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Summary 
Power-conscious design using hardware and/or software 
means has become crucial for both mobile and high 
performance processors. This paper explores integrated 
software and circuit level technique to reduce the leakage 
energy in iL1-cache of high performance microprocessors 
by eliminating the basic blocks from the cache, soon after 
they become ‘dead’. The impact of eliminating dead 
blocks on processor performance and energy efficiency 
are analyzed in detail. The compiler normally identifies 
the basic blocks from the control flow graph of the 
program. At this stage candidate basic blocks that can be 
turned-off after use are identified. This information is 
conveyed to the processor, by annotating the first 
instruction of the selected basic blocks. During execution, 
the basic blocks are kept track of, and after use, the cache 
blocks occupied by these blocks are switched-off. 
Experiments have been conducted by considering two 
different initial states of the cache - on and off, and the 
leakage energy saved varies from 0.09% to a maximum of 
96.664%. 
Key words: 
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1. Introduction 

Power-aware design has become a prime design 
consideration, together with performance, in the computer 
systems of today. The fabrication technology of VLSI 
circuits is steadily improving and the chip structures are 
being scaled down. The on-chip transistor density is 
increasing at a higher ratio, resulting in an increased level 
of power consumption. Further, as devices shrink, gates 
move closer and more current leaks between them. Hence, 
an important technical challenge for designers is in 
reducing the current leakage. Thus controlling/reducing 
current leakage has become an active area of research. 
Memory subsystems, especially on-chip caches, are a 
dominant source of power consumption. Caches often 

consume 80% of the total transistor budget and 50% of the 
area. Hence, on-chip caches are good candidates for 
controlling the on-chip leakage energy.  
Several techniques have been proposed to reduce leakage 
energy dissipated by cache subsystems, both for multilevel 
I-caches [1,2,3,4,5,6] and d-caches [4,5,6,7,8]. Such 
techniques can be grouped under two categories, namely, 
(i) architecture alternatives adopting static [5] or dynamic 
methods [3,4] and (ii) software techniques using compiler 
support [1,6]. Many of the architectural level mechanisms 
work at the circuit level, at the cache bank or line 
granularity. They work by putting the idle cache blocks to 
low-leakage mode after a predefined interval of inactivity. 
In Dynamic ResIzable I-cache [3], size of the cache 
dynamically adapts to application demand during 
execution. In Cache-line decay [7], cache blocks are 
turned-off by monitoring the periods of inactivity using 
line-saturating counters with each block. In adaptive-
mode-control cache[4], the individual cache lines of the 
data store is controlled by monitoring the performance. In 
Drowsy-cache [8], leakage energy of the cache blocks is 
controlled by periodically placing all the cache blocks in a 
‘drowsy-state’ by reducing the supply voltage to the 
blocks. 
 
The software methods for controlling the leakage energy 
are relatively simple and assist the microarchitecture in 
reducing the switching activity in on-chip caches by 
giving explicit information on program behavior [1,9] or 
by compiler optimization techniques [6]. For example, in 
the L-cache [1], holding loop-nested basic blocks 
designated by the compiler in a small cache reduces 
switching activity. The profile from the previous runs is 
used to select the best instructions to be cached. The 
compiler-assisted approach used in [9] works at a loop 
level granularity. The cache lines are put into low leakage 
mode when the next access to the instruction occurs only 
after a long gap or would never occur.  
Here we present and analyze a generic, novel, compiler-
assisted technique, called ‘Dead Block Elimination in 
Cache’ (DBEC)[10], wherein, selected lines of the cache 
are turned-off under program control, resulting in leakage 
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energy savings. This approach takes care of both loop-
intensive and non loop-intensive programs without 
sacrificing performance. 

