage energy saved is
negligible. This program has few independent basic
blocks at the beginning containing the code for

initialization. Except these few basic blocks, the
remaining f this program are enclosed in a loop. Hence,
none of the cache blocks gets turned-off beyond basic
blocks o this point until the end of the simulation. In
contrast to the above two, ‘apsi’ has relatively large
number of independent basic blocks from the start till the
end of program. The energy saving also varies
accordingly.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

101

To demonstrate that the proposed mechanism does not
have any negative impact on the performance, the IPC
and iL1 miss rates of the modified cache are compared
with those of the base model cache of similar size.
Column 4, 7 and 8 of Table 2 show the IPC and miss
rates for the modified and base model caches for a size
of 16KB. It is observed that the performance is the same
as the base model cache. Hence, the DBEC mechanism
does not degrade the performance of the processor. This
is as expected due to the reason that, in the proposed
scheme, a cache block is put to low leakage-state only
after its last use in the program.

3.3 Minimizing Overheads

DBEC is not without its overheads. It requires additional
bits per cache block to track the dead and live cache
blocks. These additional bits are always on and hence

end up consuming some energy. The overhead due to
these additional bits may be estimated as follows:
Assuming a cache size of 512 sets, 32 Bytes direct
mapped cache, the additional overhead due to Turn-off
bits (TOBs) and Flag bits (FBs) will be 512 bits each.
This is equivalent to 128 bytes or the overhead equal to
that of 4 additional cache blocks. Thus, with 0.33 pJ per
block per cycle, the total leakage energy overhead will
be 1.32 pJ per cycle.
One may look at options to reduce this overhead. These
bits are used to precisely control the cache blocks under
execution, since a state destroying mode is used. An
alternative could be to just turn off all blocks (as done in
Zhang et al., [9]). A comparison with such a scheme is
provided in Table 4. It can be seen that there is small
variation in the miss-rate (number of misses), and IPC,
but they are not significant, and the leakage energy saved
is almost similar.

 Table 2. Comparison of IPC and iL1 miss rates of various programs

Bench
marks Parameter

8 KB
 Initially-on

16 KB
Initially-on

32 KB
Initially-on

64 KB
Initially-on

16 KB
Initially-off

16 KB
Base Cache

IPC 0.9354 0.9701 1.0153 1.0417 0.9701 0.9701 apsi
miss_rate 0.0722 0.0145 0.0065 0.0021 0.0145 0.0145

IPC 1.6105 1.6267 1.6420 1.6420 1.6267 1.6267 applu
miss_rate 0.0026 0.0013 0.0000 0.0000 0.0013 0.0013

IPC 1.6098 1.6120 1.6161 1.6170 1.6120 1.6120 unepic
miss_rate 0.0005 0.0004 0.0003 0.0002 0.0004 0.0004

IPC 1.4603 1.4604 1.4604 1.4604 1.4604 1.4604 rawcaudio
miss_rate 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

IPC 1.6559 1.6560 1.6560 1.6560 1.6560 1.6560 rawdaudio
miss_rate 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

IPC 1.6416 1.6421 1.6434 1.6438 1.6421 1.6422 epic
miss_rate 0.0001 0.0001 0.0000 0.0000 0.0001 0.0001

IPC 1.5174 1.6632 1.6632 1.6632 1.6632 1.6632 swim
miss_rate 0.0138 0.0000 0.0000 0.0000 0.0000 0.0000

IPC 0.8078 0.8079 0.8079 0.8083 0.8079 0.8079 art
miss_rate 0.0001 0.0001 0.0001 0.0000 0.0001 0.0001

4. Estimating DBEC Performance

Let
‘L’ represent the number of lines or blocks that
 the cache contains,
‘Bi’ represent the number of cache blocks or cache lines
 occupied by the ith basic block,
‘Tp’ represent the total duration of the program

 execution,
‘ti’ represent the time for executing basic block ‘i’,
‘Ii’ the number of instructions in basic block ‘i’,
‘pi’ the Cycles / Instruction (CPI) for the basic block ‘i’
‘τ’ the time period of one cycle.