2. Dead Block Elimination in Cache 

The DBEC mechanism uses software-assistance to turn-off 
the ‘dead’ basic blocks of i-cache. The instructions that 
are not ‘live’ at a particular point of program execution, 
and would not be used again before being replaced in the 
cache, are termed as ‘dead’ instructions. The proposed 
scheme identifies the cache blocks that contain the ‘dead’ 
instructions and turns-off the power to such cache blocks, 
for conserving the leakage energy. The information on 
whether an instruction is ‘dead’ at a particular point of 
program execution is obtained from the compiler. The 
‘dead’ instructions are handled at the granularity of basic 
blocks. The compiler identifies the basic blocks from the 
control-flow graph (CFG) and indicates the start and end 
of the basic blocks in the code. During program execution, 
this information (in the form of annotations) is used by the 
microarchitecture to turn-off the ‘dead’ blocks. 
The compiler uses three types of annotations. Each cache 
line is marked when it is taken up for execution. The first 
type of annotation indicates when the cache lines that have 
been marked are to be switched off. This type of 
annotation is normally done for the instructions that begin 
a basic block and would cause the processor to emit a 
‘turn-off signal’. In the case of loops, only the first 
statement of the first basic block is annotated so that the 
basic blocks with in the loops do not switch off other basic 
blocks of the same loop. This ensures that the cache 
blocks containing the loop code are not switched-off 
before the next iteration of the loop. These cache blocks 
are to be switched-off only after the last iteration, when 
the control exits the loop.  
The second type of annotation indicates that the next 
instruction is a “call instruction” with in a loop. The third 
type of annotation indicates that the previous instruction 
was a function call, which is part of a loop. The second 
and third type of annotations ensure that ‘functions’, 
which are called from within a loop, do not switch off the 
cache blocks that contain the code of that loop. This 
mechanism is explained below with an example.  
Figure 1 shows a segment of CFG. The BBi’s are basic 
blocks. The first statement of each basic block is annotated 
during the compilation stage. The first type of annotation 
is used only for the first statement of the basic blocks BB1, 
BB2 and BB5. However, BB3 and BB4 are the basic 
blocks of the same outer loop and hence, the first 
statements of these blocks are not annotated. This is done 

to make sure that BB2 and BB3 are not turned-off when 
BB4 is under execution. When the annotated statement of 
BB2 is under execution, the execution of BB1 is 
completed. Hence, the cache blocks completely occupied 
by the instructions of BB1 are turned-off. Similarly, the 
execution of the first statement of BB5 will turn-off the 
blocks of BB2, BB3 and BB4. Thus, the compiler exactly 
determines the instant at which a particular cache block is 
going to be ‘dead’. This approach has a negligible 
performance penalty as opposed to earlier approaches 
[3,5,6]. Further, this primarily being a static approach 
supported by the compiler, the run-time architectural 
overhead of this approach is also minimal. Two simple 
hardware mechanisms have to be added as explained 
below. 
 

 
 
         Figure 1. An example segment of CFG 
 

2.1 Hardware Modification 

The implementation of the DBEC scheme requires two 
simple modifications, - one on the cache side and the other 
in the processor module. Figure 2 shows the hardware 
modification required in the cache module. With each 
block of the i-cache, one bit called the ‘turn-off bit’ is 
added to the tag bits. These turn-off bits are initially reset 
to zero at the start of program execution. The turn-off bits 
corresponding to blocks of cache that contain the 
instruction of the current basic block, or loop under 
execution, are set. These bits indicate the blocks that are to 
be turned-off, when the execution of the current basic 
block or loop is completed. In addition, one bit called the 
Flag bit is also added per block along with the Tag bits. 
This bit is used to take care of cache blocks which have 
instructions from more than one Basic block. 

When an instruction is fetched from a new cache 
block, the Turn-off bit corresponding to that cache block 
is set to 1. During the fetch process, on the occurrence of 
the next annotated statement, a flag called the Basic Block 
Crossing (BBC) flag is set and the Turn-off bit 
corresponding to that cache block is reset. The BBC bit is 
used to indicate that this cache block should not be turned 
off as it contains the instructions from the next Basic block. 
Hence, once the BBC is set, during instruction fetch, the 
flag bit corresponding that cache block is set, and the 
Turn-off bit is reset.    
 When the annotated instruction is executed, the 
‘turn-off signal’ issued causes all blocks which have their 

BB1 BB2 BB3 BB4 BB5 
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Turn-off bit set to 1 to be turned off. On the falling edge of 
‘turn-off signal’, the flag and its corresponding Flag bits 
are copied to the turn off bits, and the flag bits are reset. 
For this to work, it is necessary that the annotation field of 
the instructions is pre decoded (as the instruction is 
fetched). This will help to identify the annotated 
instruction at an early stage. 
  
The blocks are turned-off and put to a state-destroying 
mode using a mechanism similar to the drowsy-cache 
mechanism used in [8]. This mechanism works well for 
both direct as well as set-associative caches. 
This mechanism can be explained using the same example 
given in the previous section. Against the execution of the 
first annotated statement of BB1, the processor sets the 
turn-off bits of those cache blocks from which the 
instructions of BB1 are fetched. An instance of BB1 
occupying an arbitrary number of bytes is shown in figure 
2. Also, the turn-off bits for those blocks at the end of 
execution of BB1 are shown in the same figure. The turn-
off bit of cache block X3 is not set, indicating that the 
cache block is to be retained even after the execution of 
the BB1. This is because cache block X3 is only partially 
filled with instructions from BB1, and contains some code 
from the BB2 also. When the control reaches the 
beginning of BB2, the annotated first statement of BB2 
will trigger the invalidation and a ‘turn-off-signal’ is 
emitted. This will turn-off all those blocks whose turn-off 
bits were previously marked for this purpose. Hence, the 
cache block X1 and X2 would be turned-off. The turn-off 
bit of X3 is set only when the basic block BB2 is taken up 
for execution. When the execution of basic block BB2 is 
completed, the cache block X3 is turned-off. 
In the processor module, a counter is needed to track the 
depth of execution when the function(s) are called from 
the main or other functions. This counter is used with the 
second and the third type of annotations described in the 
previous section. The annotation before the call instruction 
increments the counter, whereas the instruction following 
it decrements it. Switching off of cache blocks is 
performed only when this counter value is zero indicating 
that the code under execution is not part of any loop. 
Instructions to manipulate the dedicated counter, which 
keeps track of entry and exit of calls, are needed. An 
alternative is to have a dedicated register and use the 
increment and decrement instructions of the existing ISA 
before and after the function calls. 
 
 

 
 

Figure 2. Hardware details of DBEC mechanism. 

3. Experimental Methodology and Results 

3.1 Experimental Setup 

The Simplescalar-3.0 [11] simulator has been modified to 
simulate switching-off of the cache blocks when annotated 
instructions are encountered in the instruction stream. A 
set of benchmark programs from the SPEC 2000 [12] suite 
and Media-benchmark [13] suite have been used to 
evaluate the performance of the proposed scheme.  
The simulator is used to collect the results of energy 
consumption. The compiler is modified to annotate the 
instructions that should switch-off the cache blocks. The 
various phases in the compilation are depicted in figure 3. 
The programs selected from SPEC 2000 have been run for 
4billion instructions, and the Media-benchmarks have 
been run to completion to collect the statistics of 
simulations. Simulations are performed for two different 
initial states of the cache blocks namely, - on and off. The 
initially-on case is more or less a conventional cache with 
leakage control mechanism, incorporated. However, when 
the cache blocks are initially-off, blocks are brought to 
active state only on the first access to them. They remain 
in active state till their last use. The turn-on latency should 
not affect the performance of the processor. Typically the 
turn-on latency of L1-cache will be 1 cycle for 0.07micron 
process [8], and the L2-cache latency will be in the range 
of 6 to 8 cycles. Thus, the latency of turning-on the cache 
block will be completely hidden by the microarchitecture. 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007 

 

98 

 
 
     Figure 3. Various phases simulation in DBEC scheme  

3.2 Simulation Results 

The main parameter considered in the evaluation of the 
DBEC scheme is the leakage energy savings in the i-cache. 
To study the impact on performance, the parameters, 
instructions per cycle (IPC) and miss rate are considered. 
The leakage energy of the cache is proportional to the total 
number of cache blocks that are switched-on in the cache. 
Hence, the total number of blocks switched-off is taken to  
 
 

Figure 4. Leakage Energy saved for various benchmarks with two different initial states of cache. 

 
be an estimate of the power savings achieved. The 
leakage energy saved is normalized with respect to the 
energy of the base model and expressed in percentage. 
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   Where NLi  = Number of active lines during the 
                        execution of ith Basic block. 
 Tai  =  Duration of activity or duration for 
                        executing the ith Basic block. 
              TNB = Total number of blocks. 
              TD   = Total duration 
Leakage energy saved/cycle (in Joules)  
                   = Number of lines turned off * A ---(2) 
Where A = energy dissipation per line per cycle 
= 0.33 pJ /32Bytes for 0.07 micron technology [9] 
 

Table 1.  Parameters Used in the DBEC Simulation. 
 