The total leakage energy spent in a conventional cache is
proportional to the product of number of cache lines and
the time (T) necessary for executing the program and is
given by,

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

102

Total leakage energy spent = k * L N* Tp (2)
where, k is the leakage energy per block per cycle.
Leakage energy ‘LE’ spent in the cache while executing
basic block ‘i’ is given by,
 =

ispentLE k * Bi * ti

 or =
ispentLE k * Bi * (Ii * pi * τ) (3)

 If the basic block is enclosed in a loop that is
executed ‘ni’ times, then the leakage energy spent can be
expressed as:

 =

ispentLE k * Bi * (ni * Ii * pi * τ) (4)

Now, in the DBEC scheme, after the execution of one
basic block or loop, the cache block(s) occupied by the
basic block is(are) turned off. Hence, for initially-off
case, normally when a basic block is in execution, the
cache block corresponding to that basic block alone is
turned on. However, the last cache block of the previous
basic block may also be turned on, making the number of
cache blocks turned on as (Bi + 1). Thus, the leakage
energy saved after ‘m’ basic blocks are executed, can be
computed as:

LEsaved for init-off =

k ()⎥⎦
⎤

⎢⎣

⎡ +−∑
=

m

i
iiiipN pInBTL

1

****)1(* τ (5)

The estimation for the initially-on case, is a little more
complicated. Since, all the cache blocks are initially on,
they have to be occupied /used by the program, to be
brought under the control of DBEC and then turned off.
Since this is not deterministic, it is difficult to estimate
the leakage energy spent. However, a worst case
estimate may be obtained.
 Initially, the leakage energy spent by basic
block ‘i’ may be computed as:

LEi = k* Max ()[] iiiN tBBL *,1−− (6)
The (L-Bi) term in the expression corresponds to the
number of blocks that are likely to be active, when Bi is
under execution after Bi -1 blocks have been turned off.
However, if Bi is greater than this value, then Bi number
of blocks will be turned on. At this point, all the cache
blocks are under the control of DBEC. Hence, for all the
subsequent basic blocks, the leakage energy spent will be
the same as for the initially-off case; i.e.
 LEi = k * Bi * ti (7)

 Hence, energy saved for the entire
program consisting of ‘m’ basic blocks will be given by:

 LEsaved for init-on = ∑
=

−
m

i
iPN oninit

LETLk
1

_
** (8)

In order to validate this estimation, a comparison of the
estimated values and the values obtained from the
simulation has been done. The results for one program
namely, apsi is given in Table 3, for both initially-on and
initially-off case.
It can be seen that the estimated values are useful in
getting the range of savings that could be obtained.

Table 3. Comparison of Estimated v/s Simulated Values
 (for apsi program)

Parameter For initially-off
case

For initially-
on case

Sim_num_instructions 475045907 475045930
Sim_CPI 0.4737 0.4738

CPI (manually
estimated) 0.7222 0.7222

Leakage energy spent;
(from estimation) 0.33962*10-12 7.24533*10-12

Leakage energy spent;
(from simulation) 0.22618*10-12 9.509*10-12

Leakage energy saved
(from estimation) 99.9962% 6.4904 %

Leakage energy saved
(from simulation) 99.8 % 5.72 %

5. Comparison With Related Work

It is worth contrasting the DBEC approach with the
dynamic hardware based mechanism used in DRI I-
cache proposed by [3}, the Adaptive Mode Control
Cache proposed by [4] and the Cache Line Decay
mechanism proposed by [7]. The Dynamic ResIzable I-
cache ‘DRI I-cache’, dynamically reacts to application
demand and adapts to the required cache size during
execution to reduce leakage energy of level 1 I-cache.
Kaxiras et al.[7], have proposed a mechanism to control
the cache leakage energy at block level granularity i.e.,
cache block granularity. This technique monitors the
periods of inactivity in cache blocks by associating
saturating counters with each block. If a cache block is
not accessed within a predefined fixed interval, the block
is turned-off. In an adaptive-mode-control cache, the