Parameter Value 
Fetch Width 
Decode Width 
Commit Width 
iL1 Cache 
 
iL1 Cache Block Size 
iL1 Cache Latency 
dL1 Cache  
iL2 Unified Cache 
iL2 Cache Latency 
iL1 cache leakage energy

4 Instructions Per Cycle  
4 Instructions Per Cycle 
4 Instructions Per Cycle 
8k, 16k, 32k and 64k Direct-
Mapped 
32 Bytes 
1 Cycle 
16 K 4-way, 32 bytes Block 
256 K 4-way, 64 bytes Block 
6 Cycles 
0.33 pJ per block per cycle  

 
The parameters chosen for the simulation is shown in 
table1 and results of the study are presented below. 
Figure 4 shows the percentage leakage energy saved for 
various benchmark programs as the cache size is varied 
from 8KB to 64KB. Figure 5 shows the absolute leakage 
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energy saved for these programs. The xxx-on/xxx-off 
indicates the results obtained by keeping all the cache 
blocks in initially-on/initially-off state. The energy saved 
varies from a minimum of 0.09% to a maximum of 
64.8% when all the cache blocks are initially-on and 
1.279% to 96.664% when cache blocks are initially-off. 
Compared to the results obtained for initially-on, the 
leakage energy savings keeps increasing consistently as 
the cache size is increased from 8KB to 64KB. Further, 
the leakage energy saving is higher when the cache 
blocks are initially-off. This mechanism is able to control 
the leakage energy of the blocks that are ‘occupied’ and 
‘unoccupied’ by the instructions of the program. This is 
due to the reason that, the blocks that are occupied will 
be turned-off after they become ‘dead’, where as the 
blocks that are unoccupied remain in off state from the 

beginning itself resulting in higher leakage energy 
savings. 
In both the ‘initially-on’ and ‘initially-off’ cases, the 
leakage energy saved shows some interesting behavior 
for different programs. For instance, from figure 4, it is 
observed that in some programs namely apsi-on, applu-
on and unepic-on, the leakage energy saved gradually 
increases as the cache size is increased. The IPC and 
iL1-miss rates of these programs are shown in table 2. 
From table 2, it is observed that as the cache size 
increases, the iL1-miss rate for these programs decreases 
and correspondingly IPC increases. Hence, it may be 
inferred that the capacity misses have been reduced and 
the basic blocks residing in the augmented blocks are 
brought 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Leakage Energy saved for various Benchmarks and different cache sizes 

under the control of the leakage control mechanism, 
there by increasing the leakage energy savings.  
In two other programs shown in figure 4, namely 
rawcaudio-on and rawdaudio-on, the percentage leakage 
energy saved decreases gradually as the cache size is 
increased. From table 2, it is observed that the miss rates 
are zero and the IPC remains almost constant as the 
cache size is increased. That is, the augmented portion of 
the cache due to increase in cache size has not been 

brought under the leakage control mechanism. In effect, 
(in the initially-on case,) the DBEC mechanism controls 
the leakage energy of only the cache blocks that are 
occupied by the code and does not control leakage 
energy of the portion that is never used for storage. For 
such programs, the initially-off should give better energy 
savings, which is obvious from the results obtained for 
these programs. From figure 4, it is observed that for 
rawcaudio-off and rawdaudio-off, the energy saved for 
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64KB cache size is 96.13% (2.29% for rawcaudio-on) 
and 96.64% (2.24% for rawdaudio-on) respectively. 
In another set of programs, namely epic-on, swim-on, 
art-on and mcf-on, the percentage leakage energy saving 
increases as the cache size increases and beyond 16KB 
or 32KB cache size, it decreases gradually. In ‘art’, the 
IPC and iL1 miss-rate remain the same (refer table 1) 
when the cache size changes from 16KB to 32KB. 
Hence, the percentage leakage energy saving decreases 
when the cache size increases from 16KB to 32KB. 
Similarly, in ‘swim’, the IPC and miss rates remain the 
same when the cache size increases beyond 8KB. 
Though a small percentage of increase in leakage energy 
saved is observed when the cache size increases from 
16KB to 32KB, it decreases from 63.93% down to 
51.8684% when the cache size is increased to 64KB. A 
similar observation is found in the mcf program too. 

To understand the variation observed in leakage energy 
savings across these programs, a detailed study has been 
conducted. Three programs (namely equake-on, swim-on 
and apsi-on) that have shown wide variation in energy 
savings are selected. These programs are run for a 
sufficiently large number of instructions. The CFG of 
these programs are also analyzed in detail to understand 
the performance behavior. The number of blocks that 
remains in active state and the energy saved is recorded 
at every 50million instructions of simulation and the 
results are shown in figure 6. In the case of figure 6(a) 
and 6(b), the results are shown till the point, beyond 
which the variations in the results are negligible. 
 In ‘equake’, the energy saved is not considerable till 
2.7billion cycles and during this interval none of the 
blocks have been turned-off. From 2.85billion cycles to 
8.15billion cycles the number of blocks that remains in 
active state is 337 showing about 33% reduction in iL1-

 

Figure 6. Active number Lines and Leakage Energy saved for three different programs. 

 
cache power demand and a steep increase in leakage 
energy saved. 
In ‘swim’, the leakage energy saved keeps increasing 
gradually in the beginning, till 3billion cycles, beyond 
which the change in the leakage energy saved is 
negligible. This program has few independent basic 
blocks at the beginning containing the code for 

initialization. Except these few basic blocks, the 
remaining f this program are enclosed in a loop. Hence, 
none of the cache blocks gets turned-off beyond basic 
blocks o this point until the end of the simulation. In 
contrast to the above two, ‘apsi’ has relatively large 
number of independent basic blocks from the start till the 
end of program. The energy saving also varies 
accordingly. 
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To demonstrate that the proposed mechanism does not 
have any negative impact on the performance, the IPC 
and iL1 miss rates of the modified cache are compared 
with those of the base model cache of similar size. 
Column 4, 7 and 8 of Table 2 show the IPC and miss 
rates for the modified and base model caches for a size 
of 16KB. It is observed that the performance is the same 
as the base model cache. Hence, the DBEC mechanism 
does not degrade the performance of the processor. This 
is as expected due to the reason that, in the proposed 
scheme, a cache block is put to low leakage-state only 
after its last use in the program. 
 

3.3 Minimizing Overheads 

DBEC is not without its overheads. It requires additional 
bits per cache block to track the dead and live cache 
blocks. These additional bits are always on and hence 

end up consuming some energy. The overhead due to 
these additional bits may be estimated as follows: 
Assuming a cache size of 512 sets, 32 Bytes direct 
mapped cache, the additional overhead due to Turn-off 
bits (TOBs) and Flag bits (FBs) will be 512 bits each. 
This is equivalent to 128 bytes or the overhead equal to 
that of 4 additional cache blocks. Thus, with 0.33 pJ per 
block per cycle, the total leakage energy overhead will 
be 1.32 pJ per cycle.  
One may look at options to reduce this overhead. These 
bits are used to precisely control the cache blocks under 
execution, since a state destroying mode is used. An 
alternative could be to just turn off all blocks (as done in 
Zhang et al., [9]). A comparison with such a scheme is  
provided in Table 4. It can be seen that there is small 
variation in the miss-rate (number of misses), and IPC, 
but they are not significant, and the leakage energy saved 
is almost similar. 