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

103

miss rate and performance factors are dynamically
monitored to adjust the turn-off interval to ensure that its
performance closely tracks the performance of an
equivalent cache without leakage-control mechanism.
In these schemes, the time at which a block can be put
into the low-leakage mode is determined at run time
based on a saturating counter. The choice of the
saturation value directly affects the performance, as the
saturation value is only an estimate of the non-usage of a
line. Too large a value would result in reduced power
saving, while too small a value would result in higher
power saving, but, would result in early eviction of
cache blocks, thereby causing performance degradation.
The saturation value may vary widely across applications
as well as within a given application. An optimal value is
to be chosen based on these. Even the application
dependent static choice of saturation value is only an
estimate. This may very well result in performance
penalty. However, in the DBEC scheme, more precise
information on when a block is going to be ‘dead’ is
exactly obtained directly from the compiler.
Bellas et al. [1] have proposed L-cache, buffers the
instructions of innermost loops. However, this approach
does not consider the basic blocks within loops that
contain function calls, for placement in the L-cache. The

profile from the previous runs is used to select the best
instructions to be cached. The performance improvement
causes the application to be executed in lesser time and
hence energy savings can be achieved. Compiler
optimizations namely loop unrolling, loop tiling, loop
permutation and loop fusion are shown to improve
program performance and reduce the energy spent.
However, these techniques are effective only for loop
intensive programs.
Zhang, et al. [9], have presented a compiler-assisted
approach for placing a cache line in the low-leakage
mode at a loop level granularity. This parallel and
independent work is very similar to DBEC. In fact they
discuss about four schemes, namely, Conservative and
Optimistic schemes with state-preserving and state-
destroying modes. The DBEC scheme is almost identical
to the conservative state destroying scheme. Zhang et al.,
[9] have attempted to put the cache lines into the low
leakage mode when the next access to the instruction
will never occur or occur only after a long gap. The
compiler is used to insert power mode instructions that
control the supply voltage for the cache lines. In this
scheme, instead

Table 4. Comparison of DBEC performance with alternate scheme

Pr
og

ra
m

ca
ch

e
si

ze
 K

B

sim_cycle IPC

N
um

be
r

of

M
is

se
s

miss
rate

Leakage
Energy
saved (%)

Scheme

8 2475182013 0.8080 68467 0.0000 50.686 All_blocks_off

8 2475178569 0.8080 68231 0.0000 50.304 DBEC scheme

64 2474501022 0.8082 25082 0.0000 90.836 All_blocks_off

Art

 64 2474497500 0.8082 24846 0.0000 90.789 DBEC scheme

8 11478100 1.4604 701 0.0000 69.506 All_blocks_off

8 11478185 1.4603 703 0.0000 69.509 DBEC scheme

64 11477487 1.4604 574 0.0000 96.085 All_blocks_off

rawc

 64 11477566 1.4604 575 0.0000 96.133 DBEC scheme

8 7765251 1.6559 699 0.0000 73.386 All_blocks_off

8 7765301 1.6559 700 0.0000 73.386 DBEC scheme

64 7764612 1.6560 570 0.0000 96.664 All_blocks_off

rawd

 64 7764664 1.6560 571 0.0000 96.664 DBEC scheme

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

104

8 58774036 1.6416 14313 0.0001 1.571 All_blocks_off

8 58774163 1.6416 14312 0.0001 1.570 DBEC scheme

64 58692407 1.6439 3236 0.0000 55.649 All_blocks_off

Epic

 64 58692534 1.6438 3235 0.0000 55.649 DBEC scheme

8 10621110 1.6096 9281 0.0005 1.289 All_blocks_off

8 10619174 1.6099 9239 0.0005 1.279 DBEC scheme

64 10572841 1.6170 4374 0.0002 40.444 All_blocks_off

unepic

 64 10572009 1.6170 4337 0.0002 40.428 DBEC scheme

of turning off only the cache blocks storing the dead
instructions, it attempts to turn-off the supply to all the
cache blocks. The only advantage of DBEC with its
precise control is that it will also take advantage of
prefetch mechanism i.e., prefetched blocks will not be
turned off.
The DBEC approach takes care of both loop-intensive
and non loop-intensive programs without sacrificing
performance. However, the DBEC scheme performs well
if the program structure has more independent basic
blocks.
DBEC scheme is useful for the basic blocks of Main and
the other functions defined with in the program (which
are annotated as explained earlier). The DBEC scheme
will not consider turning-off the cache blocks occupied
by the DLLs (if they are not annotated).