       Table 2. Comparison of IPC and iL1 miss rates of various programs 

Bench 
marks Parameter 

8 KB 
 Initially-on 

16 KB 
Initially-on

32 KB 
Initially-on

64 KB 
Initially-on

16 KB 
Initially-off

16 KB     
Base Cache 

IPC 0.9354 0.9701 1.0153 1.0417 0.9701 0.9701 apsi 
miss_rate 0.0722 0.0145 0.0065 0.0021 0.0145 0.0145 

IPC 1.6105 1.6267 1.6420 1.6420 1.6267 1.6267 applu 
miss_rate 0.0026 0.0013 0.0000 0.0000 0.0013 0.0013 

IPC 1.6098 1.6120 1.6161 1.6170 1.6120 1.6120 unepic 
miss_rate 0.0005 0.0004 0.0003 0.0002 0.0004 0.0004 

IPC 1.4603 1.4604 1.4604 1.4604 1.4604 1.4604 rawcaudio 
miss_rate 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

IPC 1.6559 1.6560 1.6560 1.6560 1.6560 1.6560 rawdaudio 
miss_rate 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

IPC 1.6416 1.6421 1.6434 1.6438 1.6421 1.6422 epic 
miss_rate 0.0001 0.0001 0.0000 0.0000 0.0001 0.0001 

IPC 1.5174 1.6632 1.6632 1.6632 1.6632 1.6632 swim 
miss_rate 0.0138 0.0000 0.0000 0.0000 0.0000 0.0000 

IPC 0.8078 0.8079 0.8079 0.8083 0.8079 0.8079 art 
miss_rate 0.0001 0.0001 0.0001 0.0000 0.0001 0.0001 

 

4. Estimating DBEC Performance 

Let  
‘L’   represent the number of lines or blocks that 
        the cache contains,  
‘Bi’  represent the number of cache blocks or cache lines 
        occupied  by the ith   basic block, 
‘Tp’  represent the total duration of the program     

       execution, 
‘ti’   represent the time for executing  basic block ‘i’, 
‘Ii’   the number of instructions in basic block ‘i’, 
‘pi’ the Cycles / Instruction (CPI) for the basic block ‘i’ 
‘τ’   the time period of one cycle. 
 
The total leakage energy spent in a conventional cache is 
proportional to the product of number of cache lines and 
the time (T) necessary for executing the program and is 
given by,  
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Total leakage energy spent = k * L N* Tp  (2) 
where, k is the leakage energy per block per cycle.  
Leakage energy ‘LE’ spent in the cache while executing 
basic block ‘i’ is given by,            
 =

ispentLE  k * Bi * ti 

     or       =
ispentLE   k * Bi * (Ii * pi * τ)     (3)                                                                                                                                  

 If the basic block is enclosed in a loop that is 
executed ‘ni’ times, then the leakage energy spent can be 
expressed as:      
         
 =

ispentLE   k * Bi * (ni * Ii * pi * τ)    (4)  
  
Now, in the DBEC scheme, after the execution of one 
basic block or loop, the cache block(s) occupied by the 
basic block is(are) turned off. Hence, for initially-off 
case, normally when a basic block is in execution, the 
cache block corresponding to that basic block alone is 
turned on. However, the last cache block of the previous 
basic block may also be turned on, making the number of 
cache blocks turned on as (Bi + 1). Thus, the leakage 
energy saved after ‘m’ basic blocks are executed, can be 
computed as: 
 
LEsaved for init-off = 

k ( )⎥⎦
⎤

⎢⎣

⎡ +−∑
=

m

i
iiiipN pInBTL

1

****)1(* τ   (5) 

 
The estimation for the initially-on case, is a little more 
complicated. Since, all the cache blocks are initially on, 
they have to be occupied /used by the program, to be 
brought under the control of DBEC and then turned off. 
Since this is not deterministic, it is difficult to estimate 
the leakage energy spent. However, a worst case 
estimate may be obtained.   
 Initially, the leakage energy spent by basic 
block ‘i’ may be computed as: 
 
LEi  = k* Max ( )[ ] iiiN tBBL *,1−−  (6) 
The (L-Bi) term in the expression corresponds to the 
number of blocks that are likely to be active, when Bi is 
under execution after Bi -1 blocks have been turned off. 
However, if Bi  is greater than this value, then Bi number 
of blocks will be turned on. At this point, all the cache 
blocks are under the control of DBEC. Hence, for all the 
subsequent basic blocks, the leakage energy spent will be 
the same as for the initially-off case; i.e.    
 LEi  = k * Bi * ti        (7) 

  Hence, energy saved for the entire 
program consisting of ‘m’ basic blocks will be given by: 

  LEsaved for init-on = ∑
=

−
m

i
iPN oninit

LETLk
1

_
** (8)  

In order to validate this estimation, a comparison of the 
estimated values and the values obtained from the 
simulation has been done. The results for one program 
namely, apsi is given in Table 3, for both initially-on and 
initially-off case.  
It can be seen that the estimated values are useful in 
getting the range of savings that could be obtained. 
 
Table 3. Comparison of Estimated v/s Simulated Values  
              (for apsi program) 
 

Parameter For initially-off 
case  

For initially-
on case  

Sim_num_instructions 475045907 475045930 
Sim_CPI 0.4737 0.4738 

CPI (manually 
estimated) 0.7222 0.7222 

Leakage energy spent; 
(from estimation) 0.33962*10-12  7.24533*10-12

Leakage energy spent; 
(from simulation) 0.22618*10-12 9.509*10-12 

Leakage energy saved 
(from estimation) 99.9962% 6.4904 % 

Leakage energy saved 
(from simulation) 99.8 % 5.72 % 

 

5. Comparison With Related Work 

It is worth contrasting the DBEC approach with the 
dynamic hardware based mechanism used in DRI I-
cache proposed by [3}, the Adaptive Mode Control 
Cache proposed by [4] and the Cache Line Decay 
mechanism proposed by [7].  The Dynamic ResIzable I-
cache ‘DRI I-cache’, dynamically reacts to application 
demand and adapts to the required cache size during 
execution to reduce leakage energy of level 1 I-cache. 
Kaxiras et al.[7], have proposed a mechanism to control 
the cache leakage energy at block level granularity i.e., 
cache block granularity. This technique monitors the 
periods of inactivity in cache blocks by associating 
saturating counters with each block. If a cache block is 
not accessed within a predefined fixed interval, the block 
is turned-off. In an adaptive-mode-control cache, the 
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miss rate and performance factors are dynamically 
monitored to adjust the turn-off interval to ensure that its 
performance closely tracks the performance of an 
equivalent cache without leakage-control mechanism. 
In these schemes, the time at which a block can be put 
into the low-leakage mode is determined at run time 
based on a saturating counter. The choice of the 
saturation value directly affects the performance, as the 
saturation value is only an estimate of the non-usage of a 
line. Too large a value would result in reduced power 
saving, while too small a value would result in higher 
power saving, but, would result in early eviction of 
cache blocks, thereby causing performance degradation. 
The saturation value may vary widely across applications 
as well as within a given application. An optimal value is 
to be chosen based on these. Even the application 
dependent static choice of saturation value is only an 
estimate. This may very well result in performance 
penalty. However, in the DBEC scheme, more precise 
information on when a block is going to be ‘dead’ is 
exactly obtained directly from the compiler. 
Bellas et al. [1] have proposed L-cache, buffers the 
instructions of innermost loops. However, this approach 
does not consider the basic blocks within loops that 
contain function calls, for placement in the L-cache. The 

profile from the previous runs is used to select the best 
instructions to be cached. The performance improvement 
causes the application to be executed in lesser time and 
hence energy savings can be achieved. Compiler 
optimizations namely loop unrolling, loop tiling, loop 
permutation and loop fusion are shown to improve 
program performance and reduce the energy spent. 
However, these techniques are effective only for loop 
intensive programs. 
Zhang, et al. [9], have presented a compiler-assisted 
approach for placing a cache line in the low-leakage 
mode at a loop level granularity. This parallel and 
independent work is very similar to DBEC. In fact they 
discuss about four schemes, namely, Conservative and 
Optimistic schemes with state-preserving and state-
destroying modes. The DBEC scheme is almost identical 
to the conservative state destroying scheme. Zhang et al., 
[9] have attempted to put the cache lines into the low 
leakage mode when the next access to the instruction 
will never occur or occur only after a long gap. The 
compiler is used to insert power mode instructions that 
control the supply voltage for the cache lines. In this 
scheme, instead  
 