6. Summary

The DBEC approach presented in this chapter identifies
precisely the basic blocks which are dead at a particular
point of program execution with the help of the compiler.
This mechanism works well when the program contains
a large number of independent basic blocks. This
approach is found to reduce the leakage energy by 10.8%
for initially on case and 21.6 % for initially off case for a
cache size of 16 KB. For a cache size of 64 KB, it is
found to reduce the leakage energy by 18.9% for initially
on case and 62 % for initially off case. The performance
degradation is negligible for this approach. Hence, this
approach is applicable to general purpose high
performance microprocessors too. Further, this being a
primarily static approach supported by the compiler, the
run-time architectural overhead of this approach is also
minimal.
The energy behavior of an energy-controlling strategy
using software technique mainly depends on the program
profile. Secondly, it depends to a large extent on the

execution time of the loops also. In case of DBEC
scheme, the cache lines occupied by an independent
basic block/loop are turned off soon after its execution,
to control the leakage energy. If the cache lines occupied
by an independent basic block are turned off, it will
definitely contribute to significant percentage of energy
savings provided the independent basic block is before
the loop in the program order and the loop is executed
relatively a longer period time. The reason for significant
percentage energy saving is that such cache lines remain
in low leakage control mode for a large time fraction of
the program execution (the general rule of Pareto
principle, i.e., 20 % of the code executes for 80% of the
total time). Such cases are cleverly exploited by the
DBEC scheme.

References

[1] Nikolaos Bellas et al., “Architectural and Compiler

Support for Energy Reduction in the Memory
Hierarchy of High Performance Micrprocessors,”
ISLPED, ACM Press, New York, USA,1998,pp70-
75.

[2] Michael D Powell et al., “Gated-Vdd: A Circuit
Technique to Reduce Leakage in Deep-Submicron
Cache Memories,” ISLPED,2000,pp 90-95.

[3] Se-Hyun Yang et al., “An Integrated Circuit /
Architectural Approach to Reducing Leakage in
Deep-Submicron High Performance I-caches,”
Proceedings of the International Symposium on High
Performance Computer Architecture
(HPCA),Janaury2001.

[4] Huiyang Zhou et al., “ Adaptive Mode Control: A
Static-Power-Efficient Cache Design,” Proc.
International Conference on Parallel Architectures
and Compilation techniques, (PACT 01) 2001.

[5] Kanad Ghose et al., “ Reducing Power in Superscalar
Processor Caches Using Subbanking, Multiple Line

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

105

Buffers and Bit-Line Segmentation,” ISLPED, ACM
Press, New York, USA, 1999,pp 70-75.

[6] Hongbo Yang et al., “Power and Energy Impact by
Loop Transformations,”
http://research.ac.upc.es/pact01/colp/paper12.pdf

[7] Stefanos Kaxiras et al., “Cache-Line Decay: A
Mechanism to Reduce Cache Leakage Power” IEEE
Workshop on Power Aware Computer Systems
(PACS), Cambridge, MA, USA, pp82-96.

[8] K Kristner et al., “Drowsy-Cache: A Mechanism to
Control Leakage Energy in SRAM cells,” Proc.
ISCA 2002.

[9] W.Zhang et al., “ Compiler-Directed Instruction
Cache Leakage Optimization,” Proc. of 35th
International Symposium on Microarchitecture,
Istanbul, Turkey, November2002.

[10] Mohan G Kabadi et al., “ Dead Block Elimination
in I-Cache: A Mechanism to Reduce Power in I-
Cache of High Performance Microprocessors,” Proc.
International Conference on High Performance
Computing (HiPC). India, Dec.2002,pp79-88.

[11] D Burger et al., “The Simplescalar Tool set
Version-2.0:,” CSD Technical Report #1342,
University of Wisconsin-Madison, June1997.

[12] “SPEC CPU 2000 benchmark suite,”
http://www.spec.org

[13] C.Lee et al., “MediaBench: A Tool for Evaluating
Multimedia and Commnications Systems”, Proc.
Micro-30,pp.330-335,Dec.1997

Mohan G Kabadi received the
B.E.(Electrical Power) from
University of Mysore and
M.Tech. degrees in Energy
System from NIT-K. He has
carried out Research work in
Anna University. Currently he is
the Head of Computer Science in
S.J.C.Institute of Technology,
INDIA. His area of interest
includes Embedded Systems an
Low power architecture.

Dr. Ranjani Parthasarathi received the Ph.D from IIT
Madras. Currently she is the Professor in the department of
Computer Science, in Anna University, Chennai, INDIA. Her
area of interest includes re-configurable computing, computer
Networks and Network Processors.