Table 4. Comparison of DBEC performance with alternate scheme 
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sim_cycle IPC 
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miss 
rate 

Leakage 
Energy 
saved (%) 

Scheme 

8 2475182013 0.8080 68467 0.0000 50.686 All_blocks_off 

8 2475178569 0.8080 68231 0.0000 50.304 DBEC scheme 

64 2474501022 0.8082 25082 0.0000 90.836 All_blocks_off 

Art 
 
 
 64 2474497500 0.8082 24846 0.0000 90.789 DBEC scheme 

8 11478100 1.4604 701 0.0000 69.506 All_blocks_off 

8 11478185 1.4603 703 0.0000 69.509 DBEC scheme 

64 11477487 1.4604 574 0.0000 96.085 All_blocks_off 

rawc 
 
 
 64 11477566 1.4604 575 0.0000 96.133 DBEC scheme 

8 7765251 1.6559 699 0.0000 73.386 All_blocks_off 

8 7765301 1.6559 700 0.0000 73.386 DBEC scheme 

64 7764612 1.6560 570 0.0000 96.664 All_blocks_off 

rawd 
 
 
 64 7764664 1.6560 571 0.0000 96.664 DBEC scheme 
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8 58774036 1.6416 14313 0.0001 1.571 All_blocks_off 

8 58774163 1.6416 14312 0.0001 1.570 DBEC scheme 

64 58692407 1.6439 3236 0.0000 55.649 All_blocks_off 

Epic 
 
 
 64 58692534 1.6438 3235 0.0000 55.649 DBEC scheme 

8 10621110 1.6096 9281 0.0005 1.289 All_blocks_off 

8 10619174 1.6099 9239 0.0005 1.279 DBEC scheme 

64 10572841 1.6170 4374 0.0002 40.444 All_blocks_off 

unepic
 
 
 64 10572009 1.6170 4337 0.0002 40.428 DBEC scheme 

 
of turning off only the cache blocks storing the dead 
instructions, it attempts to turn-off the supply to all the 
cache blocks. The only advantage of DBEC with its 
precise control is that it will also take advantage of 
prefetch mechanism i.e., prefetched blocks will not be 
turned off.    
The DBEC approach takes care of both loop-intensive 
and non loop-intensive programs without sacrificing 
performance. However, the DBEC scheme performs well 
if the program structure has more independent basic 
blocks.  
DBEC scheme is useful for the basic blocks of Main and 
the other functions defined with in the program (which 
are annotated as explained earlier). The DBEC scheme 
will not consider turning-off the cache blocks occupied 
by the DLLs (if they are not annotated). 

6. Summary 

The DBEC approach presented in this chapter identifies 
precisely the basic blocks which are dead at a particular 
point of program execution with the help of the compiler. 
This mechanism works well when the program contains 
a large number of independent basic blocks. This 
approach is found to reduce the leakage energy by 10.8% 
for initially on case and 21.6 % for initially off case for a 
cache size of 16 KB. For a cache size of 64 KB, it is 
found to reduce the leakage energy by 18.9% for initially 
on case and 62 %  for initially off case.  The performance 
degradation is negligible for this approach. Hence, this 
approach is applicable to general purpose high 
performance microprocessors too. Further, this being a 
primarily static approach supported by the compiler, the 
run-time architectural overhead of this approach is also 
minimal. 
The energy behavior of an energy-controlling strategy 
using software technique mainly depends on the program 
profile. Secondly, it depends to a large extent on the 

execution time of the loops also.  In case of DBEC 
scheme, the cache lines occupied by an independent 
basic block/loop are turned off soon after its execution, 
to control the leakage energy. If the cache lines occupied 
by an independent basic block are turned off, it will 
definitely contribute to significant percentage of energy 
savings provided the independent basic block is before 
the loop in the program order and the loop is executed 
relatively a longer period time. The reason for significant 
percentage energy saving is that such cache lines remain 
in low leakage control mode for a large time fraction of 
the program execution (the general rule of Pareto 
principle, i.e., 20 % of the code executes for 80% of the 
total time ). Such cases are cleverly exploited by the 
DBEC scheme.  
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